
STA261 (Summer 2024) - Assignment 6

These problems are meant to test your understanding of the concepts in Module 6. They are not
to be handed in. Some of these have been modified (or in some cases taken directly) from questions
in the Additional Resources listed in the course syllabus, and no claims of originality are made.

1. Prove the following:

(a) Suppose A ⊆ Θ. If Π(A) = 0, then Π(A | x) = 0.

(b) If π(θ) is proper, then so is π(θ | x). The converse does not hold.

(c) π(θ) is improper if and only if c · π(θ) is improper for any c > 0.

(d) When using an improper prior π(θ), the posterior under π(θ) is proper if and only if the
posterior under c · π(θ) is proper for any c > 0, and then the posteriors are identical.

2. Prove Theorem 6.1.

3. Prove Theorem 6.2, and determine the updated parameters of the posterior.

4. For the posterior mean estimator in Example 6.16, calculate its MSE (in the freqentist sense)
and show that the MSE constant if we choose the hyperparameters α = β =

√
n/4.

5. Suppose that x1:n := (x1, . . . , xn) is a sample from {fθ : θ ∈ Θ} and that we have a prior π(θ)
on θ. If we also have an additional sample xn+1:n+m := (xn+1, . . . , xn+m), show that using the
posterior π(θ | x1:n) as a prior and then conditioning on xn+1:n+m is the same as the posterior
obtained by using the prior π(θ) and conditioning on x1:n+m = (x1, . . . , xn, xn+1, . . . , xn+m).

6. Suppose that π1 and π2 are pmfs on Θ. Show that when we choose a finite mixture prior of the
form π(θ) = απ1(θ) + (1− α)π2(θ) for some α ∈ (0, 1), then the prior predictive distribution is
given by f(x) = αf1(x) + (1 − α)f2(x), and the posterior distribution is also a mixture of the
form

π(θ | x) = α′π1(θ | x) + (1− α′)π2(θ | x)

for some constant α′ ∈ (0, 1).

7. Suppose X = {1, 2} and Θ = {1, 2, 3}. Three pmfs on X – one for each value of θ ∈ Θ – are
specified in the following table:

x = 1 x = 2

f1(x) 1/2 1/2

f2(x) 1/3 2/3

f3(x) 3/4 1/4

Suppose we use the prior π(θ) specified in the following table:

θ = 1 θ = 2 θ = 3

π(θ) 1/5 2/5 2/5

(a) Determine the posterior distribution of θ for each possible sample of size 2.



(b) Suppose we want to estimate θ based on having observed x = 1. Determine the MAP and
the posterior mean estimate. Which would you prefer in this situation? Explain why.

(c) Determine a 0.8 HPD region for θ having observed x = 1.1

(d) Suppose instead interest was in τ(θ) = 1θ∈{1,2}. Identify the prior distribution of τ . Identify
the posterior distribution of τ based on having observed x = 1. Determine a 0.5 HPD region
for τ .

8. Show that the Gamma (α, β) family is conjugate for the Pareto(θ) family, which features pdfs

fθ(x) = θxθ0 · x−θ−1, x ≥ x0, θ > 0.

9. Show that the family {
πα,β(θ) =

θ−α

(α− 1)βα−1
1θ≥β | α > 1, β > 0

}
is conjugate for the Unif (0, θ) family.

10. Let ~X1, ~X2, . . . , ~Xn
iid∼ Multinomial(N, k; θ1, θ2, . . . , θk), where θ1, . . . , θk > 0 and

∑
i θi = 1 and

N and k are known integers. That is, each vector ~Xi = (Xi,1, . . . , Xi,k) has pmf

fθ(~x) =
N !

x1! · · ·xk!
·
k∏
j=1

θ
xj
j .

(a) Show that the Dir(α1, . . . , αk) family is conjugate for the model.2

(b) What’s the interpretation of the Dirichlet prior when α1 = · · · = αk = 1?

(c) Show that if (Y1, . . . , Yk) ∼ Dir(α1, . . . , αk), then Yj ∼ Beta
(
αj ,
∑k

i=1 αi − αj
)

.3 Use this

result to write down the marginal posterior π(θ1 | x).

(d) Assuming each α1, . . . , αk ≥ 1, determine the MAP estimator and the posterior mean
estimator of θ1.

11. Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2

)
where µ is known. If we place a Gamma (α, β) prior on 1/σ2,

determine the posterior distribution π(σ2 | x), as well as the MAP and posterior mean estimators
for σ2.

12. Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2

)
where µ is known. Determine Jeffreys’ prior for σ2.

13. Suppose that a manufacturer wants to construct a 0.95-credible interval for the mean lifetime θ
of an item sold by the company. A consulting engineer is 99% certain that the mean lifetime is
less than 50 months. If we put an Exp (λ) prior on θ, determine λ based on this information.

1In lecture, we only defined an HPD interval, but the concept extends to more general regions when Θ is not necessarily
an interval. The way to find an HPD region is to find the “smallest possible” subset A ⊆ Θ such that Π(A | x) ≥ 1− α
and π(θ | x) ≥ π(θ′ | x) for all θ ∈ A and θ′ ∈ Ac. When Θ is finite, “smallest” simply means “the fewest number of
elements”.

2If you haven’t seen the Dirichlet distribution before, it’s a continuous distribution supported on X = {x ∈ (0, 1)k :∑k
i=1 xi = 1} (which is called a standard simplex ) with density given by

fα(x) =
Γ(α1 + · · ·+ αk)

Γ(α1) · · ·Γ(αk)

k∏
i=1

xαi−1
i , α1, . . . , αk > 0.

3This one is pretty tricky. First show that (Y1, . . . , Yk−2) has a Dir(α1, . . . , αk−2, αk−1 + αk) distribution using a
u-substitution with u =

yk−1

1−y1−···−yk−2
and use induction to get down to the distribution of Y1, and view that as a certain

beta distribution. Then observe that nothing changes in what you just did if you swap around the indices of (Y1, . . . , Yk)
so that the first one is j.



14. Show that the parameters of a normal distribution are completely determined as soon as we
specify two quantiles of the distribution. Why is this useful for prior elicitation?

15. Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2

)
where σ2 is known. Suppose we place a N

(
θ, σ2

0

)
prior on µ.

Let τ = σ/µ be the coefficient of variation.

(a) Determine the posterior π(τ | x).

(b) Show that the posterior mean estimator for τ does not exist.

(c) Determine the MAP estimator for τ .

16. Let A ⊆ Θ. What’s the relationship between the Bayes factor in favour of A and the Bayes
factor in favour of Ac?

17. Let X1, X2, . . . , Xn
iid∼ Unif (0, θ), where θ > 0. If we place an improper prior on θ of the form

π(θ) ∝ 1, determine the form of a (1− α) HPD interval for θ.

18. In the setup of Example 6.8, determine the Bayes factor for testing H0 : µ = µ0 versus HA : µ 6=
µ0. I get

BFH0 =

√
1 +

nτ2

σ2
· exp

(
−n(x̄− µ0)2

2σ2
−
( µ
τ2

+ nx̄
σ2

)2
2
(

1
τ2

+ n
σ2

) +
θ2

2τ2
+
nx̄2

2σ2

)
.

19. Recall the simple linear regression setup from previous assignments. To keep things (relatively)
clean, let’s assume we’re doing regression through the origin as in Example 2.17, so that there
are two unknown parameters in the model: β and σ2. It’s standard practice to use a Bayesian
hierarchical model in this situation, where we treat σ2 as a hyperparameter for β and give it its
own hyperprior.

(a) Justify the expression π(β, σ2) = π(σ2) · π(β | σ2).

(b) Explain why π(β, σ2 | y) ∝ π(σ2) · π(β | σ2) · fβ,σ2(y).

(c) If we choose a N
(
θ, σ2

)
prior for β and a Gamma (a, b) hyperprior for 1/σ2, determine

the posterior distribution π(β, σ2 | y). It should be another hierarchical model which is
“conjugate” to the original one.

20. Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2

)
with both parameters unknown. Suppose we choose a N

(
θ, σ2

)
prior for µ and a Gamma (a, b) hyperprior for 1/σ2.

(a) Determine the posterior distribution π(µ, σ2 | x). (Hint : you’ve already done much – but
not all – of the work in a previous question...).

(b) Derive the conditional posterior π(µ | σ2,x).

(c) Derive the conditional posterior π(σ2 | x).

(d) The näıve way to determine the conditional posterior π(µ | x) is to marginalize σ2 out of
π(µ | σ2,x) by working out the integral

∫∞
0 π(µ | σ2,x) dσ2, which is absolutely horrible

(as if the computations aren’t long enough already). There’s a clever way to avoid that
here, however.

i. Use your π(µ | σ2,x) to find a function of µ and σ2 which follows a N (0, 1) distribution.

ii. Use your π(σ2 | x) to find a function of σ2 which follows a χ2
(2a+n) distribution. (Hint :

if Y ∼ Gamma (α, β), then 2βY ∼ χ2
(2α)).

iii. Argue that the two functions you’ve found are independent, and find a function of them
that follows a t2a+n distribution using Theorem 3.4.

iv. Finally, show that conditional on x, we have µ
d
= c + d · T for some c ∈ R and d > 0,

where T ∼ t2a+n. This implies that π(µ | x) is a non-central t-distribution.


