
STA261 (Summer 2024) - Assignment 5

These problems are meant to test your understanding of the concepts in Module 5. They are not
to be handed in. Some of these have been modified (or in some cases taken directly) from questions
in the Additional Resources listed in the course syllabus, and no claims of originality are made.

1. If X1, X2, . . . , Xn
iid∼ N

(
µ, σ2

)
and Yn = Xn + 1 for each n ∈ N, then justify the following:

(a) X̄n
d−→ µ.

(b) S2
n

d−→ σ2.

(c) X̄n + S2
n

d−→ µ+ σ2.

(d) X̄n/S
2
n

p−→ µ/σ2.

(e) S2
n/X̄n

p−→ σ2/µ, provided that µ 6= 0.

(f) Xn/n
p−→ 0.

(g) Ȳn − 1
d−→ µ.

(h) X̄n − Ȳn
p−→ −1.

(i)
√
n(X̄n − µ)Ȳn

d−→ N
(
0, (µ+ 1)2σ2

)
.

(j)
√
n(X̄n − µ) + Ȳn

d−→ N
(
µ+ 1, σ2

)
.

(k) sin(Ȳn)
d−→ sin(µ+ 1).

(l) (X̄n)2/X2
n

p−→ µ2

µ2+σ2 .

2. Let X1, X2, . . . , Xn
iid∼ Poisson (λ). Show that the following are consistent estimators of λ:

(a) X̄n.

(b) S2
n.

(c) αX̄n + (1− α)S2
n for any α ∈ [0, 1].

(d) n
n+1X̄n + 1

n2 .

(e)
∑n

i=1 2−iX̄n.

(f) sin
(
1
n

)
·
∑n

i=1Xi + e−n.

(g) 6
π2

∑n
i=1(Sn/i)

2 + a1n≤b for any a, b ∈ R1, where Sn :=
√
S2
n.

3. Show that if Tn is asymptotically efficient for τ(θ), then it must be consistent for τ(θ).

4. Let X1, X2, . . . , Xn
iid∼ Bernoulli (θ), where θ ∈ (0, 1), and let τ(θ) = log

(
θ

1−θ

)
be the log-odds

of p.

(a) Find the MLE of τ(θ), and call it Tn.

(b) Show that Tn is asymptotically normal, and find its limiting distribution.

1You can use the fact that
∑∞
j=1 j

−2 = π2/6.



(c) Show that Tn is asymptotically efficient for τ(θ).

5. Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2

)
, where µ ∈ R \ {0} and σ2 > 0. Let τ(µ, σ2) = σ/µ, which is

called the coefficient of variation. Let’s try and estimate that using Tn = Sn/X̄n.

(a) Show that
√
n
(
Tn − τ(µ, σ2)

)
=

1

X̄n

(√
n(Sn − σ)−

√
n

[
σ

µ
X̄n − σ

])
.

(b) Show that
√
n
(
σ
µX̄n − σ

)
d−→ N

(
0, σ

4

µ2

)
.

(c) By writing
√
n(Sn − σ) =

√
n(S2

n−σ2)
Sn+σ

, show that
√
n(Sn − σ)

d−→ N
(

0, σ
2

2

)
for all n ∈ N.

You’ll have to use the fact that for the N
(
µ, σ2

)
model,

√
n(S2

n − σ2)
d−→ N

(
0, 2σ4

)
.2

(d) Put the pieces together to show that Tn is asymptotically normal, and find its limiting
distribution.

6. Let X1, X2, . . . , Xn
iid∼ Poisson (λ), where λ > 0. Find the UMVUE of τj(λ) := Pλ(X1 = j), and

show that it’s consistent when j = 0. (Hint : Look at Example 2.31).

7. Under the conditions of Example 5.17, we know that the asymptotic variance of τ(X̄n) is given
by [τ ′(θ)]2σ2. In some applications, it’s important to choose τ(·) so that the asymptotic variance
is free of θ. Such a transformation is called a variance-stabilizing transformation.

(a) If X1, X2, . . . , Xn
iid∼ Poisson (λ), show that τ(λ) =

√
λ is variance-stabilizing.

(b) If X1, X2, . . . , Xn
iid∼ Bernoulli (p), show that τ(p) = arcsin(

√
p) is variance-stabilizing.

(c) If X1, X2, . . . , Xn
iid∼ fθ where fθ is supported on a subset of (0,∞) and Varθ (Xi) is pro-

portional to Eθ [Xi]
2, show that τ(θ) = log (θ) is variance-stabilizing. Name at least two

familiar distributions which satisfy this property.

8. Given the discussion preceding Definition 5.6, it’s tempting to think that [τ ′(θ)]2/I1(θ) is a kind
of asymptotic Cramér-Rao Lower Bound, so that the asymptotic variance of any estimator of τ(θ)

can’t get lower than [τ ′(θ)]2/I1(θ). Unfortunately, that isn’t true! LetX1, X2, . . . , Xn
iid∼ N (θ, 1).

Let |a| < 1 and define the estimator

Tn =

{
X̄n, |X̄n| ≥ n−1/4

aX̄n, |X̄n| < n−1/4
.

(a) Show that

√
n(Tn − θ) =

X̄n − θ
1/
√
n
· 1∣∣∣ X̄n−θ+θ

1/
√
n

∣∣∣≥n1/4
+

(
a
X̄n − θ
1/
√
n

+
√
nθ(a− 1)

)
· 1∣∣∣ X̄n−θ+θ

1/
√
n

∣∣∣<n1/4
.

(b) If Z ∼ N (0, 1), explain why

√
n(Tn − θ)

d
= Z · 1|Z+√nθ|≥n1/4 +

(
aZ +

√
nθ(a− 1)

)
· 1|Z+√nθ|<n1/4 .

2If you really like these kinds of manipulations, you can show this yourself. First show that

√
n(S2

n − σ2) =
n

n− 1

[
√
n

(
1

n

n∑
i=1

(Xi − µ)2 − σ2

)]
+

√
n

n− 1
σ2 − n

n− 1

√
n(X̄n − µ)2.

For the two terms on the right, use Slutsky to show they both converge in distribution to 0. For the big term in brackets
on the left, use the CLT to show that it converges in distribution to N

(
0,Var

(
(Xi − µ)2

))
. Then figure out what

Var
(
(Xi − µ)2

)
= E

[
(Xi − µ)4

]
−E

[
(Xi − µ)2

]2
is. For the fourth central moment, E

[
(Xi − µ)4

]
, using mgfs might be

easiest.



(c) Thus, show that

√
n(Tn − θ)

d−→

{
N (0, 1) , θ 6= 0

N
(
0, a2

)
, θ = 0

.

(d) Conclude that when θ = 0, the asymptotic variance of Tn is strictly lower than [τ ′(θ)]2/I1(θ).

This devastating counterexample was published by Joseph Hodges in 1951, and is known as
Hodges’ estimator. Estimators whose asymptotic variances beat the Cramér-Rao Lower Bound
are called superefficient estimators. In 1953, Lucien Le Cam proved that superefficiency can
only happen when the true parameter θ lives in a subset of Θ of Lebesgue measure zero,3 so it’s
usually not a practical concern.

9. Theorem 5.8 fails when g′(θ) = 0, but all hope is not lost. Using the same proof strategy as in
Theorem 5.8, establish a second-order delta method for the case that g′(θ) = 0, under suitable
conditions. (Hint : the limiting distribution involves a χ2

(1) somewhere).

10. Using Theorem 5.9, sketch a proof of Theorem 5.12.

11. Using Theorem 5.9, sketch a proof of Wilks’ theorem for testing H0 : θ = θ0 versus HA : θ 6= θ0.

Start with log (λ(Xn)) =
∑n

i=1

(
`(θ0 | Xi)− `(θ̂n | Xi)

)
and Taylor expand around θ0.

12. Suppose we’re in the setup of Assignment 4 Q15, except this time we want to test H0 : p1 = p2
versus HA : p1 6= p2.

(a) Show that a test can be based on the statistic

T =
(p̂1 − p̂2)2(

1
n1

+ 1
n2

)
p̂(1− p̂)

,

where p̂1 = S1/n1, p̂2 = S2/n2, and p̂ = (S1 + S2)/(n1 + n2), and find its distribution as
n1, n2 →∞. (Hint : What’s the MLE of the common value of p1 = p2 under H0?)

(b) An alternative choice of test statistic is

T ′ =
p̂1 − p̂2√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

.

Find the distribution of (T ′)2 as n1, n2 →∞.

(c) We can use these test statistics to test for independence in contingency tables, using the
same interpretations of the Si’s and ni’s as in Assignment 4; such a test is called a chi-
squared test for independence. In the late 1800s, Joseph Lister, a British surgeon and
pioneer of antiseptic surgery, conjectured that the use of carbolic acid as a disinfectant
would help reduce mortality associated with surgery. He recorded the following data based
on 75 amputations over several years:

Carbolic acid No carbolic acid

Patient lived 34 19

Patient died 6 16

Use each of the two test statistics to test whether the use of carbolic acid is associated with
patient mortality. If you know how, also use a computer (or an internet calculator) to test
the same hypothesis using Fisher’s exact test.

3Don’t worry if you don’t know what this means.



13. Let X1, X2, . . . , Xn
iid∼ fθ, where Eθ [Xn] = θ and Varθ (Xn) <∞. Show that(

X̄n − zα/2

√
S2

n
, X̄n + zα/2

√
S2

n

)

is an approximate (1− α)-confidence interval for θ.4

14. Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2

)
where µ is known and σ2 > 0. Derive a Wald statistic and a

score statistic for testing H0 : σ2 = σ20 versus HA : σ2 6= σ20, and write down the approximate
(1− α)-confidence regions associated with each, simplifying as much as possible.

15. Let X1, X2, . . . , Xn
iid∼ Gamma (α, β) where α is known and β > 0. Derive a Wald statistic and

a score statistic for testing H0 : β = β0 versus HA : β 6= β0, and write down the approximate
(1− α)-confidence regions associated with each, simplifying as much as possible.

16. Suppose X1, X2, . . . , Xn
iid∼ Bernoulli (p), where p ∈ (0, 1). Suppose we observe 15 successes in

n = 32 trials. Test H0 : p = 1
2 versus HA : p 6= 1

2 using an asymptotic LRT, a Wald test, and a
score test, and compare the results. Then do the same for H0 : p = 0.8 versus HA : p 6= 0.8.

17. Let X1, X2, . . . , Xn
iid∼ Bernoulli (p), where p ∈ (0, 1). In Example 5.29, we found a nice-looking

confidence interval for p based on the Wald statistic. We can also construct one based on the
score statistic, although it looks a bit nastier.

(a) Show that the approximate (1− α)-confidence region obtained from the score statistic is{
p ∈ (0, 1) :

∣∣∣∣∣ p̂− p√
p(1− p)/n

∣∣∣∣∣ ≤ zα/2
}
.

(b) Square both sides of the inequality and rearrange to get{
p ∈ (0, 1) :

(
1 +

z2α/2

n

)
p2 −

(
2p̂+

z2α/2

n

)
+ p̂2 ≤ 0

}
.

(c) This is a quadratic inequality. Since the coefficient on p2 is positive, the quadratic opens
upward, and so the inequality is satisfied if p lies between the two roots of the quadratic.
So this region is, in fact, an interval. Find its endpoints to produce our approximate
(1− α)-confidence interval for p.

(d) Repeat the same process to find an approximate (1 − α)-confidence interval based on the
score statistic for λ in the Poisson (λ) model.

It turns out that in many ways, this interval is much better than the Wald interval for p.
It has a special name: the Wilson score interval. The only reason that most introductory
statistics courses teach the Wald interval instead of the score interval is that the former looks
less intimidating.

4Clearly this gives a very easy way to construct an approximate confidence interval for the mean of any distribution
with a finite variance. However, it tends to underperform compared to other approximate intervals that take into account
information specific to fθ.


