These problems are meant to test your understanding of the concepts in Module 4. They are *not* to be handed in. Some of these have been modified (or in some cases taken directly) from questions in the *Additional Resources* listed in the course syllabus, and no claims of originality are made.

- 1. Suppose that L(x) and U(x) satisfy $\mathbb{P}_{\theta}(L(X) \leq \theta) = 1 \alpha_1$ and $\mathbb{P}_{\theta}(U(X) \geq \theta) = 1 \alpha_2$, where $L(x) \leq U(x)$ for all $x \in \mathcal{X}$. Show that $\mathbb{P}_{\theta}(L(X) \leq \theta \leq U(X)) = 1 \alpha_1 \alpha_2$.
- 2. Given a random sample X_1, X_2, \ldots, X_n from each of the following pdfs, find a 1α confidence interval for θ :

$$f_{\theta}(x) = 1, \quad \theta - \frac{1}{2} < x < \theta + \frac{1}{2}, \quad \theta \in \mathbb{R}$$

(b)

$$f_{\theta}(x) = \frac{2x}{\theta^2}, \quad 0 < x < \theta, \quad \theta > 0.$$

- 3. For the density in Example 4.11, show that $Q(\mathbf{X}, \theta) = X_{(1)} \theta$ is a pivotal quantity, and use it to find a 1α confidence interval. Compare its length to the that of the LRT-based confidence interval in Example 4.11.
- 4. Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ where $\mu \in \mathbb{R}$ and σ^2 is known. Find the minimum value of n to guarantee that a 0.95 confidence interval for μ will have length no more than $\sigma/4$.
- 5. Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Find $k \in \mathbb{R}$ to make $(0, kS^2)$ a 1α confidence interval for σ^2 .
- 6. (a) Show $\bar{X}_n \mu$ is a pivotal quantity in a location family with pdf $f_{\mu}(x) = f(x \mu)$.
 - (b) Show that \bar{X}_n/σ is a pivotal quantity in a scale family with pdf $f_\sigma(x) = \frac{1}{\sigma}f(x/\sigma)$.
 - (c) Show that $(\bar{X}_n \mu)/\sqrt{S^2}$ is a pivotal quantity in a location-scale family with pdf $f_{\mu,\sigma}(x) = \frac{1}{\sigma} f(\frac{x-\mu}{\sigma})$.
- 7. Let $X \sim \text{Beta}(\theta, 1)$, where $\theta > 0$. Find a pivotal quantity for θ and use it to construct a 1α confidence interval.
- 8. Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Unif}(0, \theta)$ where $\theta > 0$. Show that $X_{(j)}/\theta$ is a pivotal quantity for any j, and use it to construct a (1α) -confidence interval for θ based on $X_{(j)}$.
- 9. In the simple linear regression setup, find 1α confidence intervals for α and β using the test statistics from Assignment 3 Q19.
- 10. In Lecture 7, we argued that we can turn certain kinds of hypothesis tests into confidence regions,¹ and vice versa. Turn this into a rigorous statement and prove it.

¹A $(1-\alpha)$ -confidence region is just like a $(1-\alpha)$ -confidence interval, except it doesn't have to be an interval specifically – just a random set $C(\mathbf{X})$ such that \mathbb{P}_{θ} ($\theta \in C(\mathbf{X})$) $\geq 1-\alpha$ for all $\theta \in \Theta$. This relaxation makes the question a lot more straightforward.

11. We remarked in lecture that there isn't a very deep theory of optimal confidence intervals (at least compared to point estimation and hypothesis testing). There are some useful results, however. Here's one:

Theorem 1. Let f_{θ} be a unimodal pdf. If the interval [a, b] satisfies

- i) $\int_{a}^{b} f_{\theta}(t) dt = 1 \alpha$
- ii) $f_{\theta}(a) = f_{\theta}(b) > 0$, and
- iii) $a \leq t^* \leq b$, where t^* is the mode of f_{θ} ,

then [a, b] is the shortest among all intervals that satisfy the first condition.

- (a) Use the theorem to prove that if f_{θ} is a symmetric unimodal pdf, then of all the intervals [a, b] that satisfy $\int_{a}^{b} f_{\theta}(t) dt = 1 \alpha$, the shortest is obtained by choosing a and b so that $\int_{-\infty}^{a} f_{\theta}(t) dt = \int_{b}^{\infty} f_{\theta}(t) dt = \alpha/2$.
- (b) Show that the Z-interval and the t-interval are the shortest exact $(1-\alpha)$ confidence intervals for μ under their respective $\mathcal{N}(\mu, \sigma^2)$ models.
- 12. Prove that if we observe $\mathbf{X} = \mathbf{x}$, the observed ecdf $\hat{F}_n(t)$ satisfies the following properties:
 - (a) $\hat{F}_n(t)$ is an increasing function
 - (b) $\lim_{t\to\infty} \hat{F}_n(t) = 1$
 - (c) $\lim_{t \to -\infty} \hat{F}_n(t) = 0$
 - (d) (Optional) $\hat{F}_n(t)$ is right-continuous
- 13. Suppose the following observed sample is assumed to arise from a $\mathcal{N}(\mu, \sigma^2)$ distribution, with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$:

14.0 9.4 12.1 13.4 6.3 8.5 7.1 12.4 13.3 9.1

- (a) Plot the standardized residuals
- (b) Construct a Normal probability plot of the standardized residuals
- (c) What conclusions can you draw?
- 14. Suppose a die is tossed 1000 times, and the following frequencies are observed for the number of pips up when the die comes to a rest:

x_1	x_2	x_3	x_4	x_5	x_6
163	178	142	150	183	184

Perform a chi-squared test to assess whether we have evidence that this is not a symmetrical die.

- 15. Let $S_1 \sim \text{Bin}(n_1, p_1)$ and $S_2 \sim \text{Bin}(n_2, p_2)$ be independent, where $p_1, p_2 \in (0, 1)$ and n_1, n_2 are known. We're interested in testing $H_0: p_1 = p_2$ versus $H_A: p_1 > p_2$.
 - (a) Under H_0 , let p be the common value of $p_1 = p_2$. Show that the joint pmf of (S_1, S_2) is given by

$$f_p(s_1, s_2) = \binom{n_1}{s_1} \binom{n_2}{s_2} p^{s_1 + s_2} (1 - p)^{n_1 + n_2 - (s_1 + s_2)},$$

and show that $S := S_1 + S_2$ is sufficient for p.

- (b) Given an observation S = s, explain why it's reasonable to use S_1 as a test statistic and reject H_0 when S_1 is large.
- (c) Show that

$$\mathbb{P}\left(S_1 = s_1 \mid S = s\right) = \frac{\binom{n_1}{s_1}\binom{n_2}{s-s_1}}{\binom{n_1+n_2}{s}}.$$

What is this distribution?

(d) Argue that given an observation S = s, a reasonable *p*-value for our test is given by

$$\sum_{j=s_1}^{\min\{n_1,s\}} \frac{\binom{n_1}{j}\binom{n_2}{s-j}}{\binom{n_1+n_2}{s}}.$$

The test characterized by this *p*-value is called *Fisher's exact test*. It's used to test for independence between the (categorical) variables in a contingency table.

(e) Suppose that $(A_1, B_1), (A_2, B_2), \ldots, (A_n, B_n)$ are iid pairs of categorical data taking values in $\{0, 1\} \times \{0, 1\}$. Define the following quantities:

$$n_{1} = \sum_{i=1}^{n} \mathbb{1}_{B_{i}=0}$$

$$n_{2} = \sum_{i=1}^{n} \mathbb{1}_{B_{i}=1}$$

$$S_{1} = \sum_{i=1}^{n_{1}} (\mathbb{1}_{A_{i}=0} \mid B_{i} = 0)$$

$$S_{2} = \sum_{i=1}^{n_{1}} (\mathbb{1}_{A_{i}=0} \mid B_{i} = 1)$$

$$p_{1} = \mathbb{P} (A_{i} = 0 \mid B_{i} = 0)$$

$$p_{2} = \mathbb{P} (A_{i} = 0 \mid B_{i} = 1).$$

One can show that the test derived above is equivalent to testing the hypothesis that the A_i 's are independent of the B_i 's.² Suppose the following contingency table was obtained from classifying members of a sample of n = 10 from a student population according to the classification variables A and B, where A = 0 indicates male, A = 1 indicates female, B = 0 indicates conservative, and B = 1 indicates liberal:

	B = 0	B = 1
A = 0	2	1
A = 1	3	4

Use Fisher's exact test to check the model that says gender and political orientation are independent.

²Strictly speaking, n_1 and n_2 are random for the independence test, but that's not important here.