
STA261 (Summer 2024) - Assignment 3

These problems are meant to test your understanding of the concepts in Module 3. They are not
to be handed in. Some of these have been modified (or in some cases taken directly) from questions
in the Additional Resources listed in the course syllabus, and no claims of originality are made.

1. Let X1, X2
iid∼ Unif (θ, θ + 1) where θ ∈ R, and suppose we want to test H0 : θ = 0 versus

HA : θ > 0. Consider two tests based on two rejection regions:

R1 = {(x1, x2) : x1 > 0.95}
R2 = {(x1, x2) : x1 + x2 > c}

Calculate the size of the first test, and find c so that both tests have the same size.

2. Let X1, X2, . . . , Xn
iid∼ Unif (θ, θ + 1) where θ ∈ R and suppose we want to test H0 : θ = 0 versus

HA : θ > 0 by rejecting H0 when X(n) ≥ 1 or X(1) ≥ c, for some c ∈ R. Find c so that this is a
size-α test.

3. Let X1, X2, . . . , Xn
iid∼ be a random sample from a Pareto(θ, ν) distribution, which has density

fν,θ(x) = θνθ · x−θ−1, x ≥ ν > 0, θ > 1.

(a) Find the MLEs of ν and θ. You don’t need the whole multivariate optimization business
of Example 2.14. Instead, start by fixing θ and finding ν̂, and then maximize L(θ, ν̂ | x) in
θ. Then (θ̂, ν̂) will be your MLE.

(b) Show that the LRT of H0 : θ = 1 versus HA : θ 6= 1 has a critical region of the form
{x : T (x) ≤ c1 orT (x) ≥ c2} for some 0 < c1, c2 <∞, where

T (X) = log

(∏n
i=1Xi

(X(1))n

)
.

4. Suppose that X is in a location family with pdf fµ(x) = f(x−µ). Fix any c ∈ R, and show that
µ1 ≤ µ2 implies Pµ1(X > c) ≤ Pµ2(X > c).

5. Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2

)
where σ2 is unknown. Consider the two sided test H0 : µ = µ0

versus HA : µ 6= µ0.

(a) Show that the test that rejects H0 when |X̄n − µ0| > tn−1,α/2

√
S2/n is a size-α test.

(b) Show that this test is an LRT. You know what the unrestricted MLE of (µ, σ2) is from
Module 2, and you can write down the restricted MLE of (µ, σ2) without any calculations.
The rest is just algebra.

6. Suppose X1, X2, . . . , Xn
iid∼ Bernoulli (θ) where θ ∈ (0, 1). We want to test H0 : θ ≤ 1

2 versus
HA : θ > 1

2 , rejecting H0 when
∑n

i=1 xi ≥ c. Calculate the p-value if we observe 7 successes out
of 10 trials, and decide whether we accept or reject H0 at the 0.05 significance level.

7. Suppose X ∼ Poisson (λ) where λ > 0. We want to test H0 : λ ≤ 1 versus HA : λ > 1, rejecting
H0 when x ≥ c. Calculate the p-value if we observe X = 3, and decide whether we accept or
reject H0 at the 0.05 significance level.



8. Suppose X1, X2, . . . , Xn
iid∼ N

(
µ, σ2

)
where µ ∈ R and σ2 > 0. We want to test H0 : µ = 261

versus HA : µ 6= 261 using a two-sided t-test. Calculate the p-value if n = 140 and we observe
X̄140 = 248 and S2 = 20, and decide whether we accept or reject H0 at the 0.05 significance
level.

9. Suppose X1, X2, . . . , Xn
iid∼ N (µ, 1) where µ ∈ R. We want to test H0 : µ = 261 versus

HA : µ > 261 using a one-sided Z-test. Calculate the p-value if n = 140 and we observe
X̄140 = 262, and decide whether we accept or reject H0 at the 0.05 signifciance level.

10. Suppose X1, X2, . . . , Xn
iid∼ N (µ, 1) where µ ∈ R. We want to test H0 : µ = 261 versus

HA : µ < 261 at the 0.05 significance level using a one-sided Z-test. Determine the sample size
n needed to obtain a Type II error of at most 0.1 if the true parameter is µ = 248.

11. You might have heard of the AM-GM inequality, which says that for any x1, x2, . . . , xn ≥ 0, the
arithmetic mean always upper bounds the geometric mean:

x1 + x2 + · · ·+ xn
n

≥ n
√
x1x2 · · ·xn.

There are plenty of ways to prove this; it turns out that one of them uses LRTs.

(a) Show that if any of the xi’s are zero, the inequality is trivially satisfied.

(b) Suppose that X1, X2, . . . , Xn are independent with Xi ∼ Exp (λi). Calculate the LRT
statistic λ(X) of H0 : λ1 = λ2 = · · · = λn versus HA : the λi’s aren’t all equal.

(c) Take any x ∈ X n, argue that that λ(x) ≤ 1, and establish the AM-GM inequality.

12. Suppose X ∼ Beta (θ, 1).

(a) Suppose we want to test H0 : θ ≤ 1 versus HA : θ > 1. Find the size of the test that rejects
H0 if X > 1

2 .

(b) Find the UMP level-α test of H0 : θ = 1 versus HA : θ = 2.

(c) Find the UMP level-α test of H0 : θ ≤ 1 versus HA : θ > 1.

13. Prove Theorem 3.5.

14. Prove Theorem 3.8.

15. Suppose X1, X2, . . . , Xn
iid∼ N

(
µ, σ2

)
where µ ∈ R and σ2 is known, and we want to test

H0 : µ = µ0 versus HA : µ 6= µ0 using a test that rejects H0 when |X̄ − µ0|/
√
σ2/n > c. How

can we choose c and n to obtain a size 0.25 test with a maximum Type II error probability of
0.25 at µ = µ0 + σ?

16. Suppose that the hypotheses of Theorem 3.1 hold, and that T (X) has a continuous distribution.
Show that when H0 : θ = θ0 is true, p(X) ∼ Unif (0, 1), and interpret this fact.

17. Suppose X = {1, 2, 3, 4} and Θ = {a, b}. Two mass functions on X – one for each value of θ ∈ Θ
– are specified in the following table:

x = 1 x = 2 x = 3 x = 4

pa(x) 1/3 1/6 1/12 5/12

pb(x) 1/2 1/4 1/6 1/12

Suppose we observe X ∼ pθ. Determine a UMP level-0.10 test for testing H0 : θ = a versus
HA : θ = b.



18. Supose that X1, X2, . . . , Xn
iid∼ Γ(α0, β) where α0 is known and β > 0. Determine a UMP level-α

test for testing H0 : β = β0 versus HA : β = β1, assuming β1 > β0.

19. Recall the simple linear regression setup from Assignment 2 Q8, where

Yi = α+ βxi + εi, i = 1, . . . , n,

where ε1, ε2, . . . , εn
iid∼ N

(
0, σ2

)
. We previously derived the MLEs of α and β. Every software

implementation of linear regression will calculate the MLEs using those same formulas, and
they’ll also output a number of test statistics and p-values. We’ll derive some of those here. It’ll
help to define Sxx =

∑n
i=1(x̄− xi)2.

(a) Using the formulation from Assignment 2 as inspiration, explain what the hypothesis β = 0
would correspond to in real life. In any scientific study that uses linear regression, why is
this more appropriate as a null hypothesis than an alternative?

(b) Observe that β̂(Y) =
∑n

i=1 diYi, where di = xi−x̄
Sxx

, and use that to show

β̂ ∼ N
(
β,

σ2

Sxx

)
.

(c) Observe that α̂(Y) =
∑n

i=1 ciYi, where ci = 1
n −

(xi−x̄)x̄
Sxx

, and use that to show

α̂ ∼ N

(
α,

σ2

n · Sxx

n∑
i=1

x2
i

)
.

(d) Define the i’th residual from the regression to be ε̂i := Yi − α̂(Y) − β̂(Y)xi, for i =
1, . . . , n. Interpret this quantity and show that E [ε̂i] = 0. With a lot of algebra, one can
also show that

Var (ε̂i) =

n− 2

n
+

1

Sxx

 1

n

n∑
j=1

x2
j + x2

i − 2(xi − x̄)2 − 2xix̄

σ2.

(e) Define the residual sum of squares (RSS) as RSS =
∑n

i=1 ε̂i, and let σ̂2 = 1
nRSS. Show

that E
[
σ̂2
]

= n−2
n σ2.

(f) Show that Cov (α̂, ε̂i) = 0 and Cov
(
β̂, ε̂i

)
= 0. To save a lot of work, write

ε̂i =
n∑
j=1

[δij − (cj + djxi)]Yi,

where δij = 1i=j . You can use the following fact without proof: if Y1, Y2, . . . , Yn are
uncorrelated random variables (not necessarily independent or Normally distributed) with
Var (Yi) = σ2 for all i, then Cov (

∑n
i=1 aiYi,

∑n
i=1 biYi) = (

∑n
i=1 aibi)σ

2 for any constant
ai’s and bj ’s.

(g) Define S̃2 = 1
n−2

∑n
i=1 ε̂i, and show it’s an unbiased estimator of σ2. This is like a weird

version of the usual sample variance S2. Similarly to S2, one can show that n−2
σ2 S̃

2 ∼ χ2
(n−2).

(h) Explain why, in this particular case, it must be that the ε̂i’s are independent of both β̂ and
α̂. Of course, it follows that S̃2 itself is also independent of both β̂ and α̂.

(i) Finally, show that
α̂− α√

S̃2(
∑n

i=1 x
2
i )/(nSxx)

∼ tn−2

and
β̂ − β√
S̃2/Sxx

∼ tn−2.


