
STA261 (Summer 2024) - Assignment 2

These problems are meant to test your understanding of the concepts in Module 2. They are not
to be handed in. Some of these have been modified (or in some cases taken directly) from questions
in the Additional Resources listed in the course syllabus, and no claims of originality are made.

1. Suppose X = {1, 2, 3, 4} and Θ = {a, b}. Two mass functions on X – one for each value of θ ∈ Θ
– are specified in the following table:

x = 1 x = 2 x = 3 x = 4

fa(x) 1/2 1/6 1/6 1/6

fb(x) 1/3 1/3 1/3 0

Suppose X ∼ fθ. Find the MLE θ̂(X), and then calculate Eθ
[
θ̂(X)

]
for each θ ∈ Θ.

2. Let X1, X2, . . . , Xn
iid∼ Geom(p), where p ∈ (0, 1]. Find the MOM estimator and the MLE of p.

3. Let X1, X2, . . . , Xn
iid∼ Gamma (α, β) with β > 0 and α known. Find the MOM estimator and

the MLE of β.

4. Let X1, X2, . . . , Xn
iid∼ N (θ, 1), where θ ∈ R. Find the MOM estimator and the MLE of

τ(θ) = Pθ (Xi ≤ 1).

5. Let X1, X2, . . . , Xn be a random sample from an inverse Gaussian distribution, which has density

fµ,λ(x) =

√
λ

2πx3
exp

(
−λ(x− µ)2

2µ2x

)
, x > 0, λ > 0, µ > 0.

Find the MOM estimator of (µ, λ), and then assume λ is known and find the MLE of µ. For the
MOM, you can freely use the facts that E [X] = µ and Var (X) = µ3/λ (or you can show these
yourself, if you’re really into integration by parts). You can also find the MLE of (µ, λ) itself,
but it’s pretty tedious.

6. Let X1, X2, . . . , Xn be a random sample from a Lognormal(µ, σ2) distribution (see Assignment
0 for more on this family), which has density

fµ,σ(x) =
1

xσ
√

2π
exp

(
−(log (x)− µ)2

2σ2

)
, x > 0, µ ∈ R, σ > 0.

Find the MLE of σ2 assuming µ is known, and the MLE of µ assuming σ2 is known. If both
parameters are unknown, can you guess the MLE of (µ, σ2) just from inspection?

7. For the same Lognormal(µ, σ2) distribution as above, find the MOM estimator of (µ, σ2). There’s
a really nifty trick for easily finding E

[
Xt
]

for any t > 0: check that Y = log (X) ∼ N
(
µ, σ2

)
,

and think about Normal mgfs.



8. Example 2.17 was a particular case of linear regression, which is probably the single most widely
used statistical method out there. To keep things simple, we’ll stick to simple linear regression
in this exercise. The formulation is reasonable: for each i = 1, . . . , n, we imagine that some
real-life quantity zi is linearly related to some other real-life quantity xi, in the sense that

zi = α+ βxi, i = 1, . . . , n,

for some fixed α, β ∈ R. For example, if zi is the height of person i and xi is their weight, this is
saying that everyone’s height is the same linear function of their weight. Now, when we collect
our data on people’s heights and weights, our measurements aren’t perfect – we assume the data
is noisy and there’s some kind of random measurement error. Thus, we don’t actually observe
zi. Instead, we independently observe Yi = yi for i = 1, . . . , n, where

Yi = α+ βxi + εi, i = 1, . . . , n,

where ε1, ε2, . . . , εn
iid∼ N

(
0, σ2

)
. This is the simple linear regression model. In statistics jargon,

the yi’s are the response variable, and each xi is a covariate. α is the intercept, β is the slope,
and α and β are collectively called the regression coefficients, while εi is called a random error.1

Our goal here is to say something interesting about the MLEs of α and β.

(a) Explain why Yi ∼ N
(
α+ βxi, σ

2
)

and why the Yi’s are independent.

(b) Show that finding the MLE of (α, β) is equivalent to finding the (α, β) that minimizes
g(α, β) :=

∑n
i=1(yi − α− βxi)2, and interpret this quantity geometrically.

(c) First fix β, and show that the value of α that minimizes g(α, β) is α̃ = ȳ − βx̄, where
ȳ = 1

n

∑n
i=1 yi and x̄ = 1

n

∑n
i=1 xi.

(d) Now let β vary, and show that the value of β that minimizes g(α̃, β) is

β̂ =

∑n
i=1(ȳ − yi)(x̄− xi)∑n

i=1(x̄− xi)2
.

It follows that if we let α̂ = ȳ − β̂x̄, then g(α, β) is minimized at (α̂, β̂). This is the MLE!

(e) Show that α̂(Y) is unbiased for α, and that β̂(Y) is unbiased for β.

(f) Think about exponential families and show that

T (Y) =

(
n∑
i=1

Y 2
i ,

n∑
i=1

Yi,
n∑
i=1

Yixi

)
is a complete sufficient statistic for (α, β, σ2).

(g) Show that both α̂(Y) and β̂(Y) are functions of T (Y).

(h) Explain why we can conclude that α̂(Y) and β̂(Y) are the UMVUEs of α and β, respectively.

9. As we saw in Example 2.16, it’s not always possible to find the MLE by differentiating the
log-likelihood. That doesn’t mean the MLE doesn’t exist, however; it just means that calculus
won’t help us find it, so we need to resort to other methods.

(a) Let X1, X2, . . . , Xn
iid∼ Unif (θ1, θ2), where −∞ < θ1 < θ2 <∞. Find the MLE of (θ1, θ2).

(b) Let X1, X2, . . . , Xn be a random sample from a Laplace(µ, 1) distribution, which has density

fµ(x) =
1

2
e−|x−µ|, x ∈ R, µ ∈ R.

Find an MLE of µ. This one is tough. Here are two hints from two different textbooks, plus
a third from me. Hint 1 : Maximize the log-likelihood in each of the intervals (−∞, x(1)),
[x(1), x(2)), etc. Hint 2: Consider the case of even n separate from that of odd n, and find
the MLE in terms of the order statistics. Hint 3:

∑
i |xi − µ| =

∑
i |x(i) − µ|.

1These terms each have about 10 different commonly-used synonyms. No one can agree on what to call anything.



10. Suppose that T1(X) and T2(X) are two unbiased estimators of τ(θ) ∈ R, with Varθ (T1(X)) = σ21
and Varθ (T2(X)) = σ22. Let α ∈ [0, 1].

(a) Show that T (X) := αT1(X) + (1− α)T2(X) is unbiased for τ(θ).

(b) Assuming T1(X) and T2(X) are independent, find the α that minimizes Varθ (T (X)).

(c) Do the same thing, but this time without assuming independence. If you want, you can
call ρ = Corrθ (T1(X), T2(X)).

11. Let X1, X2, . . . , Xn be a random sample from a population with mean µ and variance σ2. Let
a1, a2, . . . , an ∈ R.

(a) Suppose that
∑n

i=1 ai = 1. Show that T (X) =
∑n

i=1 aiXi is unbiased for µ.

(b) Show that finding the ai’s that minimize Var (T (X)) is the same as finding the ai’s that
minimize

∑n
i=1 a

2
i (all subject to

∑n
i=1 ai = 1).

(c) Show that ai = 1
n for all i does the trick. There are plenty of ways to do this; you can

bring out Lagrange multipliers if you want, but it’s much easier to just see what happens
to
∑n

i=1 a
2
i when you write a2i = ([ai − 1

n ] + 1
n)2 and expand the square.

12. Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2

)
where µ ∈ R and σ2 > 0 . Find the UMVUEs of µ2 + σ2 and

µ+ σ2.

13. Let X1, X2, . . . , Xn
iid∼ N

(
θ, σ2

)
where θ ∈ R and σ2 is known. Fix a, b ∈ R. Find some τ(θ)

such that aX̄n + b is the UMVUE of τ(θ).

14. For each of the following densities, find some τ(θ) such that the UMVUE of τ(θ) exists.

(a)
fθ(x) = θxθ−1, x ∈ (0, 1), θ > 0.

(b)

fθ(x) =
log (θ)

θ − 1
θx, x ∈ (0, 1), θ > 1.

15. Let X1, X2, . . . , Xn
iid∼ Unif (0, θ) where θ > 0. I’ll give you that T (X) = X(n) is a complete

sufficient statistic.

(a) Show that T (X) is biased for θ, and correct that bias to find the UMVUE of θ, which you
can call U(X).

(b) Show that V (X) = 2X1 is unbiased for θ, and explain why it can’t be the UMVUE of θ.

(c) Explain why Eθ [V (X) | T (X)] must be the exact same thing as U(X), and explicitly show
this. You can save yourself practically all the calculations by using Basu’s theorem, similar
to what we did in Example 1.41. Hint: why is X1/X(n) independent of X(n), and why does
that imply Eθ

[
X1/X(n)

]
= Eθ [X1] /Eθ

[
X(n)

]
?

16. Let X1, X2, . . . , Xn be a random sample from a continuous one-parameter exponential family of
the form fθ(x) = h(x) · g(θ) · exp (η(θ) · T (x)), where g(·) and η(·) are differentiable on Θ. Let’s

find the UMVUE of τ(θ) = − g′(θ)
η′(θ)·g(θ) .

(a) Explain why

0 =
d

dθ

(
g(θ)

∫
X
h(x)eη(θ)·T (x) dx

)
.



(b) Carry out the differentiation on the right, using product rule and the fact that g′(θ) =
g′(θ)
g(θ) g(θ) to find that

0 = η′(θ)

∫
X
T (x)fθ(x) dx+

g′(θ)

g(θ)
.

(c) Find an unbiased estimator U(X) of τ(θ).

(d) Assuming the open set condition holds, explain why U(X) is the UMVUE of τ(θ).

17. Let X1, X2, . . . , Xn
iid∼ Exp (λ), where λ > 0. Find an unbiased estimator of 1/λ based on

X(1), and show that there’s a better unbiased estimator of 1/λ out there with lower variance by
computing the variances of each.

18. Prove Theorem 2.10.

19. Finish off the proof of Theorem 2.11.


