These problems are meant to test your understanding of the concepts in Module 1. They are *not* to be handed in. Some of these have been modified (or in some cases taken directly) from questions in the *Additional Resources* listed in the course syllabus, and no claims of originality are made.

1. Suppose $\mathcal{X} = \{1, 2, 3, 4\}$ and $\Theta = \{a, b\}$. Two mass functions on \mathcal{X} – one for each value of $\theta \in \Theta$ – are specified in the following table:

	x = 1	x = 2	x = 3	x = 4
$f_a(x)$	1/2	1/6	1/6	1/6
$f_b(x)$	1/4	1/4	1/4	1/4

Suppose $X \sim f_{\theta}$, and let $T(x) = \mathbb{1}_{x \in \{2,3,4\}}$.

Going from the definition, show that T(X) is a sufficient statistic for θ . You can do this by working out a table of $\mathbb{P}_a(X = x \mid T(X) = t)$ for each $x \in \mathcal{X}$ and $t \in \{0, 1\}$, and then doing the same for $\mathbb{P}_b(X = x \mid T(X) = t)$.

- 2. Let $X \sim \mathcal{N}(0, \sigma^2)$, where $\sigma^2 > 0$. Prove that T(X) = |X| is sufficient for σ^2 .
- 3. Suppose $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} f_{\theta}$, where $\theta \in \Theta$ is unknown. Show that $T(\mathbf{X}) = (X_{(1)}, X_{(2)}, \ldots, X_{(n)})$ is sufficient for θ .
- 4. Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Unif}[0, \theta]$, where $\theta > 0$. Find a minimal sufficient statistic for θ .
- 5. Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Unif}[\theta, \theta + 1]$, where $\theta \in \mathbb{R}$. Find a minimal sufficient statistic for θ .
- 6. Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Unif}[\theta_1, \theta_2]$, where $\theta_1, \theta_2 \in \mathbb{R}$ and $\theta_1 < \theta_2$. Find a minimal sufficient statistic for $\theta = (\theta_1, \theta_2)$.
- 7. Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Geometric}(\theta)$, where $\theta \in (0, 1)$. Find a complete sufficient statistic for θ .
- 8. Let X_1, X_2, \ldots, X_n be a random sample from a continuous distribution with density

$$f_{\theta}(x) = \theta x^{\theta - 1}, \quad 0 < x < 1, \quad \theta > 0$$

Show that $T(\mathbf{X}) = \prod_{i=1}^{n} X_i$ is a complete sufficient statistic for θ .

9. This will give you some practice dealing with multi-parameter exponential families (which is a hint!). Let X_1, X_2, \ldots, X_n be a random sample from an inverse Gaussian distribution, which has density

$$f_{\mu,\lambda}(x) = \sqrt{\frac{\lambda}{2\pi x^3}} \exp\left(-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right), \quad x \in \mathbb{R}, \quad \lambda > 0, \quad \mu \in \mathbb{R}.$$

Show that

$$T(\mathbf{X}) = \left(\bar{X}_n, \sum_{i=1}^n X_i \cdot \sum_{i=1}^n \frac{1}{X_i}\right)$$

is a complete sufficient statistic for $\theta := (\lambda, \mu)$.

10. Let X_1, X_2, \ldots, X_n be a random sample from a Beta $(\alpha, k\alpha)$ distribution with $k \in \mathbb{N}$ known, which has density

$$f_{\alpha}(x) = \frac{\Gamma((k+1)\alpha)}{\Gamma(\alpha)\Gamma(k\alpha)} x^{\alpha-1} (1-x)^{k\alpha-1}, \quad x \in (0,1), \quad \alpha > 0.$$

Find a complete sufficient statistic for α .

11. Let X_1, X_2, \ldots, X_n be a random sample from a Pareto(θ) distribution, which has density

$$f_{\theta}(x) = \frac{\theta x_0^{\theta}}{x^{\theta+1}}, \quad x \ge x_0, \quad \theta > 1.$$

Here $x_0 > 0$ is known. Find a complete sufficient statistic for θ .

12. Using our notation, the Evans/Rosenthal textbook initially defines a sufficient statistic like this:

A function $T(\cdot)$ defined on the sample space \mathcal{X}^n is a *sufficient statistic* for θ if the following holds: $T(\mathbf{x}) = T(\mathbf{y})$ implies $f_{\theta}(\mathbf{x}) = c(\mathbf{x}, \mathbf{y}) \cdot f_{\theta}(\mathbf{y})$, for some constant $c(\mathbf{x}, \mathbf{y}) > 0$.

It turns out that their definition is equivalent to ours, but proving that fact is fairly difficult.

- (a) Instead, just prove that our definition implies theirs. You can stick to the discrete case. The trick is to observe that the event $\{\mathbf{X} = \mathbf{x}\}$ is a subset of the event $\{T(\mathbf{X}) = T(\mathbf{x})\}$.
- (b) If we replace the word "implies" in the textbook definition with "if and only if", what can be said about $T(\cdot)$?
- 13. Prove that if a statistic $T(\mathbf{X})$ is complete for θ and r is a bijection, then the statistic $r(T(\mathbf{X}))$ is also complete for θ .
- 14. Suppose $\mathcal{X} = \{0, 1, 2\}$ and $\Theta = (0, \frac{1}{2})$.

	x = 0	x = 1	x = 2
$f_{\theta}(x)$	θ	θ^2	$1-\theta-\theta^2$

Let $X \sim f_{\theta}$. Prove that T(X) = X is a complete sufficient statistic for θ .

- 15. Let X_1, X_2, \ldots, X_n be a random sample from a scale family with parameter $\sigma > 0$. Prove that any function of the n-1 ratios $X_1/X_n, \ldots, X_{n-1}/X_n$ must be ancillary for σ . Hint: $X_i/\sigma \sim F(x)$.
- 16. Let X_1, X_2, \ldots, X_n be a random sample from a location family with parameter $\mu \in \mathbb{R}$. Prove that any function of the n-1 differences $X_1 X_n, X_2 X_n, \ldots, X_{n-1} X_n$ is ancillary for μ .
- 17. Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Show that $R(\mathbf{X}) = (X_1 \bar{X}, X_2 \bar{X}, \ldots, X_n \bar{X})$ is ancillary for μ . Is $R(\mathbf{X})$ independent of \bar{X} ? This example will be very important in Module 4.
- 18. We've not had any issues checking the "open set" condition of Theorem 1.8, but here's a famous example that shows you what can happen if it's not satisfied. Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\theta, \theta^2)$, where $\theta > 0$. One can show that the condition doesn't hold for this parameter space (go ahead and try if you know a bit of topology; otherwise, don't bother).
 - (a) Show that in this case, the statistic in the theorem is

$$T(\mathbf{X}) = \left(\sum_{i=1}^{n} X_i, -\frac{1}{2} \sum_{i=1}^{n} X_i^2\right)$$

- (b) Show that $T(\mathbf{X})$ is a one-to-one function of (\bar{X}_n, S^2) .
- (c) Show that $\mathbb{E}_{\theta}\left[\frac{n}{n+1}(\bar{X}_n)^2 S^2\right] = 0$ for all $\theta > 0$.
- (d) Clearly, it's not always true that $\frac{n}{n+1}(\bar{X}_n)^2 \neq S^2$ (try it with a few small numbers if you're skeptical). Explain why this implies that $T(\mathbf{X})$ can't be complete for θ .
- 19. Show that the following distributions are in exponential families, assuming all parameters are unknown unless otherwise specified. For each one, identify the parameter θ (which may well be a vector), and the functions h(x), $g(\theta)$, $T_j(x)$, and $\eta_j(\theta)$ for each j (if there's more than one). Also decide whether any belong to a location family, a scale family, or a location-scale family.
 - (a)

$$f_{\mu,\sigma}(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\log(x) - \mu)^2}{2\sigma^2}\right), \quad x > 0, \qquad \mu \in \mathbb{R}, \quad \sigma > 0.$$

(b)

$$f_{k,\lambda}(x) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}, \quad x > 0, \qquad k \in \mathbb{N}, \quad \lambda > 0.$$

(c)

$$f_{\nu}(x) = \frac{2^{-\nu/2} x^{-(\nu/2+1)}}{\Gamma(\nu/2)} e^{-\frac{1}{2x}}, \quad x > 0, \qquad \nu > 0.$$

(d)

$$p_{\theta}(x) = \binom{x+r-1}{x} (1-\theta)^r \theta^x, \quad x \in \{0, 1, 2, \ldots\}, \qquad r \text{ known}, \quad \theta \in [0, 1].$$

(e)

$$p_{\mathbf{p}}(\mathbf{x}) = \binom{n}{x_1, \dots, x_k} \prod_{i=1}^k p_i^{x_i}, \quad \mathbf{x} \in \{0, 1, \dots, n\}^k \text{ s.t. } \sum_{i=1}^k x_i = n, \quad \mathbf{p} \in (0, 1)^k \text{ s.t. } \sum_{i=1}^k p_i = 1,$$

with n known.

20. Is it possible to have a (continuous) scale family $\{f_{\sigma}(\cdot) : \sigma > 0\}$ where each f_{σ} is supported on the *same* bounded interval [a, b]? If so, come up with one. If not, prove it.