
STA261 (Summer 2024) - Assignment 0

Solutions

These problems are meant to refresh/flex your STA257 skills (and your calculus skills). They are
not to be handed in. Problems marked with stars (?) are results that will be used later in our course.

1. (a) Let X ∼ N
(
0, σ2

)
. Show that E

[
X2k+1

]
= 0 for any k ∈ N.

Since the integrand of E
[
X2k+1

]
is odd, the result follows immediately. To spell out the

details a bit,

E
[
X2k+1

]
=

1√
2πσ

∫ ∞
−∞

x2k+1 · e−x2/2σ2
dx

=
1√
2πσ

(∫ 0

−∞
x2k+1 · e−x2/2σ2

dx+

∫ ∞
0

x2k+1 · e−x2/2σ2
dx

)
=

1√
2πσ

(
−
∫ ∞

0
u2k+1 · e−u2/2σ2

du+

∫ ∞
0

x2k+1 · e−x2/2σ2
dx

) Substituting in u(x) = −x
into the first integral and
rearranging

= 0.

(b) Go a bit further and show that this is true for any continuous distribution which is sym-
metric about zero (i.e., its pdf satisfies fX(x) = fX(−x) for any x ∈ R), provided all of its
moments are finite of course. In other words, if a distribution is symmetric about zero, then
all of its odd moments must vanish. Can you generalize this result to distributions sym-
metric about an arbitrary point x0 (i.e., those whose pdf satisfies fX(x0 + x) = fX(x0− x)
for any x ∈ R)?

Precisely the same reasoning as above applies, just with e−x
2/2σ2

/
√

2πσ replaced by the
more general pdf fX(x). The generalization is simply E

[
(X − x0)2k+1

]
= 0, because

E
[
(X − x0)2k+1

]
=

∫ ∞
−∞

(x− x0)2k+1 · fX(x) dx

=

∫ ∞
−∞

u2k+1 · fX(x0 + u) du Substituting in u(x) = x−
x0

=

∫ 0

−∞
u2k+1 · fX(x0 + u) du+

∫ ∞
0

u2k+1 · fX(x0 + u) du

= −
∫ ∞

0
v2k+1 · fX(x0 − v) dv +

∫ ∞
0

u2k+1 · fX(x0 + u) du
Substituting in v(u) = −u
into the first integral and
rearranging



= −
∫ ∞

0
v2k+1 · fX(x0 + v) dv +

∫ ∞
0

u2k+1 · fX(x0 + u) du Since f(x0−v) = f(x0 +v)

= 0.

2. For any two (possibly dependent) random variables with finite second moments, show that

Var (X + Y ) + Var (X − Y ) = 2(Var (X) + Var (Y )).

This falls out from applying the identity

Var (aX + bY ) = a2 ·Var (X) + b2 ·Var (Y ) + 2ab · Cov (X,Y )

twice.

3. Let X ∼ Poisson (λ) and let h : N→ R be any function such that E [h(X)] is finite. Prove that
E [λ · h(X)] = E [X · h(X − 1)].

We have that

E [λ · h(X)] =
∑
j≥0

λj · e−λ

j!
· λ · h(j)

=
∑
j≥0

λj+1 · e−λ

j!
· h(j)

=
∑
k≥1

λk · e−λ

(k − 1)!
· h(k − 1) Substituting k = j + 1

=
∑
k≥1

λk · e−λ

k!
· k · h(k − 1)

=
∑
k≥0

λk · e−λ

k!
· k · h(k − 1) Since the summand is 0

when k = 0

= E [X · h(X − 1)] .

4. Let X ∼ N
(
µ, σ2

)
and let g : R → R be any differentiable function that’s nice enough to

satisfy E [|g′(X)|] <∞ and lim|x|→∞ g(x) ·e−(x−µ)2/2σ2
= 0. Prove that E [g(X) · (X − µ)] = σ2 ·

E [g′(X)]. This is called Stein’s lemma (in fact the condition that lim|x|→∞ g(x) ·e−(x−µ)2/2σ2
= 0

is unnecessary, but proving that is a lot harder).

Using integration by parts with u(x) = e−(x−µ)2/2σ2
and dv = g′(x) dx, we get

σ2 · E
[
g′(X)

]
=

σ√
2π

∫ ∞
−∞

g′(x) · e−(x−µ)2/2σ2
dx

=
σ√
2π

(
e−(x−µ)2/2σ2 · g(x)

∣∣∣∞
−∞

+

∫ ∞
−∞

g(x) · (x− µ) · e−(x−µ)2/2σ2
dx

)
=

σ√
2π
· e−(x−µ)2/2σ2 · g(x)

∣∣∣∞
−∞

+ E [g(X) · (X − µ)] ,



and the condition lim|x|→∞ g(x) · e−(x−µ)2/2σ2
= 0 shows that the term on the left is 0.

?5. For any set of univariate random variables X1, X2, . . . , Xn, the order statistics are the Xi’s placed
in ascending order, which are notated as X(1) ≤ X(2) ≤ · · · ≤ X(n). Thus the sample minimum
X(1) = min{X1, . . . , Xn} and the sample maximum X(n) = max{X1, . . . , Xn}.
In STA257, you may have learned that if X1, X2, . . . , Xn are an independent sample from a
continuous distribution with pdf fX and cdf FX , then fX(1)

(x) = n · fX(x) · (1−FX(x))n−1 and

fX(n)
(x) = n · fX(x) · FX(x)n−1. Let’s generalize those formulas by finding the pdf of X(j), for

any 1 ≤ j ≤ n.

(a) Let h > 0 be nice and small. Explain why

P
(
X(j) ∈ [x, x+ h]

)
= P (One of the Xi’s is in [x, x+ h] and exactly j − 1 of the others are < x) .

Because the Xi’s are continuous, when h is small enough there’s at most one of them in the
interval [x, x + h], and it’s the j’th largest of the Xi’s if and only if there are j − 1 other
Xi’s that are smaller than x.

(b) Show that the probability on the right is equal to

n · P (X1 ∈ [x, x+ h]) · P (exactly j − 1 of X2, X3, . . . , Xn are < x) .

Let Ai be the event “Xi ∈ [x, x+ h] and j − 1 of the others are < x”. Then

P (Ai) = P ((Xi ∈ [x, x+ h]) ∩ (exactly j − 1 of X1, . . . , Xi−1, Xi+1, . . . , Xn are < x))

= P (Xi ∈ [x, x+ h]) · P (exactly j − 1 of X1, . . . , Xi−1, Xi+1, . . . , Xn are < x)

since Xi is independent of X1, . . . , Xi−1, Xi+1, . . . , Xn. Moreover, we certainly have that
(X1, . . . , Xi−1, Xi+1, . . . , Xn) has the same joint distribution as (X2, X3, . . . , Xn) because
the Xi’s are independent and identically distributed, which gives

P (Ai) = P (X1 ∈ [x, x+ h]) · P (exactly j − 1 of X2, X3, . . . , Xn are < x) ,

and so

P (One of the Xi’s is in [x, x+ h] and exactly j − 1 of the others are < x)

= P

(
n⋃
i=1

Ai

)

=
n∑
i=1

P (Ai)
Because the Ai’s are dis-
joint

= n · P (X1 ∈ [x, x+ h]) · P (exactly j − 1 of X2, X3, . . . , Xn are < x)

(c) Think binomially and show that

P (exactly j − 1 of X2, X3, . . . , Xn are < x) =

(
n− 1

j − 1

)
· FX(x)j−1 · (1− FX(x))n−j .



Let Bi = 1Xi<x. Then B1, . . . , Bn are independent Bernoulli random variables, each with
probability of success P (Xi < x) = FX(x). Then

exactly j − 1 of X2, X3, . . . , Xn are < x ⇐⇒
n∑
i=2

Bi = j − 1.

Since
∑n

i=2Bi ∼ Bin (n− 1, FX(x)), the probability we want is exactly the probability that
a Bin (n− 1, F (x)) random variable equals j−1, which is

(
n−1
j−1

)
·FX(x)j−1 · (1−FX(x))n−j .

(d) Put the pieces together, divide both sides by h, and take the limit as h→ 0 to get

fX(j)
(x) =

n!

(j − 1)! · (n− j)!
· fX(x) · FX(x)j−1 · (1− FX(x))n−j .

The work we’ve done above gives

P
(
X(j) ∈ [x, x+ h]

)
= n · P (X1 ∈ [x, x+ h]) ·

(
n− 1

j − 1

)
· FX(x)j−1 · (1− FX(x))n−j

= P (X1 ∈ [x, x+ h]) · n!

(j − 1)!(n− j)!
· FX(x)j−1 · (1− FX(x))n−j .

Writing the probabilities as differences of cdfs (i.e., P (X ∈ [x, x+ h]) = FX(x+h)−FX(x)
and so on) and dividing through by h gives

FX(j)
(x+ h)− FX(j)

(x)

h
=
FX(x+ h)− FX(x)

h
· n!

(j − 1)!(n− j)!
·FX(x)j−1 ·(1−FX(x))n−j .

Taking the limit on both sides as h→ 0 gives us exactly what we want.

?6. LetX1, X2, . . . , Xn be independent Unif (0, 1) random variables. ShowX(j) ∼ Beta (j, n− j + 1),
and use that fact to find E

[
X(j)

]
and Var

(
X(j)

)
.

Since the cdf of the Unif (0, 1) distribution is just FX(x) = x and the pdf is just fX(x) = 1 for
x ∈ (0, 1), plugging these into the result above gives

fX(j)
(x) =

n!

(j − 1)! · (n− j)!
·xj−1 ·(1−x)n−j =

Γ(n+ 1)

Γ(j) · Γ(n− j + 1)
·xj−1 ·(1−x)n−j , x ∈ (0, 1),

which is exactly the Beta (j, n− j + 1) pdf. Recalling that

B(α, β) =
Γ(α) · Γ(β)

Γ(α+ β)
=

∫ 1

0
xα−1 · (1− x)β−1 dx,

we get that

E
[
X(j)

]
=

1

B(j, n− j + 1)

∫ 1

0
x · xj−1 · (1− x)n−j dx =

B(j + 1, n− j + 1)

B(j, n− j + 1)
=

j

n+ 1
.

Similarly, the second moment is

E
[
X2

(j)

]
=

B(j + 2, n− j + 1)

B(j, n− j + 1)
=

j · (j + 1)

(n+ 1) · (n+ 2)
,

and so

Var
(
X(j)

)
= E

[
X2

(j)

]
− E

[
X(j)

]2
=

j · (j + 1)

(n+ 1) · (n+ 2)
− j2

(n+ 1)2
=

j · (n− j + 1)

(n+ 1)2 · (n+ 2)
.



7. What’s the probability that an unbiased coin lands on heads 500 times in 1000 flips, rounded
to five decimal places? You know that the exact answer is

(
1000
500

)
0.51000, but good luck trying

to evaluate that on a calculator – you’ll either end up with numerical underflow or overflow.
You might think to calculate the log of that and then exponentiate it after – that will definitely
help with the 0.51000 part, but you’ll still have to deal with log (1000!) − 2log (500!), and you
just can’t evaluate either of those factorials directly. You may have heard of Stirling’s formula,
which gives an approximation of the factorial function. With a bit of hand-waving, we’ll derive
a simple version of it here.

(a) Let X1, X2, . . . , Xn be independent Exp (λ) random variables. Using mgfs (or anything
else), show that

∑n
i=1Xi ∼ Gamma (n, λ). This is sometimes called an Erlang distribution.

The mfg of the Exp (λ) distribution is MX(t) = λ/(λ− t) for t < λ, so the mgf of
∑n

i=1Xi

is

M∑n
i=1Xi

(t) =
λn

(λ− t)n
=

(
1− t

λ

)−n
for the same range of t, which is indeed the mgf of the Gamma (n, λ) distribution.

(b) Set λ = 1 and fix x ∈ R. Explain why we can write

d

dx
P
(
X̄n − 1

1/
√
n
≤ x

)
≈ φ(x)

when n is large, where φ(x) = (
√

2π)−1/2 · e−x2/2 is the standard normal pdf.

By the central limit theorem,

X̄n − 1

1/
√
n

=
X̄n − E [Xi]√

Var (Xi) /n

d−→ N (0, 1)

so when n is large, the term on the left is approximately N (0, 1)-distributed. Thus

P
(
X̄n − 1

1/
√
n
≤ x

)
≈
∫ x

∞
φ(t) dt,

and the result follows upon differentiation (this is the hand-waving part, since we’re not
being very precise about what the “≈” means).

(c) Carry out the differentiation on the left-hand side, via a u-substitution and the fundamental
theorem of calculus.

We have

d

dx
P
(
X̄n − 1

1/
√
n
≤ x

)
=

d

dx
P

(
n∑
i=1

Xi ≤
√
nx+ n

)

=
d

dx

∫ √nx+n

0

1

Γ(n)
tn−1e−t dt

Because
∑n
i=1Xi ∼

Gamma (n, 1)

=

√
n

Γ(n)
· d

dx

∫ x

0
(
√
nu+ n)n−1e

√
nu−n dt Letting u(t) = (t− n)/

√
n

=

√
n

Γ(n)
· (
√
nx+ n)n−1e−(

√
nx+n) dt By the FTC



(d) Set x = 0 on both sides and rearrange a bit to get

n! ≈
√

2π · nn+ 1
2 · e−n,

which is Stirling’s formula.

Combining 7b and 7c gives

√
n

Γ(n)
· (
√
nx+ n)n−1e−(

√
nx+n) dt ≈ 1√

2π
· e−x2/2.

Putting x = 0 gives √
n

Γ(n)
· nn−1e−(

√
nx+n) dt ≈ 1√

2π
,

and rearranging a bit gives us Stirling’s formula.

(e) Approximate (to five decimal places) the probability that an unbiased coin lands on heads
500 times in 1000 flips. I get 0.02523...

The probability is(
1000

500

)
0.51000 =

1000!

500!2
· 0.51000

≈
√

2π · 10001000.5 · e−1000(√
2π · 500500.5 · e−500

)2 · 0.51000
Applying Stirling’s formula
in the numerator and de-
nominator

=
1√

500π
After a bit of simplification

≈ 0.02523...,

which is, in fact, correct to four decimal places.

8. Let k ≥ 1 be an integer and let λ > 0. Let X ∼ Gamma (k, λ) (this is the Erlang distribution
from Question 7a). Using mathematical induction,1 show that the cdf X can be written as

P (X ≤ x) = 1−
k−1∑
j=0

e−λx · (λx)j

j!
.

It’s equivalent (but a bit less cumbersome) to show

λk

Γ(k)

∫ ∞
x

tk−1 · e−λt dt︸ ︷︷ ︸
= 1− P (X ≤ x)

=
k−1∑
j=0

e−λx · (λx)j

j!
,

so let’s do that. When k = 1, we get

λ1

Γ(1)

∫ ∞
x

t1−1 · e−λt dt = e−λx =
1−1∑
j=0

e−λx · (λx)j

j!
,

1If you don’t know what this is, just follow these steps: first prove the result holds for the base case k = 1. Then
assume the result holds for any k ∈ N, and show that this implies the result must also hold for k + 1. The principle of
mathematical induction says that if you’ve done that, then you’ve proven the result holds for all k ∈ N.



which proves the base case. Now, assume the result holds for fixed k ∈ N. Then

λk+1

Γ(k + 1)

∫ ∞
x

t(k+1)−1 · e−λt dt

=
λk+1

Γ(k + 1)

[
− t

k · e−λt

λ

∣∣∣∞
x

+
k

λ

∫ ∞
x

tk−1 · e−λt dt

]
Using integration by parts
with u(t) = tk and dv =
e−λt dt

=
λk+1

Γ(k + 1)

− tk · e−λt
λ

∣∣∣∞
x

+
k

λ
· Γ(k)

λk

k−1∑
j=0

e−λx · (λx)j

j!

 By the induction hypothe-
sis

=
(λx)ke−λx

Γ(k + 1)
+

k−1∑
j=0

e−λx · (λx)j

j!

=

k∑
j=0

e−λx · (λx)j

j!
,

so the result also holds for k + 1. By the principle of mathematical induction, the result is true
for all k ∈ N.

9. Let U1, U2, . . . , Un, V be independent Unif (0, 1) random variables, where n ≥ 2. Find the pdf of
Z = (

∏n
i=1 Ui)

V .

Hint : start by finding the distribution of − log (Z). This might be the toughest (or at least the
longest) question of the batch. For an easier version, try to solve it for the n = 2 case.

To find P (Z ≤ x) for x ∈ (0, 1), first let y = − log (x). Then

P (Z ≤ x) = P

(
V ·

n∑
i=1

log (Ui) ≤ −y

)
= P

(
V ·

n∑
i=1

(− log (Ui)) ≥ y

)
.

Let’s find the distribution of
∑n

i=1(− log (Ui)). We see that − log (Ui) ∼ Exp (1) because
P (− log (Ui) ≤ u) = P (Ui ≥ e−u) = 1 − e−u, so

∑n
i=1(− log (Ui)) is a sum of n independent

Exp (1) random variables, which gives
∑n

i=1(− log (Ui)) ∼ Gamma(n, 1) by Question 7a. So
we can write P (Z ≤ x) = 1 − P (V ·G < y), where V ∼ Unif (0, 1) and G ∼ Gamma(n, 1) are
independent. Now, using the law of total probability,

P (V ·G < y)

=

∫ ∞
0

P (V ·G < y | G = g) · fG(g) dg

=

∫ ∞
0

P
(
V <

y

g

)
· g

n−1 · e−g

Γ(n)
dg

=

∫ y

0
P
(
V <

y

g

)
· g

n−1 · e−g

Γ(n)
dg +

∫ ∞
y

P
(
V <

y

g

)
· g

n−1 · e−g

Γ(n)
dg

=

∫ y

0

gn−1 · e−g

Γ(n)
dg +

y

Γ(n)

∫ ∞
y

gn−2 · e−g dg
Since V ∼ Unif (0, 1), so
P (V < a) = a·10≤a<1+1·1a≥1

=

∫ y

0

gn−1 · e−g

Γ(n)
dg + y · Γ(n− 1)

Γ(n)

∫ ∞
y

gn−2 · e−g

Γ(n− 1)
dg

= P (G ≤ y) +
y

n− 1
· (1− P (H ≤ y)) Where H ∼ Gamma(n− 1, 1)

Therefore,

P (Z ≤ x) = 1− P (G ≤ y)− y

n− 1
· (1− P (H ≤ y)) .



To get the pdf, we can use the chain rule and the result from Question 8:

fZ(x) =
dy

dx
· d

dy

(
1− P (G ≤ y)− y

n− 1
· (1− P (H ≤ y))

)
=

dy

dx
·
(
−fG(y)−

[
1− P (H ≤ y)

n− 1
− y

n− 1
· fH(y)

])
=

1

e−y
·
(
fG(y) +

1− P (H ≤ y)

n− 1
− y

n− 1
· fH(y)

)

=
1

e−y
·

yn−1 · e−y

Γ(n)
+

1

n− 1
·
n−2∑
j=0

e−y · yj

j!
− y

n− 1
· y

n−2 · e−y

Γ(n− 1)


=
yn−1

Γ(n)
+

1

n− 1
·
n−2∑
j=0

yj

j!
− 1

n− 1
· yn−1

Γ(n− 1)

=
1

n− 1

n−2∑
j=0

yj

j!

=
1

n− 1

n−2∑
j=0

(−1)j · log (x)j

j!
,

which is good enough.2

10. Let U1, U2, . . . be independent Unif (0, 1) random variables. Let M be a random variable inde-
pendent of the Ui’s, with distribution

P (M = m) =
c

m!
, m = 1, 2, 3, . . .

for some c ∈ R. Find the value of c, and then find the pdf of X = min{U1, U2, . . . , UM}. That’s
the minimum of a random number of Ui’s, so you’ll have to do some kind of conditioning.

First of all, we need

1 =

∞∑
m=1

c

m!
= c(e− 1),

which gives c = 1/(e− 1). Now, by the law of total probability, for x ∈ (0, 1) the cdf of X is

P (X ≤ x) =
∞∑
m=1

P (min{U1, U2, . . . , UM} ≤ x |M = m) · P (M = m)

=

∞∑
m=1

P (min{U1, U2, . . . , Um} ≤ x) · P (M = m)

=
1

e− 1

∞∑
m=1

1− (1− x)m

m!

=
1

e− 1

∞∑
m=0

1− (1− x)m

m!

=
e− e1−x

e− 1
,

2Apparently the n = 2 case, which you can see gives (U1 · U2)V ∼ Unif (0, 1), has been known to be given as an
interview question by some hedge funds. So now you’re ready to be a quant!



and the pdf of X is the derivative of that, which is e1−x/(e− 1).

11. Suppose you repeatedly draw independent Unif (0, 1) random variables and add them together.
What’s the expected number of draws you need for the sum to exceed 1? Let’s answer that.

(a) Let U1, U2, . . . , Un be independent Unif (0, 1) random variables, and let Sn =
∑n

i=1 Ui.
Using mathematical induction, prove that P (Sk ≤ t) = tk/k! for t ∈ (0, 1).

When k = 1, we have that P (S1 ≤ t) = P (U1 ≤ t) = t = t1/1!, which proves the base case.
Now, assume the result holds for fixed k ∈ N. Then, by the law of total probability,

P (Sk+1 ≤ t) = P (Sk ≤ t− Uk+1)

=

∫ 1

0
P (Sk ≤ t− u | Uk+1 = u) · 1t−u>0 du

=

∫ t

0
P (Sk ≤ t− u) du

Since Sk is independent of
Uk+1

=

∫ t

0

(t− u)k

k!
du By the induction hypothesis

=
tk+1

(k + 1)!
,

so the result also holds for k + 1. By the principle of mathematical induction, the result is
true for all k ∈ N.

(b) Let N = min{k : Sk > 1}. Argue that P (N = n) = P (Sn−1 ≤ 1)− P (Sn ≤ 1).

N = n happens if and only if both Sn > 1 and Sn−1 ≤ 1 happen simultaneously. In other
words, {N = n} = {Sn > 1} ∩ {Sn−1 ≤ 1} = {Sn ≤ 1}c ∩ {Sn−1 ≤ 1}. The result now
follows from the basic property P (B) = P (A) + P (B ∩Ac) whenever A ⊆ B.

(c) Use that to evaluate E [N ]. Think about where your summation starts!

Because S1 = U1 definitely can’t exceed 1, we have P (N = 1) = 0. Therefore,

E [N ] =
∑
n≥2

n · P (N = n)

=
∑
n≥2

n ·
(

1

(n− 1)!
− 1

n!

)
=
∑
n≥2

1

(n− 2)!

=
∑
j≥0

1

j!
Substituting j = n− 2

= e.

So we “expect” to draw exactly e independent standard uniform random variables before
their sum exceeds 1 (!).

12. If X = (X1, X2, X3, X4) is jointly distributed according to

fX(x1, x2, x3, x4) =
3

4
(x2

1 + x2
2 + x2

3 + x2
4), 0 < xi < 1, i = 1, 2, 3, 4,



find P
(
X1 <

√
X2 < X3 <

√
X4

)
and E

[√
X1 ·X3

]
.

The probability is just

P
(
X1 <

√
X2 < X3 <

√
X4

)
=

∫ 1

0

∫ √x4
0

∫ x3

0

∫ √x2
0

fX(x1, x2, x3, x4) dx1 dx2 dx3 dx4 =
81,392

765,765

while the expectation is

E
[√

X1 ·X3

]
=

∫ 1

0

∫ 1

0

√
x1 · x3

(∫ 1

0

∫ 1

0
fX(x1, x2, x3, x4) dx2 dx4

)
dx1 dx3 =

67

168
.

13. Let B and C be independent Unif (0, 1) random variables. Find the probability that the random
quadratic x2 +Bx+C has a real root. For a harder version, let A ∼ Unif (0, 1) be independent
of B and C and find the probability that Ax2 +Bx+ C has a real root.

From the quadratic formula, the general quadratic x2 + bx+ c has a real root if and only if the
discriminant

√
b2 − 4c is real, which itself happens if and only if b2 − 4c ≥ 0. So we want

P
(
B2 − 4C ≥ 0

)
=

∫ 1

0
P
(
B2 − 4C ≥ 0 | B = b

)
db

=

∫ 1

0
P
(
C ≤ b2

4

)
db

=

∫ 1

0

b2

4
db Since C ∼ Unif (0, 1)

=
1

12
.

For the harder version, let G ∼ Gamma (2, 1). This time we want∫ 1

0
P
(
AC ≤ b2

4

)
db =

∫ 1

0
P
(
− log (A)− log (C) ≥ − log

(
b2

4

))
db =

∫ 1

0
P
(
G ≥ − log

(
b2

4

))
db,

and using Question 8, that’s∫ 1

0

(
e log(b2/4) − e log(b2/4) · log

(
b2

4

))
db

=

∫ 1

0

b2

4
db−

∫ 1

0

b2

2
· log

(
b

2

)
db

=

∫ 1

0

b2

4
db−

[
b3

6
· log

(
b

2

) ∣∣∣1
0
−
∫ 1

0

b2

6
db

] Using integration by parts on
the second integral with u(b) =

log
(
b
2

)
and dv = b2

2
db

=
1

12
− 1

6
· log

(
1

2

)
+

1

18

Using L’Hôpital’s rule to get

limb→0
b3

6
· log

(
b
2

)
= 0

=
5

36
+

log (2)

6
.



?14. Let Y be a random variable whose first two moments exist. Hypothesize which x ∈ R minimizes
E
[
(Y − x)2

]
, and then prove it.

The minimizing value of x is x = E [Y ], so that infx∈R E
[
(Y − x)2

]
= Var (Y ). To prove it,

expand the square to get

d

dx
E
[
(Y − x)2

]
=

d

dx

(
E
[
Y 2
]
− 2xE [Y ] + x2

)
= −2E [Y ] + 2x.

Setting the right-hand side equal to 0 shows that x = E [Y ] is a global optimizer. Differentiating

the display above one more time shows that we always have d2

dx2
E
[
(Y − x)2

]
= 2 > 0, which

confirms that x = E [Y ] is indeed the global minimum.

15. Let X ∼ Poisson (λ) and Y ∼ Poisson (ν) be independent. Find the conditional distribution of
X | (X + Y = n).

First of all, it’s easy to show using mgfs that X + Y ∼ Poisson (λ+ ν). Then for m ∈ N with
m ≤ n, we have

P (X = m | X + Y = n) =
P (X = m ∧ X + Y = n)

P (X + Y = n)

=
P (X = m ∧ Y = n−m)

P (X + Y = n)

=
P (X = m) · P (Y = n−m)

P (X + Y = n)
Since X and Y are inde-
pendent

=
λme−λ

m!
· ν

n−me−ν

(n−m)!

/
(λ+ ν)ne−(λ+ν)

n!

=

(
n

m

)(
λ

λ+ ν

)m(
1− λ

λ+ ν

)n−m
.

That is, X | (X + Y = n) ∼ Bin (n, λ/(λ+ ν)).

16. Let X ∼ Gamma (λ, 1) and Y ∼ Gamma (ν, 1) be independent. Name the distributions of
G = X + Y and B = X/(X + Y ), and show they’re independent. Don’t try to start by finding
the marginals – instead, go straight for the joint distribution of (G,B) and see what pops out.

Let g = g(x, y) = x+y and h = h(x, y) = x/(x+y). Then the function (x, y) 7→ (g(x, y), h(x, y))
is a smooth bijection between (0,∞)2 and (0,∞)×(0, 1) with inverse (g, h) 7→ (x(g, h), y(g, h)) =
(gh, g(1− h)). The determinant of the Jacobian of the inverse transformation is

det

(
d(x, y)

d(g, h)

)
=

∣∣∣∣∣∣∣∣

∂x

∂g

∂x

∂h

∂y

∂g

∂y

∂h


∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
 h g

1− h −g

∣∣∣∣∣∣ = g,

so the joint pdf of (G,H) is

f(G,H)(g, h) = f(X,Y )(gh, g(1− h)) ·
∣∣∣∣det

(
d(x, y)

d(g, h)

)∣∣∣∣
= fX(gh) · fY (g(1− h)) ·

∣∣∣∣det

(
d(x, y)

d(g, h)

)∣∣∣∣ Since X and Y are inde-
pendent



=
1

Γ(λ)
(gh)λ−1e−gh · 1

Γ(ν)
(g(1− h))ν−1e−g(1−h) · g

=
1

Γ(λ+ ν)
gλ+ν−1e−g︸ ︷︷ ︸

Gamma (λ+ ν, 1) pdf

· Γ(λ+ ν)

Γ(λ) · Γ(ν)
hλ−1(1− h)ν−1︸ ︷︷ ︸

Beta (λ, ν) pdf

.

So G ∼ Gamma (λ+ ν, 1) and B ∼ Beta (λ, ρ) and moreover, the factorization above shows that
G and B are independent.

17. Let X and Y be independent N (0, 1) random variables.

(a) Let R =
√
X2 + Y 2 and Θ = arctan

(
Y
X

)
, where the range of arctan is taken as [0, 2π].

Name the distributions of R2 and Θ, and show they’re independent. Again, go straight for
their joint distribution. If your trig is rusty, remember that tan(x) = sin(x)/ cos(x) and
sin2(x) + cos2(x) = 1.

Let r = r(x, y) =
√
x2 + y2 and θ = θ(x, y) = arctan(y/x). Then the function (x, y) 7→

(r(x, y), θ(x, y)) is a smooth bijection between R2 and [0,∞)× [0, 2π] with inverse (r, θ) 7→
(x(r, θ), y(r, θ)) = (r · cos(θ), r · sin(θ)). The determinant of the Jacobian of the inverse
transformation is

det

(
d(x, y)

d(r, θ)

)
=

∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ


∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
cos(θ) −r · sin(θ)

sin(θ) r · cos(θ)

∣∣∣∣∣∣ = r,

so the joint pdf of (R,Θ) is

f(R,Θ)(r, θ) = f(X,Y )(r · cos(θ), r · sin(θ)) ·
∣∣∣∣det

(
d(x, y)

d(r, θ)

)∣∣∣∣
= fX(r · cos(θ)) · fY (r · sin(θ)) ·

∣∣∣∣det

(
d(x, y)

d(r, θ)

)∣∣∣∣ Since X and Y are inde-
pendent

=
1√
2π
e−r

2·cos(θ)2/2 · 1√
2π
e−r

2·sin(θ)2/2 · r

=
1

2π
· re−r2/2.

Since the marginal pdf of Θ is
∫∞

0 f(R,Θ)(r, θ) dr = 1/2π, it follows that Θ ∼ Unif (0, 2π),
and also that R and Θ are independent. Moreover, by a change of variables, the marginal
pdf of R2 is fR2(x) = e−x/2/2 which gives us R2 ∼ Exp (1/2).

(b) Use your work to show that if U1 and U2 are independent Unif (0, 1) random variables,

then X
d
=
√
−2log (U1) · cos(2πU2) and Y

d
=
√
−2log (U1) · sin(2πU2). This is called the

Box-Muller transform.

If U1, U2 ∼ Unif (0, 1), then P
(√
−2log (U1) ≤ r

)
= P

(
U1 ≥ e−r

2/2
)

= 1 − e−r2/2, and

taking derivatives shows that
√
−2log (U1) has pdf re−r

2/2, so that
√
−2log (U1)

d
= R.

Also, we certainly have that 2π · U2 ∼ Unif (0, 2π); that is 2πU2
d
= Θ. Putting the pieces

together and using Question 17a gives us

X
d
= R · cos(Θ)

d
=
√
−2log (U1) · cos(2πU2)



and
Y

d
= R · cos(Θ)

d
=
√
−2log (U1) · sin(2πU2).

(c) If I give you only a pocket calculator and two independent draws from the Unif (0, 1)
distribution, explain how you can give me back independent draws from the N

(
µ1, σ

2
1

)
distribution and the N

(
µ2, σ

2
2

)
distribution.

If I give you u1 and u2 (assumed to be independent Unif (0, 1) realizations), you give me
back σ1 ·

√
−2log (u1) · cos(2πu2) + µ1 and σ2 ·

√
−2log (u1) · sin(2πu2) + µ2.

18. Let X1, X2 and X3 be uncorrelated random variables, all with expectation µ and variance σ2.
Find expressions for Cov (X1 +X2, X2 +X3) and Cov (X1 +X2, X1 −X2) in terms of µ and σ2.

Using independence and the identity Var (X) = E
[
X2
]
− E [X]2, we get

Cov (X1 +X2, X2 +X3)

= E [(X1 +X2) · (X2 +X3)]− E [X1 +X2] · E [X2 +X3]

= E
[
X1 ·X2 +X1 ·X3 +X2

2 +X2 ·X3

]
− E [X1 +X2] · E [X2 +X3]

= E [X1] · E [X2] + E [X1] · E [X3] + E
[
X2

2

]
+ E [X2] · E [X3]− E [X1 +X2] · E [X2 +X3]

= σ2.

Also,

Cov (X1 +X2, X1 −X2) = E [(X1 +X2) · (X1 −X2)]− E [X1 +X2] ·
0︷ ︸︸ ︷

E [X1 −X2]

= E
[
X2

1 −X2
2

]
= Var (X1) + E [X1]2 −

(
Var (X2) + E [X2]2

)
= 0

?19. Let X1, X2, . . . , Xn be independent random variables with E [Xi] = µ and Var (Xi) = σ2. Define
the sample mean X̄n = 1

n

∑n
i=1Xi and the sample variance S2

n = 1
n−1

∑n
i=1(Xi − X̄n)2. Prove

that E
[
X̄n

]
= µ and Var

(
X̄n

)
= σ2/n and also E

[
S2
n

]
= σ2.

Hint : for the last one, you can make life easier by writing Xi − X̄n = (Xi − µ)− (X̄n − µ).

To begin with, by linearity we have

E
[
X̄n

]
=

1

n

n∑
i=1

E [Xi] =
1

n

n∑
i=1

µ = µ.

Moreover, because the Xi are independent, we also have

Var
(
X̄n

)
=

1

n2

n∑
i=1

Var (Xi) =
1

n2

n∑
i=1

σ2 =
σ2

n
.

To show that E
[
S2
n

]
= σ2, it’s obviously enough to show that

∑n
i=1 E

[
(Xi − X̄n)2

]
= (n−1) ·σ2.

Taking the hint, we see that

n∑
i=1

E
[
(Xi − X̄n)2

]
=

n∑
i=1

E
[(

(Xi − µ)− (X̄n − µ)
)2]



=
n∑
i=1

(
E
[
(Xi − µ)2

]
− 2E

[
(Xi − µ) · (X̄n − µ)

]
+ E

[
(X̄n − µ)2

])
= (n− 1) · σ2

because E
[
(Xi − µ)2

]
= Var (Xi) and E

[
(X̄n − µ)2

]
= Var

(
X̄n

)
and

n∑
i=1

E
[
(Xi − µ) · (X̄n − µ)

]
= E

[
(X̄n − µ) ·

n∑
i=1

(Xi − µ)

]
= n · E

[
(X̄n − µ)2

]
= n ·Var

(
X̄n

)
.

20. In the same setting as above, show that the sample variance satisfies

S2
n =

n− 2

n− 1
S2
n−1 +

1

n
(X̄n−1 −Xn)2.

Why might this identity be useful?

Hint : add and subtract X̄n−1 inside the summands being squared in S2
n.

Following the hint, we have

(n− 1)S2
n =

n∑
i=1

(Xi − X̄n)2

=
n∑
i=1

(
(Xi − X̄n−1) + (X̄n−1 − X̄n)

)2
=

n∑
i=1

(Xi − X̄n−1)2 + 2
n∑
i=1

(Xi − X̄n−1) · (X̄n−1 − X̄n) +
n∑
i=1

(X̄n−1 − X̄n)2

=
n∑
i=1

(Xi − X̄n−1)2 + 2n(X̄n − X̄n−1) · (X̄n−1 − X̄n) + n(X̄n−1 − X̄n)2

=
n∑
i=1

(Xi − X̄n−1)2 − n(X̄n−1 − X̄n)2

The first term is
(n− 2)S2

n−1 + (X̄n−1 −Xn)2,

while the second is

−n

(
1

n− 1

n−1∑
i=1

Xi −
1

n

n∑
i=1

Xi

)2

= −n

(
1

n · (n− 1)

n−1∑
i=1

Xi −
1

n
Xn

)2

= − 1

n
(X̄n−1 −Xn)2.

Adding those gives

(n− 1)S2
n = (n− 2)S2

n−1 +
n− 1

n
(X̄n−1 −Xn)2,

and dividing through by n− 1 gives us what we want.

From a computational perspective, this is very useful because if we’ve already calculated a sample
mean and sample variance based on n−1 data points X1, . . . , Xn−1, and we’re given a new point
Xn to add into the mix, we don’t have to go back and recalculate the updated sample variance
from scratch, which would normally require O(n) operations; instead, the recursive identity we
just derived does it in a constant number of operations, which saves a huge amount of time if n
is large.



21. Let A be an n × n matrix whose entries are independent N (0, 1) random variables. Let B =
(A+A>)/2, which you might notice is symmetric. What’s the joint pdf of the n(n+1)/2 entries
in the upper triangle of B? This has matrices in it, but it doesn’t need any linear algebra; if
you remember what the transpose of a matrix is, you can do this! If you’re looking for a name
for your pdf, you can call it fB11,B12,...,Bnn(b11, b12, . . . , bnn).

Let Bij be the (i, j)’th entry of B. If i = j, then Bii = (Aii + Aii)/2 = Aii ∼ N (0, 1). On the
other hand, if i 6= j, then Bij = (Aij + Aji)/2 ∼ N (0, 1/2). If 1 ≤ i ≤ j ≤ n, then all of these
Bij ’s are independent, so their joint pdf is just

fB11,B12,...,Bnn(b11, b12, . . . , bnn) =

diagonal entries︷ ︸︸ ︷ n∏
i=1

1√
2π
e−b

2
ii/2

 ·
off-diagonal entries︷ ︸︸ ︷ n∏
i=1

∏
j 6=i

1√
π
e−b

2
ij


=

1

2n/2 · πn(n−1)/4
· exp

− n∑
i=1

b2ii
2

+
∑
j 6=i

b2ij

 .

22. Fix some n ∈ N with n > 1. Prove that if I give you some fixed µ ∈ R and σ2 > 0, you can give
me x1, x2, . . . , xn ∈ R such that

x̄ :=
1

n

n∑
i=1

xi = µ

and
1

n− 1

n∑
i=1

(xi − x̄)2 = σ2.

What — if any — are some statistical implications of this?

Hint : start with n = 2, and you’ll get an explicit form for x1 and x2. Use those to take a
guess at the case for general 2n, and prove that it gives you what you want. For odd n, add an
appropriate x2n+1 to the 2n case.

For the n = 2 case, it’s possible to expand everything out and solve the simultaneous equations,
but it’s much easier to go by intuition. The endpoints of any interval centered at µ will have µ
as their average, so we can take x1 = µ − q and x2 = µ + q for some q > 0 (which gives x̄ = µ
like we want), and plugging this into the second formula gives q =

√
σ2/2.

For the general case where n is even, follow the same strategy: take x2j = µ−q and x2j−1 = µ+q
for each j = 1, . . . , n/2 so that x̄ = µ for any q. With these choices, we want

σ2 =
1

n− 1

n∑
i=1

(xi − x̄)2 =
1

n− 1

n∑
i=1

(±q)2 =
n

n− 1
q2,

which means that we can take q =
√

(1− 1/n)σ2.

Finally, if n is odd – say n = 2m + 1 – one thing we can do is let x1, . . . , x2m be as above (for
some q to be specified) and let x2m+1 = µ. Then we still have x̄ = µ, so that (x2m+1 − x̄)2 = 0.
Plugging this in shows q =

√
σ2 does the trick.

One statistical implication here is that given any n > 1, someone can easily cook up a dataset
of size n that has any prescribed sample mean and sample variance. Of course, if the data is
supposed to be collected from “real-life” then this dataset will not be very convincing (since



it will contain at most three unique values) but someone only interested in the two summary
statistics above will not necessarily notice this.

23. In STA257, you learned Chebyshev’s inequality, a corollary of which says that if E [X] = µ and
Var (X) = σ2, then P (|X − µ| ≥ λ) ≤ σ2/λ2 for any λ > 0. This is the most basic example of a
concentration inequality, so named because it essentially says that random variables with finite
moments tend to “concentrate” around their means — in this case, the probability that X is
at a distance at least x away from µ decays like 1/x2. It turns out that Chebyshev’s inequality
is often rather weak, and for sums of nice independent random variables, we can obtain much
stronger concentration.

(a) First show that Chebyshev’s inequality is tight (i.e., equality holds for some random variable
X and some λ > 0). The easiest example is discrete — try and construct X so that it gives
you what you need.

For example, take X such that P (X = 1) = P (X = −1) = 1/2. Then E [X] = 0 and
Var (X) = 1 so that

1 = P (|X| ≥ 1) = P (|X − E [X] | ≥ 1) ≤ Var (X)

12
= 1,

so Chebyshev’s inequality is tight here with λ = 1. You can do the same kind of trick (with
a slight modification) for any fixed λ > 0.

(b) Let Xi ∼ Bernoulli (pi) be independent for i = 1, . . . , n. Let X =
∑n

i=1Xi and µ =
∑n

i=1 pi.

i. Let MX(t) be the mgf of X. Use the fact that 1+x ≤ ex to show that MX(t) ≤ eµ(et−1).

Since the mgf of the Bernoulli (pi) distribution is MXi(t) = 1 + pi(e
t − 1), using inde-

pendence of the Xi’s and the provided bound, we have

MX(t) =
n∏
i=1

MXi(t) =
n∏
i=1

(
1 + pi(e

t − 1)
)
≤

n∏
i=1

epi(e
t−1) = eµ(et−1).

ii. Use Markov’s inequality and the inequality above to show that for any δ > 0 and any
t ∈ R \ {0},

P (X ≥ µ(1 + δ)) ≤

(
e(et−1)

et(1+δ)

)µ
.

Using Markov’s inequality and the bound above, we get

P (X ≥ µ(1 + δ)) = P
(
etX ≥ eµt(1+δ)

)
≤

E
[
etX
]

eµt(1+δ)
=

MX(t)

eµt(1+δ)
≤ eµ(et−1)

eµt(1+δ)
=

(
e(et−1)

et(1+δ)

)µ
.

iii. Minimize the right-hand side in t to show that

P (X ≥ (1 + δ)µ) ≤
(
eδ−(1+δ) log(1+δ)

)µ
.



Some differentiation gives

d

dt

(
e(et−1)

et(1+δ)

)µ
= µ · (et − 1− δ) ·

(
e(et−1)

et(1+δ)

)µ
and setting that equal to 0 gives t = log (δ + 1), which the second derivative test
confirms is a global minimum. Plugging this t into the right-hand side of the previous
bound and rearranging a bit gives us what we want.

iv. Prove that δ − (1 + δ)log (1 + δ) ≤ −δ2/3 for δ ∈ (0, 1) and conclude that

P (X ≥ (1 + δ)µ) ≤ e−δ2µ/3,

which is called a Chernoff bound. How does this compare to the kind of bound you’d
get with Chebyshev?
Hint : for the first inequality, look at how the derivative of f(x) = x−(1+x)log (1 + x)+
x2/3 behaves on (0, 1/2) and (1/2, 1).

We want to show that the function f(x) = x − (1 + x)log (1 + x) + x2/3 is nonpos-
itive for x ∈ (0, 1). Clearly f(0) = 0, so if we can show that f is decreasing on
(0, 1) then we’re good. The first two derivatives are f ′(x) = − log (1 + x) + 2x/3 and
f ′′(x) = −(1 + x)−1 + 2/3, and we note that f ′′(1/2) = 0 with f ′(0), f ′(1/2), f ′(1) ≤ 0.
So it’s enough to show that f ′ is monotone on (0, 1/2) and on (1/2, 1), and this is
easy to check using f ′′ (which shows that f ′ is decreasing on the former interval and
increasing on the latter).

The Chernoff bound then follows immediately from Question 23(b)iii. To compare with
Chebyshev, we’d normally have

P (X ≥ (1 + δ)µ) ≤ P (|X − µ| ≥ δµ)

≤ Var (X)

µ2δ2
By Chebyshev

=

∑n
i=1 pi(1− pi)
µ2δ2

Since the Xi are independent
and Var (Xi) = pi(1− pi)

≤ 1

µδ2
Since 1−pi ≤ 1 and µ =

∑
i pi

but with Chernoff we get P (X ≥ (1 + δ)µ) ≤ e−δ
2µ/3, which gives an exponentially

faster decay as n (and thus µ) grows. For a concrete example, take n = 100 with
pi = 1/2 for all i and δ = 0.8. Chebyshev gives the unremarkable P (X ≥ (1 + δ)µ) ≤
0.03125, while Chernoff gives the much more impressive P (X ≥ (1 + δ)µ) ≤ 0.0000233...

24. In STA257, you may have also learned that the distribution of a random variable X is charac-
terized by the random variable’s mgf MX(t), at least when the mfg exists (a necessary condition
is that MX(t) is finite when |t| is arbitrarily small). Does this mean that a distribution is
characterized by its integer moments? Unfortunately not. The following lognormal “family” is
probably the simplest counterexample:

(a) Let

f(x) =
1√
2πx

exp

(
− log (x)2

2

)
, x > 0,



and for any ε ∈ [−1, 1], let fε(x) = f(x) · (1 + ε · sin(2π log (x))). Show that both f(x) and
fε(x) are pdfs on (0,∞).

The first function is a special case of the second with ε = 0, so we can go straight for the
second. With the substitution u(x) = log (x), we get∫ ∞

0
fε(x) dx =

1√
2π

∫ ∞
0

1

x
e− log(x)2/2 dx+

ε√
2π

∫ ∞
0

1

x
e− log(x)2/2 sin(2π log (x)) dx

=
1√
2π

∫ ∞
−∞

e−u
2/2 du+

ε√
2π

∫ ∞
−∞

e−u
2/2 sin(2πu) du

= 1 +
ε√
2π

∫ ∞
−∞

e−u
2/2 sin(2πu) du,

so we just need to show that the remaining integral is 0, but that follows immediately
because the integrand e−u

2/2 sin(2πu) is an odd function.

(b) Let X ∼ f and Y ∼ fε. Show that E [Xn] = E [Y n] for all integers n ≥ 1.

We have

E [Xn] =
1√
2π

∫ ∞
0

xn · 1

x
e− log(x)2/2 dx =

1√
2π

∫ ∞
0

xn−1e− log(x)2/2 dx

and

E [Y n] = E [Xn] +
ε√
2π

∫ ∞
0

xn−1e− log(x)2/2 sin(2π log (x)) dx︸ ︷︷ ︸
=: In

,

so we want to show that the remaining integral is 0. Using the same substitution u(x) =
log (x) gives

In =

∫ ∞
0

xn−1e− log(x)2/2 sin(2π log (x)) dx =

∫ ∞
−∞

enu−u
2/2 sin(2πu) du.

The key now is to complete the square in the exponent. Doing so gives us

In = en
2/2

∫ ∞
−∞

e−(u−n)2/2 sin(2πu) du = en
2/2

∫ ∞
−∞

e−u
2/2 sin(2π(u+ n)) du.

Now n is an integer, so that sin(2π(u + n)) = sin(2πu) and we’re dealing with the same
odd integrand as in part (a), which gives In = 0.

(c) Show that MX(t) =∞ whenever t > 0.

Hint : the easiest way is probably to bound the integral from below by another integral that
you know diverges. Use properties of the exponential function.

Fix t > 0. The mgf satisfies

MX(t) =
1√
2π

∫ ∞
0

etx · 1

x
e− log(x)2/2 dx

=
1√
2π

∫ ∞
−∞

exp
(
teu − u2/2

)
du Substituting u(x) = log (x)

≥ 1√
2π

∫ ∞
0

exp
(
teu − u2/2

)
du

Since the exponential func-
tion is always positive

.



Now, the exponential function grows faster than any polynomial, so we’ll have eu > u2/2t
whenever u is sufficiently large (say whenever u > η, for some η > 0), which is the same as
teu − u2/2 > 0. Therefore

MX(t) ≥ 1√
2π

∫ ∞
η

exp
(
teu − u2/2

)
du ≥ 1√

2π

∫ ∞
η

e0 du =∞.

25. Show that a continuous random variable X is symmetric around 0 (see Question 1b) if and only
if X and −X have the same distribution. Generalize to random variables symmetric about an
arbitrary point x0.

Let fX and FX be the pdf and cdf of X, respectively.

(⇒) If X and −X have the same distribution, then their cdfs satisfy FX(x) = F−X(x), and the
term on the right is P (−X ≤ x) = P (X ≥ −x) = 1−FX(−x). Therefore FX(x) = 1−FX(−x),
and differentiating gives fX(x) = fX(−x) (i.e., X is symmetric around 0).

(⇐) If X is symmetric around 0, then fX(−x) = fX(x) and so

FX(x) =

∫ x

−∞
fX(t) dt =

∫ x

−∞
fX(−t) dt =

∫ ∞
−x

fX(u) du = 1− FX(−x),

while
F−X(x) = P (−X ≤ x) = P (X ≥ −x) = 1− FX(−x)

as well. Thus FX = F−X , so X and −X have the same distribution.

The generalization is that X is symmetric about x0 if and only if x0 +X and x0 −X have the
same distribution; the proof is essentially identical.

26. Is there a way to measure the “distance” between two probability distributions? One measure —
which is not actually a metric, but still shows up all over statistics owing to its deep theoretical
properties — is called the KL divergence. For distributions F and G supported on the same set
with respective pdfs/pmfs f and g, it’s defined like this:

DKL(F || G) = E
[

log

(
f(X)

g(X)

)]
, X ∼ F.

(a) Calculate the KL divergence between two Poisson distributions: DKL(Poisson (λ1) || Poisson (λ2)).

First of all, the log-ratio of the two pmfs is

log

(
f(X)

g(X)

)
= X · log

(
λ1

λ2

)
− (λ1 − λ2).

Therefore,

DKL(Poisson (λ1) || Poisson (λ2)) = E [X] · log

(
λ1

λ2

)
−(λ1−λ2) = λ1 · log

(
λ1

λ2

)
−(λ1−λ2),

where X ∼ Poisson (λ1).



(b) Calculate the KL divergence between two exponential distributions: DKL(Exp (λ1) || Exp (λ2)).

The log-ratio of the two pdfs is

log

(
f(X)

g(X)

)
= log

(
λ1

λ2

)
−X · (λ1 − λ2).

Therefore,

DKL(Exp (λ1) || Exp (λ2)) = log

(
λ1

λ2

)
− E [X] · (λ1 − λ2) = log

(
λ1

λ2

)
+
λ2

λ1
− 1.

where X ∼ Exp (λ1).

(c) Calculate the KL divergence between two normal distributions: DKL(N (µ1, σ
2
1) || N (µ2, σ

2
2)).

Hint : you can do this without any integration.

This time, the log-ratio of the two pdfs is

log

(
f(X)

g(X)

)
= log

(
σ2

σ1

)
− (X − µ1)2

2σ2
1

+
(X − µ2)2

2σ2
2

,

so we want the expectation of that when X ∼ N (µ1, σ
2
1), which is the same as

log

(
σ2

σ1

)
− 1

2σ2
1

E
[
(X − µ1)2

]
+

1

2σ2
2

E
[
(X − µ2)2

]
.

The first expectation is easy, because it’s just Var (X) = σ2
1. For the second one, add and

subtract µ1 inside the squared term to get

E
[
(X − µ2)2

]
= E

[
(X − µ1 + (µ1 − µ2))2

]
= E

[
(X − µ1)2

]
+ E [2(µ1 − µ2)(X − µ1)] + E

[
(µ1 − µ2)2

]
= σ2

1 + (µ1 − µ2)2.

Putting the pieces together gives

DKL(N (µ1, σ
2
1) || N (µ2, σ

2
2)) = log

(
σ2

σ1

)
+
σ2

1 + (µ1 − µ2)2

2σ2
2

− 1

2
.

27. Let X ∼ FX be a continuous random variable supported on [0, b), for some b > 0. Show that

E [Xn] = n

∫ b

0
xn−1 · (1− FX(x)) dx.

For an extra challenge, replace b with ∞ and show the same thing (assume that E [Xn] exists to
begin with). When n = 1 this result is called the Darth Vader rule, for some reason.

Let fX be the pdf of X. For the original version,

E [Xn] =

∫ b

0
xn · fX(x) dx

= xn · FX(x)
∣∣∣b
0
− n

∫ b

0
xn−1 · FX(x) dx

Using integration by parts
with u(x) = xn and dv =
fX(x) dx



= bn − n
∫ b

0
xn−1 · FX(x) dx Since FX(b) = 1

= n

∫ b

0
xn−1 dx− n

∫ b

0
xn−1 · FX(x) dx

= n

∫ b

0
xn−1 · (1− FX(x)) dx.

For the extra challenge, suppose now that X is supported on [0,∞). We can use our work above
to write

E [Xn] = lim
b→∞

(
bn · FX(b)− n

∫ b

0
xn−1 · FX(x) dx

)
= lim

b→∞

(
−bn · (1− FX(b)) + n

∫ b

0
xn−1 · (1− FX(x)) dx

)
= − lim

b→∞
bn · (1− FX(b)) + n

∫ ∞
0

xn−1 · (1− FX(x)) dx,

so the goal now is to argue that the first term is 0. First, for any b > 0 we can write

E [Xn] = E [Xn · 1X<b] + E [Xn · 1X≥b] ,

which by assumption is finite. Since the left-hand side is independent of b, the same equality
holds in the limit:

E [Xn] = lim
b→∞

(E [Xn · 1X<b] + E [Xn · 1X≥b]) = E [Xn] + lim
b→∞

E [Xn · 1X≥b] ,

which forces limb→∞ E [Xn · 1X>b] = 0. Now, observe that for b > 0,

0 ≤ bn · (1− FX(b)) = bn
∫ ∞
b

fX(x) dx ≤
∫ ∞
b

xn · fX(x) dx = E [Xn · 1X≥b]
b→∞−−−→ 0.

By the squeeze (sandwich?) theorem, we get that limb→∞ b
n · (1− FX(b)) = 0, as desired.

28. Let X = (X1, X2) ∼ N2(µ,Σ), where µ = (µ1, µ2) and Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
. Here µ1, µ2 ∈ R,

σ2
1, σ

2
2 > 0, and ρ ∈ (−1, 1). That is, X follows a bivariate normal distribution with mean µ and

covariance matrix Σ, which has joint pdf

fX(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)])
.

The goal here is to work out four things: i) the marginal distributions of X1 and X2, ii) the
conditional distributions of X2 | (X1 = x1) and X1 | (X2 = x2), iii) the distribution of aX1 +bX2

for a, b ∈ R, and iv) the quantities Cov(X1, X2) and Corr(X1, X2). Theoretically, all of these can
be found using integration and algebra alone, but that gets very tedious. Fortunately, there’s
an easier way.

(a) Let Z1 and Z2 be independent N (0, 1) random variables, and let Y1 = µ1 + σ1Z1 and

Y2 = µ2 + σ2

(
ρZ1 +

√
1− ρ2Z2

)
. Prove that (Y1, Y2)

d
= (X1, X2).



The pdf of (Z1, Z2) is, of course,

fZ(z1, z2) =
2∏
i=1

1√
2π
e−z

2
i /2 =

1

2π
e−

1
2

(z21+z22).

Let y1(z1, z2) = µ1 + σ1z1 and y2(z1, z2) = µ2 + σ2

(
ρz1 +

√
1− ρ2z2

)
. Then the function

(z1, z2) 7→ (y1(z1, z2), y2(z1, z2)) is a smooth bijection between R and R with inverse

(y1, y2) 7→ (z1(y1, y2), z2(y1, y2)) =

(
y1 − µ1

σ1
,

1√
1− ρ2

(
y2 − µ2

σ2
− ρ · y1 − µ1

σ1

))
,

whose Jacobian has determinant

det

(
d(z1, z2)

d(y1, y2)

)
=

∣∣∣∣∣∣∣∣

∂z1

∂y1

∂z1

∂y2

∂z2

∂y1

∂z2

∂y2


∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣


1

σ1
0

− ρ

σ1 ·
√

1− ρ2

1

σ2 ·
√

1− ρ2


∣∣∣∣∣∣∣∣ =

1

σ1σ2 ·
√

1− ρ2
,

so the joint pdf of (Y1, Y2) is

fZ

(
y1 − µ1

σ1
,

1√
1− ρ2

(
y2 − µ2

σ2
− ρ · y1 − µ1

σ1

))
·
∣∣∣∣det

(
d(z1, z2)

d(y1, y2)

)∣∣∣∣
=

1

2πσ1σ2

√
1− ρ2

exp

(
−1

2

[(
y1 − µ1

σ1

)2

+
1

1− ρ2

(
y2 − µ2

σ2
− ρ · y1 − µ1

σ1

)2
])

=
1

2πσ1σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[(
y1 − µ1

σ1

)2

+

(
y2 − µ2

σ2

)2

− 2ρ

(
y1 − µ1

σ1

)(
y2 − µ2

σ2

)])
= fX(y1, y2).

Since (Y1, Y2) and (X1, X2) have the same joint pdf, we’re done.

(b) Find the marginal distributions of X1 and X2, and then prove that X1 and X2 are inde-
pendent if and only if ρ = 0.3

We have
X1

d
= Y1

d
= µ1 + σ1Z1 ∼ N (µ1, σ

2
1)

and
X2

d
= Y2

d
= µ2 + σ2

(
ρZ1 +

√
1− ρ2Z2

)
∼ N (µ2, σ

2
2),

where we used the fact that Z1 and Z2 are independent (and hence aZ1+bZ2 ∼ N (0, a2+b2)
for a, b ∈ R, which is easily shown using mgfs, if you haven’t already seen it).

Now, X1 and X2 are independent if and only if their joint pdf factorizes into the product
of the marginal pdfs, and by our findings above this happens if and only if

1

2πσ1σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)])
3In other words: if a pair of normal random variables jointly follows a bivariate normal distribution, then the (normally

distributed) marginals are independent if and only if they’re uncorrelated. Unfortunately, students tend to forget about
the qualifier at the start of that statement, resulting in the extremely common and extremely incorrect misconception
that “two normal random variables are independent if and only if they’re uncorrelated.” Please never say this.



=

[
1√

2πσ1

exp

(
−1

2

(
x1 − µ1

σ1

)2
)]
·

[
1√

2πσ2

exp

(
−1

2

(
x2 − µ2

σ2

)2
)]

for all x1, x2 ∈ R, which (by inspection) happens if and only if ρ = 0.

(c) Find the conditional distributions of X2 | (X1 = x1) and X1 | (X2 = x2).

Hint : after finding the first one, argue how the second follows immediately by symmetry.

First of all, using the equivalent joint distribution above, this is the same thing the con-

ditional distribution of µ2 + σ2

(
ρZ1 +

√
1− ρ2Z2

)
given Z1 = (x1 − µ1)/σ1, which is the

distribution of

µ2 + σ2 ·
(
ρ
x1 − µ1

σ1
+
√

1− ρ2Z2

)
=

(
µ2 + ρ

σ2

σ1
(x1 − µ1)

)
+
√

1− ρ2σ1Z2

which, using the fact that a+ bZ1 ∼ N (a, b2) for a, b ∈ R, is

N
(
µ2 + ρσ2

x1 − µ1

σ1
, (1− ρ2)σ2

2

)
.

Since fX(x1, x2) is symmetric in (x1 − µ1)/σ1 and (x2 − µ2)/σ2, all we need to do to get
the distribution of X1 | (X2 = x2) is swap µ1 with µ2 and σ1 with σ2 above, which gives us

X1 | (X2 = x2) ∼ N
(
µ1 + ρσ1

x2 − µ2

σ2
, (1− ρ2)σ2

1

)
.

(d) Let a, b ∈ R. Find the distribution of aX1 + bX2.

Again, using the equivalent joint distribution above, this is the same thing as

a (µ1 + σ1Z1)+b
(
µ2 + σ2

(
ρZ1 +

√
1− ρ2Z2

))
= (aµ1 + bµ2)+(aσ1+bσ2ρ)Z1+b

√
1− ρ2σ2Z2,

which gives
aX1 + bX2 ∼ N

(
aµ1 + bµ2, a

2σ2
1 + 2abρσ1σ2 + b2σ2

2

)
.

(e) Find Cov(X1, X2) and Corr(X1, X2).

The first one is

Cov(X1, X2) = Cov
(
µ1 + σ1Z1, µ2 + σ2

(
ρZ1 +

√
1− ρ2Z2

))
= Cov

(
σ1Z1, σ2ρZ1 +

√
1− ρ2σ2Z2

)
= Cov (σ1Z1, σ2ρZ1) + Cov

(
σ1Z1,

√
1− ρ2σ2Z2

)
= Cov (σ1Z1, σ2ρZ1)

= ρσ1σ2Var (Z1)

= ρσ1σ2

and the second is

Corr(X1, X2) =
Cov(X1, X2)√

Var (X1) ·Var (X2)
=

ρσ1σ2√
σ2

1σ
2
2

= ρ.



?29. Let X ∼ N (µ, σ2) and let f(x,A) = P(X ≥ x | X ∈ A), where A ⊆ R is some set. Letting
Z ∼ N (0, 1) and using the standard normal cdf Φ(·) if need be, compute the following:

(a) f(µ, (−∞, µ])

This is

P (X ≥ µ | X ≤ µ) =

= 0︷ ︸︸ ︷
P (X = µ)

P (X ≤ µ)
= 0.

(b) f(µ,R)

This is

P (X ≥ µ | X ∈ R) =
P (X ≥ µ)

P (X ∈ R)︸ ︷︷ ︸
= 1

= P
(
X − µ
σ

≥ 0

)
= P (Z ≥ 0) =

1

2
.

(c) f(−µ, [−µ,∞))

This is

P (X ≥ −µ | X ≥ −µ) =
P (X ≥ −µ)

P (X ≥ −µ)
= 1.

(d) f(µ,R \ (−µ, µ))

This is

P (X ≥ µ | X ≤ −µ ∨ X ≥ µ) =
P (X ≥ µ)

P (X ≤ −µ) + P (X ≥ µ)
=

1/2

Φ(−2µ/σ) + 1/2

because P (X ≥ µ) = 1/2 and P (X ≤ −µ) = P ((X − µ)/σ ≤ −2µ/σ) = Φ(−2µ/σ).

(e) f(µ+ kσ, [µ+ jσ,∞)), where k, j ∈ N

This is

P (X ≥ µ+ kσ | X ≥ µ+ jσ) =
P (X ≥ max{µ+ kσ, µ+ jσ})

P (X ≥ µ+ jσ)
=

P (Z ≥ max{k, j})
P (Z ≥ j)

=
1− Φ(max{k, j})

1− Φ(j)
.

(f) f(Y,R), where Y ∼ N (µ, σ2) is independent of X

Since X and Y are independent, X − Y ∼ N (0, 2σ2), so4

P (X ≥ Y | X ∈ R) = P (X − Y ≥ 0) = P (Z ≥ 0) =
1

2
.

4Actually, P (X ≥ Y ) = 1/2 for any continuous, independent, and identically distributed random variables X and Y .
To see this, observe that we must have 1 = P (X > Y ) + P (X ≤ Y ) = P (X ≥ Y ) + P (X ≤ Y ), and since (X,Y ) and
(Y,X) clearly have the same joint distributions, those two probabilities on the right must be equal. Intuitively, either
X exceeds Y or Y exceeds X, and since X and Y independent and follow the same distribution, neither one of those
events should have a higher/lower probability than the other.



(g) f(Y +
√

3σ,R), where (X,Y ) ∼ N2(µ,Σ) with µ = (µ, µ) and Σ =

[
σ2 −σ2/2
−σ2/2 σ2

]
From Question 28d, we see that X − Y ∼ N (0, 3σ2), which gives

P
(
X ≥ Y +

√
3σ | X ∈ R

)
= P

(
X − Y ≥

√
3σ
)

= P (Z ≥ 1) = 1− Φ(1).

(h) E [f(µ, (−∞, Y ])], where Y ∼ N (µ, σ2) is independent of X

Conditioning on Y , the random variable inside the expectation is

P (X ≥ µ | X ≤ Y ) =
P (µ ≤ X ≤ Y )

P (X ≤ Y )
· 1µ≤Y

=
P (0 ≤ Z ≤ (Y − µ)/σ)

P (Z ≤ (Y − µ)/σ)
· 10≤(Y−µ)/σ

=
Φ((Y − µ)/σ)− Φ(0)

Φ((Y − µ)/σ)
· 10≤(Y−µ)/σ

d
=

(
1− Φ(0)

Φ(Z)

)
· 10≤Z

= 10≤Z −
Φ(0)

Φ(Z)
· 10≤Z

The expectation of that is

P (0 ≤ Z)− E
[

Φ(0)

Φ(Z)
· 10≤Z

]
= 1− Φ(0)− Φ(0) ·

∫ ∞
0

1

Φ(z)
· e
−z2/2
√

2π
dz.

Making the substitution u(z) = Φ(z) with du = e−z
2/2/
√

2π dz turns the integral into∫ Φ(∞)

Φ(0)

1

u
du = log (u)

∣∣∣1
1/2

= log (2) ,

so in the end, the expectation is

1− 1

2
− 1

2
log (2) =

1− log (2)

2
.

30. Fix q > 0. Find a continuous random variable X and a discrete random variable Y such that
E [Xq] = E [Y q] =∞, but E [Xp] ,E [Y p] <∞ for all 0 ≤ p < q.

There are many ways to do this; I find that the easiest is to start with an integral/sum that we
know to converge or diverge based on a certain parameter, and then tweak the integrand/sum-
mand so that it looks like a familiar pdf/pmf times some function. In the continuous case, for
example, it’s easy to show (using integration by parts) that∫ ∞

0
x−α · e−x dx

{
=∞ if α ≥ 1

<∞ if α < 1

which means that if p < q, then∫ ∞
0

(
x−(1/q)

)q
· e−x dx =∞ but

∫ ∞
0

(
x−(1/q)

)p
· e−x dx <∞.



So taking X = V −1/q where V ∼ Exp (1) does the trick.

For the discrete version, we can apply the same idea to a p-series, since we know

∞∑
n=1

1

nα

{
=∞ if α ≤ 1

<∞ if α > 1
.

So, for example, let W be such that P (W = n) ∝ 1/n2 for n = 1, 2, . . . and take Y = W 1/q.

31. Let X be a random variable with a finite second moment. Prove Cantelli’s inequality : for any
λ > 0, we have

P(X − E [X] ≥ λ) ≤ Var (X)

Var (X) + λ2
.

Hint : Upper bound the left-hand side by P
(
(X − E [X] + x)2 ≥ (λ+ x)2

)
for any x ∈ R. Then

apply Markov’s inequality and optimize over x.

Following the hint, we see that for any x ∈ R,

P (X − E [X] ≥ λ) = P (X − E [X] + x ≥ λ+ x)

≤ P
(
(X − E [X] + x)2 ≥ (λ+ x)2

)
≤

E
[
(X − E [X] + x)2

]
(λ+ x)2

By Markov’s inequality

=
Var (X) + x2

(λ+ x)2

After expanding the square as
(X−E [X])2+2x(X−E [X])+x2

and taking expectations
.

Now, the derivative of the last term with respect to x is

d

dx

(
Var (X) + x2

(λ+ x)2

)
=

2x(λ+ x)− 2(Var (X) + x2)

(λ+ x)3

and setting this to 0 gives x = Var (X) /λ, which the second derivative test confirms is a mini-
mum. Plugging this into our upper bound gives us what we’re looking for.

?32. The Cauchy-Schwarz inequality is one of the most ubiquitous inequalities in math; there’s a
good chance you’ve seen it before in one setting or another. Here’s a version that we’ll need in
our course, which is often called the covariance inequality : for any random variables X,Y with
finite second moments,

|Cov (X,Y ) | ≤
√

Var (X) ·Var (Y ), (1)

where equality holds if and only if X is a certain linear function of Y (with probability 1).
Let’s prove it! To be proper, we’ll declare right here that all statements about X and Y in this
question implicitly hold with probability 1.5

(a) Prove the result when either Var (X) = 0 or Var (Y ) = 0. With that taken care of, assume
going forward (without loss of generality) that Var (Y ) > 0.

Suppose that Var (X) = 0. Obviously the right-hand side of (1) is 0, so we want to show
that the left-hand side is also 0. But if Var (X) = 0, then X is constant;6 say X = x for
some x ∈ R. Therefore

|Cov (X,Y )| = |E [XY ]− E [X] · E [Y ]| = |x · E [Y ]− x · E [Y ]| = 0.

5In other words, if we say something like X = Y , we really mean that P (X = Y ) = 1. It’s okay to ignore this
technicality here because this question is about expectations, and expectations don’t care about events of probability 0.

6If you haven’t seen this in STA257, here’s one way to show it: since 0 = Var (X) = E
[
(X − E [X])2

]
and the thing

inside the expectation is always non-negative, we must have (X −E [X])2 = 0, which is the same as X = E [X]. In other
words, X must be equal to its own expectation.



(b) Show that the function f(t) = E
[
(X − tY )2

]
is quadratic in t, and explain why it must

have at most one real root.

Expand the square to get

f(t) = E
[
X2
]
− 2t · E [XY ] + t2 · E

[
Y 2
]
,

which is indeed a quadratic function of t. Furthermore, it’s non-negative because it’s the
expectation of the non-negative thing (X − tY )2. A non-negative quadratic function looks
like a convex (or “concave up”) parabola that never dips below the x-axis. If the parabola
just touches the x-axis, then it has exactly one real root; otherwise, it has none at all.

(c) Think back to the quadratic formula and use the last fact to obtain

|E [XY ] | ≤
√

E [X2] · E [Y 2]. (2)

The quadratic formula says that the roots of the quadratic at2 + bt+ c are given by

t± =
−b±

√
b2 − 4ac

2a
,

and whether the t± are real or complex depends solely on the discriminant b2 − 4ac. If the
quadratic has at most one real root, then exactly one of two things are true: either it has
no real roots (in which case b2 − 4ac < 0), or it has a real root with multiplicity 2 (i.e., a
double root, in which case b2 − 4ac = 0). So the statement “at2 + bt + c has at most one
real root” is the same thing as “b2 − 4ac ≤ 0”. Substituting a = E

[
Y 2
]
, b = −2E [XY ],

and c = E
[
X2
]

means that 4E [XY ]2 − 4E
[
X2
]
E
[
Y 2
]
≤ 0, which is equivalent to (2).

(d) Show that equality in (2) holds if and only if X = t∗Y , where t∗ = E [XY ] /E
[
Y 2
]
.

(⇒) If X = t∗Y , then

|E [XY ]| =
∣∣t∗ · E [Y 2

]∣∣ = |t∗|
√
E [Y 2] · E [Y 2] =

√
E [X2] · E [Y 2],

so equality holds in (2).

(⇐) In the derivation of (2), we saw that equality holds when the quadratic f(t) has a
double root which, by the quadratic formula above, is given by

t∗ = − b

2a
=

E [XY ]

E [Y 2]
.

Then 0 = f(t∗) = E
[
(X − t∗Y )2

]
, which gives us X = t∗Y .

(e) Obtain (1) by replacing X and Y in (2) with X−E [X] and Y −E [Y ], respectively. Exactly
when does equality hold?

(1) falls out immediately after performing the replacement. From (d), we know that equality
holds if and only if X − E [X] = t∗(Y − E [Y ]), where

t∗ =
E [(X − E [X])(Y − E [Y ])]

E [(Y − E [Y ])2]
=

Cov (X,Y )

Var (Y )
.



Equivalently, equality holds in (1) if and only if

X = t∗Y + s∗,

where

s∗ = E [X]− E [Y ] · Cov (X,Y )

Var (Y )
.

33. Prove the Paley-Zygmund inequality : if X is a non-negative random variable with a finite second
moment, then for any λ ∈ [0, 1],

P(X > λ · E [X]) ≥ (1− λ)2 · E [X]2

E [X2]
.

Hint : start by writing X = X · 1X≤λ·E[X] + X · 1X>λ·E[X], take expectations, and use (2)
somewhere.

Following the hint, we have

E [X] = E
[
X · 1X≤λ·E[X]

]
+ E

[
X · 1X>λ·E[X]

]
.

Inside the first expectation on the right, we have that X · 1X≤λ·E[X] ≤ λ ·E [X] (because if X >
λ · E [X] then the indicator function is 0), so by taking expectations we get E

[
X · 1X≤λ·E[X]

]
≤

E [λ · E [X]] = λ · E [X]. On the other hand, applying (2) to the second expectation gives

E
[
X · 1X>λ·E[X]

]
≤
√

E [X2] · E
[
1

2
X>λ·E[X]

]
=
√
E [X2] · E

[
1X>λ·E[X]

]
=
√
E [X2] · P (X > λ · E [X]).

Therefore,
E [X] ≤ λ · E [X] +

√
E [X2] · P (X > λ · E [X]).

Equivalently,
(1− λ) · E [X] ≤

√
E [X2] · P (X > λ · E [X]).

Squaring and rearranging gives us what we want.

34. Let X be a random variable taking values in the non-negative integers (assume this for all
random variables in this question) whose moments exist. The probability generating function
(pgf) of X is the function GX(t) = E

[
tX
]

=
∑∞

j=0 P(X = j) · tj .

(a) Show that E [X] = G′X(1) and Var (X) = G′′X(1) +G′X(1)− [G′X(1)]2

We have

G′X(t) =
∞∑
j=0

j · P(X = j) · tj−1 so that G′X(1) =
∞∑
j=0

j · P(X = j) = E [X]

and

G′′X(t) =
∞∑
j=0

j · (j − 1) · P(X = j) · tj−2 =

∞∑
j=0

j2 · P(X = j) · tj−2 −
∞∑
j=0

j · P(X = j) · tj−2



so that

G′′X(1) =
∞∑
j=0

j2 · P(X = j)−
∞∑
j=0

j · P(X = j) = E
[
X2
]
− E [X]

and
Var (X) = E

[
X2
]
− E [X]2 = G′′X(1) + +G′X(1)− [G′X(1)]2.

(b) If X1, X2, . . . is a sequence of independent and identically distributed random variables with
pgf GX(t), and N is another random variable independent of the Xi’s with pgf GN (t), show
that the pgf of Y =

∑N
j=1Xj is GN (GX(t)).

We have

GY (t) = E
[
t
∑N
j=1Xj

]
=
∞∑
n=0

E
[
t
∑n
j=1Xj

]
· P (N = n)

By the law of total ex-
pectation (i.e., the “tower
rule”)

=

∞∑
n=0

E
[
tX1
]n · P (N = n)

Since the Xi are indepen-
dent and identically dis-
tributed

=

∞∑
n=0

GX(t)n · P (N = n)

= GN (GX(t)).

(c) Find the pgfs of the Binomial(k, p), the Poisson(λ), and the Geometric(p) distributions.
If there are infinite series involved, assume whatever values of t you need to make them
converge.

For X ∼ Binomial(k, p):

GX(t) =

k∑
j=0

P (X = j) · tj Since X can only take val-
ues in {0, . . . , k}

=

k∑
j=0

(
k

j

)
· pj · (1− p)k−j · tj

=

k∑
j=0

(
k

j

)
· (tp)j · (1− p)k−j

= (tp+ (1− p))k. By the binomial theorem

For Y ∼ Poisson (λ):

GY (t) =

∞∑
j=0

P (Y = j) · tj =

∞∑
j=0

λj · e−λ

j!
· tj =

∞∑
j=0

(tλ)j · e−λ

j!
= eλ·(t−1).

For Z ∼ Geometric(p), using the version of the distribution supported on {1, 2, . . .}:

GZ(t) =
∞∑
j=0

P (Z = j) · tj Since Z cannot take on the
value 0



=
∞∑
j=1

(1− p)j−1p · tj

= tp
∞∑
k=0

(t(1− p))k Substituting k = j − 1

=
tp

1− t(1− p)
.

Summing the geometric se-
ries, provided the series
converges (i.e., when |t| <
1/(1− p))


