STA261 (SUMMER 2024) - ASSIGNMENT 0

SOLUTIONS

These problems are meant to refresh/flex your STA257 skills (and your calculus skills). They are
not to be handed in. Problems marked with stars (*) are results that will be used later in our course.

1. (a) Let X ~ N (0,0?). Show that E [X?**!] =0 for any k € N.

Since the integrand of E [X 2’”1] is odd, the result follows immediately. To spell out the
details a bit,
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into the first integral and

) Substituting in u(x) = —x
rearranging

(b) Go a bit further and show that this is true for any continuous distribution which is sym-
metric about zero (i.e., its pdf satisfies fx(x) = fx(—z) for any x € R), provided all of its
moments are finite of course. In other words, if a distribution is symmetric about zero, then
all of its odd moments must vanish. Can you generalize this result to distributions sym-
metric about an arbitrary point xq (i.e., those whose pdf satisfies fx(xo+ ) = fx(xo— )
for any =z € R)?

Precisely the same reasoning as above applies, just with e—e*/20% /v/27mo replaced by the
more general pdf fx(z). The generalization is simply E [(X — 20)?**!] = 0, because
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) dv + / TR fx(xo+u)du into the first integral and
0 rearranging



= —/ P2t f)((&“o +ov)dv + / w2kt fx(xo+u)du Since f(zo—v) = f(zo+v)
0 0
=0.

2. For any two (possibly dependent) random variables with finite second moments, show that

Var (X +Y) 4 Var (X —Y) = 2(Var (X) + Var (Y)).

This falls out from applying the identity
Var (aX 4 bY) = a® - Var (X) +b? - Var (Y) + 2ab - Cov (X,Y)

twice.

3. Let X ~ Poisson (\) and let h : N — R be any function such that E [h(X)] is finite. Prove that
EMNR(X)]=E[X- -h(X -1)].

We have that

N oeA .
E[A-h(X)] =Y ———X-h(j)
>0 F
PY AR .
= — h(j)
PR
Y
— Z )‘76' “h(k—1) Substituting k = j + 1
= (k—1)!
)\k X 67)\
= Z k- h(k‘ — 1)
|
= k!
. Z e e k. h(k‘ o 1) Since the summand is 0
- — k! when k=0
—E[X  h(X —1)].

4. Let X ~ N(,u, 02) and let ¢ : R — R be any differentiable function that’s nice enough to
satisfy E [|g'(X)[] < oo and lim_,o g(7) - e~(@=m?/20* — (. Prove that E [¢(X) - (X — p)] = o2
E[g'(X)]. This is called Stein’s lemma (in fact the condition that lim|,|_,o g(:z:)-e_(gc_“)Q/z("2 =0
is unnecessary, but proving that is a lot harder).

Using integration by parts with u(z) = e~ (@=m?/20% and dv = ¢ (z) dz, we get
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*5.

and the condition lim|;|_, g(z) - e~ (@=1?*/20% — ( ghows that the term on the left is 0.

For any set of univariate random variables X1, Xs, ..., X, the order statistics are the X;’s placed
in ascending order, which are notated as X (1) < X9y < -+ < X(;,). Thus the sample minimum
Xy =min{Xy,..., Xy} and the sample marimum X,y = max{Xy,..., Xn}.

In STA257, you may have learned that if Xy, Xo,..., X,, are an independent sample from a
continuous distribution with pdf fx and cdf Fix, then fx, (z) =n- fx(z)- (1 - Fx(z))" ! and
fxi (@) =n- fx(z)- Fx(x)"!. Let’s generalize those formulas by finding the pdf of X;y, for
any 1 < j < n.

(a) Let h > 0 be nice and small. Explain why

P (X(j) € [, + )
= P (One of the X;’s is in [z,z + h] and exactly j — 1 of the others are < z).

Because the X;’s are continuous, when A is small enough there’s at most one of them in the
interval [z, + h], and it’s the j’th largest of the X;’s if and only if there are j — 1 other
X,’s that are smaller than x.

(b) Show that the probability on the right is equal to

n-P(X; € [z,x+ h])-P(exactly j — 1 of X9, X3,...,X,, are < x).

Let A; be the event “X; € [x,z + h] and j — 1 of the others are < 2”. Then

]P)(AZ) = P((X,L S [$,$+h]) N (exactlyj —1of Xq,... s Xio1, Xit1, ..., Xp are < $>)
=P (X; € [z,x+ h])-P(exactly j — 1 of Xq,...,X;—1, Xiy1,...,X, are < x)

since X; is independent of Xi,..., X; 1, X;41,...,X,. Moreover, we certainly have that
(X1,..., Xi—1, Xi41,. .., X,) has the same joint distribution as (Xs, X3,...,X,) because
the X;’s are independent and identically distributed, which gives

P(A4;) =P(X; € [x,x + h]) - P(exactly j — 1 of Xo, X3,...,X,, are < z),
and so

P (One of the X;’s is in [z, 2 + h] and exactly j — 1 of the others are < z)

(U

_ Zn:]P<Ai) Because the A;’s are dis-
=1

joint

=n-P(X; € [z,x+h]) P(exactly j — 1 of Xo, X3,...,X,, are < x)

(¢) Think binomially and show that

n—1

P (exactly j — 1 of X9, X3,...,X,, are < z) = < 1
j—

) Pyt (L= By



Let B; = 1x,<5. Then By,..., B, are independent Bernoulli random variables, each with
probability of success P (X; < z) = Fx(z). Then

n
exactly 7 — 1 of X9, X3,..., X, are <z <— ZBi =j5—-1
=2
Since Y"1, B; ~ Bin (n — 1, Fx(z)), the probability we want is exactly the probability that
a Bin (n — 1, F(x)) random variable equals j — 1, which is (?:11) Fx(x)I=1-(1— Fx(z))" .

(d) Put the pieces together, divide both sides by h, and take the limit as h — 0 to get

Fx (@) =

n!
(=Dt (n =)

fx(@) - Fx(a) ™t (1 - Fx(2)" ™.

The work we’ve done above gives
1 . .
P (X € [z,z+h]) =n-P(X) € [z,2+h]) - <n > CFx(x)’71 (1= Fx(2))"™

=P(X; € [z,z+h])- cFx(z)Y™' (1= Fx(x)" 7.

(7 =Dl = 5)!
Writing the probabilities as differences of cdfs (i.e., P(X € [x,x + h]) = Fx(x+h) — Fx(x)
and so on) and dividing through by h gives

Fx (@ + h})l — Fx; (@) _ Pt hfi —Fx(@), = 1)7(!71 — ) Fx(z) ' (1=Fx(z))" 7.

Taking the limit on both sides as h — 0 gives us exactly what we want.

*6. Let X1, Xo,..., X, beindependent Unif (0, 1) random variables. Show X ;) ~ Beta (j,n — j + 1),
and use that fact to find E [X(j)] and Var (X(j)).

Since the cdf of the Unif (0, 1) distribution is just Fx(z) = x and the pdf is just fx(x) =1 for
x € (0,1), plugging these into the result above gives

n! _ _ I(n+1)
, = I (1) =
Po® =G ™ T TG T+
which is exactly the Beta (j,n — j + 1) pdf. Recalling that

) - 1

-:Ej_l-(l—a:)”_j, x € (0,1),

we get that
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E X =+ T =) e = ’ — ,
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Similarly, the second moment is
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E[Xé')]: Bn—j+1)  (n+1) (n+2)’

and so
_— , e
Var (X() =E |X3)| ~E[x()]* = (n—]i- 1()].—(Fn—)k2) - (ni 02~ ({Z+(1)2 -](n++)2)'




7. What’s the probability that an unbiased coin lands on heads 500 times in 1000 flips, rounded
to five decimal places? You know that the exact answer is (1000)0.51000, but good luck trying

500

to evaluate that on a calculator — you’ll either end up with numerical underflow or overflow.
You might think to calculate the log of that and then exponentiate it after — that will definitely
help with the 0.51%9 part, but you’ll still have to deal with log (1000!) — 2log (500!), and you
just can’t evaluate either of those factorials directly. You may have heard of Stirling’s formula,
which gives an approximation of the factorial function. With a bit of hand-waving, we’ll derive
a simple version of it here.

(a)

Let X1, Xs,...,X, be independent Exp (\) random variables. Using mgfs (or anything
else), show that > | X; ~ Gamma (n, \). This is sometimes called an Erlang distribution.

The mfg of the Exp (\) distribution is Mx (t) = A\/(A —t) for t < A, so the mgf of ' | X;

1S
)\’I’L t —n
Mswn x ()=~ =(1-<
) = 3 < A)

for the same range of ¢, which is indeed the mgf of the Gamma (n, \) distribution.

Set A =1 and fix z € R. Explain why we can write

d_(X,—-1
—P| —F< =
dz ( /v = x) #e)
when n is large, where ¢(z) = (v/2m)~1/2 . e7*"/2 is the standard normal pdf.

By the central limit theorem,
- = - [ Z] —>d N(O, 1)

VR Nar(Xo) /n

so when n is large, the term on the left is approximately A/ (0, 1)-distributed. Thus

and the result follows upon differentiation (this is the hand-waving part, since we'’re not
being very precise about what the “~” means).

Carry out the differentiation on the left-hand side, via a u-substitution and the fundamental
theorem of calculus.

We have

d Xn —1 d -

P < =—P X; <

o ( 1/\/5 < .ZL'> dz (; S \/ﬁx—i-n)
_4d / L et gy Gommam G
- dx 0 ['(n) Gamma (7,1)
B \(/Z) ' % / (Vnu+n)""eV™ T At Letting u(t) = (t — n)/vn

0

B

T T(n) (vnz + n)"~Lem(Vretn) g By the FTC
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(d) Set x =0 on both sides and rearrange a bit to get
nl ~ V21 n"e e ",
which is Stirling’s formula.

Combining 7b and 7c gives

1
vn (Vnz 4 n)" e Wt g — e 72,

I'(n) 2

3

Putting z = 0 gives
\/ﬁ _n—1_—(v/nz+n) dt 1

T(n) Vo7

and rearranging a bit gives us Stirling’s formula.

(e) Approximate (to five decimal places) the probability that an unbiased coin lands on heads
500 times in 1000 flips. I get 0.02523...

The probability is

<1000) 051000 _ 10000 00

500 5002
/97 - 10001000.5 . ,—1000 1000 Applying Stirling’s formula
=~ 5" .5 in the numerator and de-
(\/ 27 - 5005005 . 67500) nominator
1
= =00 After a bit of simplification
\V T
~ 0.02523...,

which is, in fact, correct to four decimal places.

8. Let £ > 1 be an integer and let A > 0. Let X ~ Gamma (k,\) (this is the Erlang distribution
from Question 7a). Using mathematical induction,' show that the cdf X can be written as

N

e (Ax)

P(X<z)=1- 7

.
Il
)

It’s equivalent (but a bit less cumbersome) to show

AF /OO k=1 Xt e (Az)’
L e M=y
U(k) Ja z_% j!
V ]_
=1-P(X <x)
so let’s do that. When k = 1, we get

A /OO A1 X gy — AT § e M- (Ax)
s 2

f you don’t know what this is, just follow these steps: first prove the result holds for the base case k = 1. Then
assume the result holds for any k € N; and show that this implies the result must also hold for k£ 4 1. The principle of
mathematical induction says that if you've done that, then you’ve proven the result holds for all k£ € N.



which proves the base case. Now, assume the result holds for fixed k£ € N. Then

)\k‘-f—l /oo t(k+1)71 ' ef)\t "
I'k+1) /.
Aot th.e= Mo | [ Using integration by parts
= [— + / o=l =N dt:| with u(t) = t* and dv =
T(k+1) PN PR s
_ k—1 _ ;
_ AR _tk o + ﬁ . F(k) e ()‘w)j By the induction hypothe-
T(k+1) NP T sis
~ (Ax)keme N e, (Ax)?
!
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B i e M . (\x)
= ' ,
= 7

so the result also holds for k 4+ 1. By the principle of mathematical induction, the result is true
for all £k € N.

. Let Uy, Us, ..., Uy, V be independent Unif (0, 1) random variables, where n > 2. Find the pdf of
Z =T u)"

Hint: start by finding the distribution of —log (Z). This might be the toughest (or at least the
longest) question of the batch. For an easier version, try to solve it for the n = 2 case.

To find P (Z < z) for x € (0, 1), first let y = —log (z). Then

n

P(Z<z)=P (v Y log (Uh) < —y> =P (v : Z(—log(Ul-)) > y) :

i=1

Let’s find the distribution of Y | (—log(U;)). We see that —log(U;) ~ Exp (1) because
P(—log(U;) <u) = P(U;>e ™) =1—e" s0o Yy . (—log(U;)) is a sum of n independent
Exp (1) random variables, which gives """ ;(—log (U;)) ~ Gamma(n,1) by Question 7a. So
we can write P(Z <z) =1-P (V-G <y), where V ~ Unif (0,1) and G ~ Gamma(n, 1) are
independent. Now, using the law of total probability,

P(V-G<y)

:/OOO]P(V-G<y|G=g)-fG(9)dg

y ,n—1 e 9 3] . N .
:/ g dg + Y / gniz e 9dg Since V Unif (0,1), so
0 (n) Y

r ['(n) P(V <a)=alo<aci+1-1a>1
y n—1__,—g -1 o . n—=2,,—g
Y L P U / I 4
o T(n) I(n) J, T-1)
=P(G<y) + yl-(1—P(H§y)) Where H ~ Gamma(n — 1, 1)
n J—
Therefore,

P(Z<2)=1-P(G<y)— 2L - (1-P(H<y)).



To get the pdf, we can use the chain rule and the result from Question 8:

)= - (1-p@ i) - s a-Pur )

dz dy —
_dy 1-P(H<y) y
— 2 (et - | )
_ 1 1-P(H <y) y
=5 (o + LY - )
:% yn—l,e—er 1 .ge—y yji y .yn 2.7y
ey I'(n) n—1 = J! n—1 I'(n—-1)
— n—2 n—
oyt .Zyj 1y
I'(n) n-1 = j! n—1 T'(n-1)
n—2
1 y/
:n—lzﬁ
=0
1 S (-1 - log (@)
_ 3 ’
n 1j:0 J

which is good enough.?

10. Let Uy, Us, ... be independent Unif (0, 1) random variables. Let M be a random variable inde-
pendent of the U;’s, with distribution

P(M=m)=—, m=123,...
m.

for some ¢ € R. Find the value of ¢, and then find the pdf of X = min{U;,Us,...,Up}. That’s
the minimum of a random number of U;’s, so you’ll have to do some kind of conditioning.

First of all, we need
(o]

Zi‘ cle —1),

m=

which gives ¢ = 1/(e — 1). Now, by the law of total probability, for x € (0,1) the cdf of X is

M8

P(X <z)= P (min{U;,Us, ..., Uy} <z | M =m) -P(M =m)

3
1§

M

P (min{U;,Us, ..., Up} <z)-P(M =m)

m=1
1 il—(l—x)m
Ce—1 m)!
m=1
o0
1—1—:6
_6_12
m=0
_e—e -
e —1"

2 Apparently the n = 2 case, which you can see gives (U1 - U2)¥ ~ Unif(0,1), has been known to be given as an
interview question by some hedge funds. So now you'’re ready to be a quant!



and the pdf of X is the derivative of that, which is e! =% /(e — 1).

11. Suppose you repeatedly draw independent Unif (0, 1) random variables and add them together.
What’s the expected number of draws you need for the sum to exceed 17 Let’s answer that.

(a)

Let Uy,Us,...,U, be independent Unif (0,1) random variables, and let S, = > ., U;.
Using mathematical induction, prove that P (Sy < t) = t*/k! for t € (0, 1).

When k = 1, we have that P(S; < t) = P(U; <t) =t =t!/1!, which proves the base case.
Now, assume the result holds for fixed & € N. Then, by the law of total probability,

P(Sk+1 <) =P (Sk <t — Uky1)

1
—/ P(Skgt—u\Uk+1:u)-]lt_u>0du
0

t . . .
_ / P (Sk <t_ u) du ?Jlnce Sk is independent of
0 k+1
bt —u)k _ : A
= X du By the induction hypothesis
O .
tk:—‘rl
(k1)

so the result also holds for k£ + 1. By the principle of mathematical induction, the result is
true for all k € N.

Let N = min{k: S; > 1}. Argue that P(N =n) =P (S,-1 <1) =P (S, <1).
N = n happens if and only if both S, > 1 and 5,1 < 1 happen simultaneously. In other

words, {N =n} = {S, > 1} n{S,—1 < 1} = {85, < 1}*Nn{S,-1 < 1}. The result now
follows from the basic property P (B) =P (A) + P (B N A¢) whenever A C B.

Use that to evaluate E [IV]. Think about where your summation starts!

Because S; = U definitely can’t exceed 1, we have P (N = 1) = 0. Therefore,

= Z — Substituting j =n — 2

So we “expect” to draw exactly e independent standard uniform random variables before
their sum exceeds 1 (!).

12. If X = (X1, X2, X3, X4) is jointly distributed according to

3 .
fx($1,$2,1‘3,$4) = Z(.ﬁ%—i-x%—F.%’%-i—l‘i), 0<a; <1, 1=1,2,3,4,



13.

find P (X; < VX5 < X3 </X4) and E [VX7 - X3].

The probability is just

Lopvr s oy 81,392
P (X1 < VX< X3 <y X4> = / / / / Ix(x1, @2, 23, 24) dz drg dzg drg = =
o o So o 765,765

while the expectation is

67

1 1 1 1
E [\/Xl . Xg} = / / \/a - T3 / / fx(.%'l,.%'g,.%'g,x4) d.%'g d1'4 dl‘l d.%'3 = —.
0 0 0 0 168

Let B and C' be independent Unif (0, 1) random variables. Find the probability that the random
quadratic #? + Bx + C has a real root. For a harder version, let A ~ Unif (0,1) be independent
of B and C and find the probability that Az? + Bz + C has a real root.

From the quadratic formula, the general quadratic 2% + bx + ¢ has a real root if and only if the
discriminant /b2 — 4c is real, which itself happens if and only if b*> — 4¢ > 0. So we want

1
P(B2—4czo)_/ P(B*—4C>0|B=1b)db
0

:/1 (C<If)db

/ —db Since C' ~ Unif (0, 1)

T 12

For the harder version, let G ~ Gamma (2,1). This time we want

/01 <A0<[j> db—/olIP’<—lOg(A)—log(C)Z—log<lf>>db—/01P(GZ—log (f))db,

and using Question 8, that’s

[ (oo s ()
/db— o log<b>db

Using integration by parts on
/ ~—dy— I: ( > ‘ — / - db] the second integral with u(b) =
log (%) and dv = % db
1 | 1 1 Using L’ Hopltals rule to get
E_E'O 2) T 1s limy o & - log () =0
5 log(2)

- 36 6
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15.

16.

Let Y be a random variable whose first two moments exist. Hypothesize which = € R minimizes
E [(Y — 2)?], and then prove it.

The minimizing value of z is z = E[Y], so that inf,cr E [(Y — 2)?] = Var(Y). To prove it,
expand the square to get

d 2 d 2 2
HEEKY—x)]:a;@my]—zﬂmyy+x):-QED1+2x

Setting the right-hand side equal to 0 shows that x = E[Y] is a global optimizer. Differentiating
the display above one more time shows that we always have %E [(Y — :E)Z} = 2 > 0, which
confirms that © = E[Y] is indeed the global minimum.

Let X ~ Poisson (\) and Y ~ Poisson (v) be independent. Find the conditional distribution of
X|[(X+Y =n).

First of all, it’s easy to show using mgfs that X + Y ~ Poisson (A + v). Then for m € N with
m < n, we have

P(X=mAX+Y =n)

P(X=m|X+Y =n)=

P(X+Y =n)
 P(X=mAY =n-—m)
P(X +Y =n)
- P(X=m) -P(Y =n—-m) Since X and Y are inde-
P(X+Y =n) pendent
B A=A pnTmemv [ (N 4 p)re (M)
T oml (n—m)! n!

() G5) (o)

That is, X | (X +Y =n) ~ Bin(n, \/(A +v)).

Let X ~ Gamma (A, 1) and Y ~ Gamma (v,1) be independent. Name the distributions of
G=X+Y and B=X/(X+Y), and show they’re independent. Don’t try to start by finding
the marginals — instead, go straight for the joint distribution of (G, B) and see what pops out.

Let g = g(x,y) = x4y and h = h(x,y) = x/(x+y). Then the function (z,y) — (9(z,y), h(z,y))
is a smooth bijection between (0, 00)? and (0, 00) x (0, 1) with inverse (g, h) — (2(g, h),y(g,h)) =
(gh,g(1 — h)). The determinant of the Jacobian of the inverse transformation is

Or Ox
3. a7 h
h g
det <d(x,y)> _ dg O _ _y
d(g, ) % 9y 1—h —g
0g Oh

so the joint pdf of (G, H) is

fe,m(g:h) = fixyy(gh,g(1 —h)) -

= fx(gh) - fy(g(1 = h)) -

) ‘
det d(z,y) Since X and Y are inde-
¢ pendent




1

= m(gh)A_le_gh (1/) (g(1—n)) te9=h . g

_ 1 g>\+1/ 16_9 P()‘+V)
(A +v) ') -T'(v)

Gamma (A + v, 1) pdf Beta ()\, v) pdf

R A A € ) L

So G ~ Gamma (A + v, 1) and B ~ Beta (}\, p) and moreover, the factorization above shows that
G and B are independent.

17. Let X and Y be independent N (0, 1) random variables.

(a)

Let R = VX2+ Y2 and © = arctan (%), where the range of arctan is taken as [0, 2.
Name the distributions of R? and ©, and show they’re independent. Again, go straight for
their joint distribution. If your trig is rusty, remember that tan(z) = sin(x)/cos(z) and
sin?(x) + cos?(x) = 1.

Let r = r(z,y) = /22 +y? and 0§ = 0(x,y) = arctan(y/z). Then the function (z,y) —
(r(z,y),0(x,y)) is a smooth bijection between R? and [0, 00) x [0, 27] with inverse (r,6)
(z(r,0),y(r,0)) = (r - cos(f),r - sin(f)). The determinant of the Jacobian of the inverse
transformation is

Oxr Oz )
d(z,y) o 90 cos(f) —r-sin(0)
det d 0 = = =,
(r,6) 9y 9y sin(6)  r-cos()
or 00

so the joint pdf of (R, 0) is

fre)(r,0) = fix,yy(r-cos(0),r -sin(0)) -

dot [ 4z:9)
d(r,0)
) Since X and Y are inde-

= fx(r-cos(9)) - fy(r-sin(9)) - det(d((i’g) ’ pendent

1 —r2.cos(0)2/2 1 —r2.sin(0)2/2

Q.

= —e¢ e
V2 V2T
1

=5 re "/

Since the marginal pdf of © is [} f(ge)(r,0)dr = 1/2m, it follows that © ~ Unif (0, 2n),
and also that R and © are independent. Moreover, by a change of variables, the marginal
pdf of R? is fre(z) = e~*/2/2 which gives us R? ~ Exp (1/2).

Use your work to show that if U; and Us are independent Unif (0,1) random variables,

then X v/ —2log (Uy) - cos(2mUs) and Y v/ —2log (Uy) - sin(27U3). This is called the
Box-Muller transform.
If Uy, Us ~ Unif(0,1), then P («/—QIOg(Ul) < r) —Pp <U1 > e-TQ/Q) —1—e /2 and

taking derivatives shows that \/—2log (U7) has pdf re ""/2, so that \/—2log (U;) R

Also, we certainly have that 27 - Uy ~ Unif (0, 27); that is 27U, 2 0. Putting the pieces
together and using Question 17a gives us

4

x<pR. cos(O) —2log (Uy) - cos(2mUs)



and
YLR. cos(0) 4 —2log (Uy) - sin(27Us).

(c) If T give you only a pocket calculator and two independent draws from the Unif (0, 1)
distribution, explain how you can give me back independent draws from the A (,ul,af)
distribution and the N (2, 03) distribution.

If I give you u; and uy (assumed to be independent Unif (0, 1) realizations), you give me
back o1 - \/—2log (u1) - cos(2muz) + p1 and o9 - /—2log (uq) - sin(2mwug) + po.

18. Let Xi, X2 and X3 be uncorrelated random variables, all with expectation p and variance o2.
Find expressions for Cov (X7 + X2, X2 + X3) and Cov (X7 + X2, X1 — X3) in terms of y and o2.

Using independence and the identity Var (X) =E [X?| - E[X 1%, we get
Cov (X1 + X9, Xo + Xg)
=E[(X1+ X2) - (X2 + X3)] — E[X1 + Xo] - E[X + X3]
=E[X1 - Xo+ X1 X3+ X5+ X0 X3] —E[X; + Xo] - E[Xs + X3

=o0".
Also, 0
——
Cov (Xl + X9, X4 — Xg) =E [(Xl + XQ) : (Xl — XQ)] —E [Xl + XQ] -E [Xl — XQ]
=E[X] - X3]
= Var (X1) + E[X3]* - (Var (Xz) + E[Xo]?)
=0
*19. Let X1, Xo,..., X, be 1ndependent random variables with E [X;] = ,u and Var (X;) = o2, Define
the sample mean X, = L 3" | X, and the sample variance S2 = 13" (X; — X,,)?. Prove

that E [X,| = p and Var( n) = 0%/n and also E [S2] = o2.
Hint: for the last one, you can make life easier by writing X; — X,, = (X; — p) — (X, — ).

To begin with, by linearity we have
_ 1« 1 «
E[X,] = EZIE[XZ-] = ﬁzu:u.
i=1 i=1
Moreover, because the X; are independent, we also have
Var (X,,) = % ZVar (Xi) = % 2"202 =
- [

To show that E [S2] = o2, it’s obviously enough to show that Y7 | E [(X; — X,,)?] = (n—1)-0?
Taking the hint, we see that

ZE (X — X,) ZE[ 1) = (X = )]
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=(n—1)-0°

because E [(X; — p)?] = Var (X;) and E [(X,, — p)?] = Var (X,,) and

DE[Xi—p) (Xn—w)] =E|(Xn—p)- Y (Xi—p)| =n-E[(Xn—p)?] =n-Var (X,) .
i=1 =1

In the same setting as above, show that the sample variance satisfies

n—2 1 -
52 = 153,1+5(Xn_1—xn)2.

n —

Why might this identity be useful?

Hint: add and subtract X,,_1 inside the summands being squared in S2.

Following the hint, we have

(n—1)S2 = (X; — X,)?

The first term is
(TL - 2)Sr2z—1 + (Xn—l - Xn)2a

while the second is

1 n—1 1 n 2 1 n—1 1 2 1
- Xi--SY X = n|——— N X, -~ X, | =——(Xpo1 — Xp)2

Adding those gives

n—1

(77, - 1)5721 = (Tl - 2)572171 + (Xn—l - Xn)27

and dividing through by n — 1 gives us what we want.

From a computational perspective, this is very useful because if we’ve already calculated a sample
mean and sample variance based on n—1 data points X, ..., X,,_1, and we’re given a new point
X, to add into the mix, we don’t have to go back and recalculate the updated sample variance
from scratch, which would normally require O(n) operations; instead, the recursive identity we
just derived does it in a constant number of operations, which saves a huge amount of time if n
is large.
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22.

Let A be an n X n matrix whose entries are independent A (0,1) random variables. Let B =
(A+AT)/2, which you might notice is symmetric. What’s the joint pdf of the n(n+1)/2 entries
in the upper triangle of B? This has matrices in it, but it doesn’t need any linear algebra; if
you remember what the transpose of a matrix is, you can do this! If you’re looking for a name
for your pdf, you can call it fp,, Bis....Bnn (011,012, -, byn).

Let B;j be the (7,7)’th entry of B. If ¢ = j, then B;; = (Ai + Aii)/2 = Ay ~ N (0,1). On the
other hand, if i # j, then B;; = (Aij + Aji)/2 ~ N (0,1/2). If 1 < i < j < n, then all of these
B;;’s are independent, so their joint pdf is just

diagonal entries off-diagonal entries

2

n n
1 2 1
b 7b yee ey b = 76_1)“/2 ° 76_1)”‘
IB11,B1s, .. Bun (D11, b12 nn) i|:|1 oo [111 N

i=1 j#i
1 — [ b3 2
J— 20
= on/2 . nn—1yja - P T > o T PR
i=1 i

Fix some n € N with n > 1. Prove that if I give you some fixed 1 € R and o2 > 0, you can give
me x1,T9,...,T, € R such that

and

What — if any — are some statistical implications of this?

Hint: start with n = 2, and you’ll get an explicit form for x; and z9. Use those to take a
guess at the case for general 2n, and prove that it gives you what you want. For odd n, add an
appropriate xopn41 to the 2n case.

For the n = 2 case, it’s possible to expand everything out and solve the simultaneous equations,
but it’s much easier to go by intuition. The endpoints of any interval centered at p will have p
as their average, so we can take 1 = p — ¢ and x9 = pu + ¢ for some ¢ > 0 (which gives T = p
like we want), and plugging this into the second formula gives g = \/0?/2.

For the general case where n is even, follow the same strategy: take x9; = p—q and x2;_1 = pu+q
for each j =1,...,n/2 so that & = u for any q. With these choices, we want

n

- - 1 n
ol = n_lz(xi—:c)Z: n_lz:(j:q)2 — n_qu,
i=1 i=1

which means that we can take ¢ = /(1 — 1/n)o2.

Finally, if n is odd — say n = 2m + 1 — one thing we can do is let x1, ..., z2, be as above (for
some ¢ to be specified) and let z2,,11 = . Then we still have Z = y, so that (29,41 — 7)% = 0.
Plugging this in shows ¢ = V2 does the trick.

One statistical implication here is that given any n > 1, someone can easily cook up a dataset
of size n that has any prescribed sample mean and sample variance. Of course, if the data is
supposed to be collected from “real-life” then this dataset will not be very convincing (since
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it will contain at most three unique values) but someone only interested in the two summary
statistics above will not necessarily notice this.

In STA257, you learned Chebyshev’s inequality, a corollary of which says that if E [X] = p and
Var (X) = 02, then P (|X — u| > \) < 0?/)\? for any A > 0. This is the most basic example of a
concentration inequality, so named because it essentially says that random variables with finite
moments tend to “concentrate” around their means — in this case, the probability that X is
at a distance at least 2 away from p decays like 1/22. It turns out that Chebyshev’s inequality
is often rather weak, and for sums of nice independent random variables, we can obtain much
stronger concentration.

(a) First show that Chebyshev’s inequality is tight (i.e., equality holds for some random variable
X and some A > 0). The easiest example is discrete — try and construct X so that it gives
you what you need.

For example, take X such that P(X =1) = P(X =—1) = 1/2. Then E[X] = 0 and
Var (X) =1 so that
Var (X)

1=P(X|21)=P(X-E[X]|>1) < o~ =1,

so Chebyshev’s inequality is tight here with A = 1. You can do the same kind of trick (with

a slight modification) for any fixed A > 0.
(b) Let X; ~ Bernoulli (p;) be independent fori =1,...,n. Let X = > | X;and p = ;| p;.
i. Let Mx(t) be the mgf of X. Use the fact that 1+ < e” to show that My (t) < et 1.

Since the mgf of the Bernoulli (p;) distribution is My, (t) = 1 + p;(e’ — 1), using inde-
pendence of the X;’s and the provided bound, we have

Mx(t) = HMXi (t) = ﬁ (1+pi(e' —1)) < Hepi(etl) — pilet=1)

ii. Use Markov’s inequality and the inequality above to show that for any § > 0 and any
t € R\ {0},
ele'=1\ *
IP)(XZ,Uz(l—F(S))S m .

Using Markov’s inequality and the bound above, we get

£X et 1) (-1 \
P(XZM(1+5)>:P<€tXZe,ut(l+5)><E[€ ] _ MX(t) <€ :<6 ) '

— elt(1+9) eht(14+8) — put(1+4) et(1+9)

iii. Minimize the right-hand side in ¢ to show that

IP)(X > (1 +6)N) < <66—(1+5)10g(1+5))u.



Some differentiation gives
d (et—1) K (et—1) K
Sl [ [ N T I
dt \ et(1+9) ct(1+0)
and setting that equal to 0 gives ¢ = log (0 4 1), which the second derivative test

confirms is a global minimum. Plugging this ¢ into the right-hand side of the previous
bound and rearranging a bit gives us what we want.

iv. Prove that § — (1 + &)log(1+d) < —42/3 for § € (0,1) and conclude that
P(X > (1+08)u) < e /3,

which is called a Chernoff bound. How does this compare to the kind of bound you’d
get with Chebyshev?

Hint: for the first inequality, look at how the derivative of f(xz) = x—(1+x)log (1 4+ z)+
22 /3 behaves on (0,1/2) and (1/2,1).

We want to show that the function f(z) = x — (1 + x)log (1 + z) + 2%/3 is nonpos-
itive for z € (0,1). Clearly f(0) = 0, so if we can show that f is decreasing on
(0,1) then we're good. The first two derivatives are f'(z) = —log (1 + z) + 22/3 and
f"(z) = —(1+2)"1 +2/3, and we note that f”(1/2) = 0 with f/(0), f/(1/2), f'(1) < 0.
So it’s enough to show that f’ is monotone on (0,1/2) and on (1/2,1), and this is
easy to check using f” (which shows that f is decreasing on the former interval and
increasing on the latter).

The Chernoff bound then follows immediately from Question 23(b)iii. To compare with
Chebyshev, we’d normally have

P(X > (1+0)u) <B(X - p| > 6p)

Var (X)
>~ 2752 By Chebyshev
1
n
_ Zi:1 pi(1 —pi) Since the X; are independent
- ;262 and Var (X;) = pi(1 — pi)
1
< — Since 1 —p; <land p=73, pi
162

but with Chernoff we get P (X > (1+6)u) < e 9#/3, which gives an exponentially
faster decay as n (and thus p) grows. For a concrete example, take n = 100 with
pi = 1/2 for all ¢ and 6 = 0.8. Chebyshev gives the unremarkable P (X > (1 +d)pu) <
0.03125, while Chernoff gives the much more impressive P (X > (1 + d)u) < 0.0000233...

24. In STA257, you may have also learned that the distribution of a random variable X is charac-
terized by the random variable’s mgf M (t), at least when the mfg exists (a necessary condition
is that Mx(t) is finite when |¢| is arbitrarily small). Does this mean that a distribution is
characterized by its integer moments? Unfortunately not. The following lognormal “family” is
probably the simplest counterexample:

(a) Let



and for any € € [—1,1], let fo(z) = f(z) - (1 + ¢ -sin(2wlog (x))). Show that both f(x) and
fe(z) are pdfs on (0, c0).

The first function is a special case of the second with € = 0, so we can go straight for the
second. With the substitution u(x) = log (z), we get

o 1
/ fe(x)dx = \ﬁ/ ¢~ log(@)*/2 \/27/ ¢~ log(@)*/2 sin(27wlog (x)) dx
T
= %27r/_ e /2 du +/ 2 sin(27u) du

w2 sin(27u) du,

€
— e
V 27 /—oo
so we just need to show that the remaining integral is 0, but that follows immediately
because the integrand e~*"/2 sin(27u) is an odd function.

Let X ~ f and Y ~ f.. Show that E[X"] = E[Y™"] for all integers n > 1.

We have
1 2
E XTL _ 710g($) /2 daj — / nileilog(x) /2 dx
K= N
and
E[Y"] =E[X"] + / n—1,—log(2)*/2 sin(2wlog (z)) dz,
=:1n

so we want to show that the remaining integral is 0. Using the same substitution u(x) =
log (x) gives

I, = / g1~ log(@)*/2 sin(2wlog (z)) dz = / enu—u?/2 sin(27u) du.
0

— 0o
The key now is to complete the square in the exponent. Doing so gives us
22 [T e 2o [T a2
I,=¢e"/ / e~ (W 2 gin(2mu) du = €™/ / e /2 sin(2r(u + n)) du.
—0o0 —0o0
Now n is an integer, so that sin(27(u + n)) = sin(27u) and we're dealing with the same

odd integrand as in part (a), which gives I,, = 0.

Show that Mx (t) = co whenever ¢t > 0.

Hint: the easiest way is probably to bound the integral from below by another integral that
you know diverges. Use properties of the exponential function.

Fix t > 0. The mgf satisfies

Mx (t) —log(w) /2 dx

),
\/% / exp 2/2) U Substituting u(z) = log (x)

Since the exponential func-

u 2
= \/% /0 exp (te —u /2) du tion is always positive
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26.

Now, the exponential function grows faster than any polynomial, so we’ll have e* > u?/2t
whenever u is sufficiently large (say whenever u > 7, for some n > 0), which is the same as
te* —u?/2 > 0. Therefore

Show that a continuous random variable X is symmetric around 0 (see Question 1b) if and only
if X and —X have the same distribution. Generalize to random variables symmetric about an
arbitrary point zq.

Let fx and F'x be the pdf and cdf of X, respectively.

(=) If X and —X have the same distribution, then their cdfs satisfy Fx(z) = F_x(z), and the
term on the right is P(—X < z) =P(X > —z) =1 — Fx(—x). Therefore Fx(z) =1— Fx(—x),
and differentiating gives fx(z) = fx(—x) (i.e., X is symmetric around 0).

(<) If X is symmetric around 0, then fx(—z) = fx(z) and so

:/f fX(t)dt:/_x Fe(—t)dt = _OofX(u)duzl—FX(—m),

while
F x(z)=P(—-X<2)=P(X >—-2)=1- Fx(—x)

as well. Thus Fx = F_x, so X and —X have the same distribution.

The generalization is that X is symmetric about zq if and only if zg + X and x¢g — X have the
same distribution; the proof is essentially identical.

Is there a way to measure the “distance” between two probability distributions? One measure —
which is not actually a metric, but still shows up all over statistics owing to its deep theoretical
properties — is called the KL divergence. For distributions F' and G supported on the same set
with respective pdfs/pmfs f and g, it’s defined like this:

Dra(F116) = o (B)] . x~F

(a) Calculate the KL divergence between two Poisson distributions: Dgr,(Poisson (A1) || Poisson (A2)).

First of all, the log-ratio of the two pmfs is

o (£09) 1o (22) - 3 .

A A
;) — (M —X2) = Ap-log (A;) — (A1 =),

2

Therefore,
Dx1,(Poisson (A1) || Poisson (A2)) = E [X]- log (

where X ~ Poisson (\1).



(b) Calculate the KL divergence between two exponential distributions: Dxr,(Exp (A1) || Exp (A2)).

The log-ratio of the two pdfs is

log (ggg) ~ log (iz) CX ().

Dia(Bxp (o) | Bxp (1) = o (51 ) ~ B[] (= ha) = tog (31 + 32 - 1.

Therefore,

where X ~ Exp (\1).

(c) Calculate the KL divergence between two normal distributions: Dxp,(N (11, 03) || N (uz, 03)).
Hint: you can do this without any integration.

This time, the log-ratio of the two pdfs is

log <f(X)> — log <"2> _ X —m)? (X - )

g9(X) o1 207 205

so we want the expectation of that when X ~ N(u1,0?), which is the same as
tog ( 22) = 3B [(X — n)?] + 5. [(X — )]
o1 20% 20% '

The first expectation is easy, because it’s just Var (X) = 7. For the second one, add and
subtract p; inside the squared term to get

E[(X = p2)?] = E[(X = + (g1 — p2))?]
=E[(X —)*] + E[2(u1 — p2)(X — p2)] + B [(11 — p12)?]
=07 + (1 — p2).
Putting the pieces together gives

2 - 2 1
Dt (N (a1, 0%) || N (2, 03)) = log ("2)+"1+<M1 p)? 1

o1 203 2

27. Let X ~ Fx be a continuous random variable supported on [0,b), for some b > 0. Show that

b
E[X"] = n/o 2"t (1= Fx(z))da.

For an extra challenge, replace b with co and show the same thing (assume that E [X™] exists to
begin with). When n =1 this result is called the Darth Vader rule, for some reason.

Let fx be the pdf of X. For the original version,

b
E[X"] :/0 " fx(z)de

b b Using integration by parts
=" Fx(x) ) — n/ z" L. Fx(z)dzx with u(z) = 2™ and dv =
0 0 fx(z)dz
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b
:b"—n/ 2" Fx(z)dz Since Fix (b) =1
0
b b
:n/ x”ldx—n/ 2"t Fy(z)dz
0 0

b
= n/ 2" (1 - Fx(z))da.
0

For the extra challenge, suppose now that X is supported on [0, 00). We can use our work above
to write

E[X"] = lim (b” -Fx(b) —n /0 b 2" Fy () dm)

= lim (—b” (1 = Fx(b)) +n/0b 2" (1 - FX(:L'))dac>

b—oo

b—o0

= — lim b" - (1 — Fx(b)) —l—n/oooﬂznl (1= Fx(z))da,

so the goal now is to argue that the first term is 0. First, for any b > 0 we can write
EX"=E[X" 1y +E[X" 1y,

which by assumption is finite. Since the left-hand side is independent of b, the same equality
holds in the limit:

E[Xn] = lim (E [Xn . IlX<b] —|—E[Xn . ﬂXZb]) :E[Xn] + lim E[Xn . ﬂXZb]a

b—o0 b—o0

which forces limp oo E[X" - 1x~p] = 0. Now, observe that for b > 0,
0< b (1— Fx(b)) = b”/ Fx(z)dz < / 2 (@) de = E[X" - Lyss] 2225 0.
b b

By the squeeze (sandwich?) theorem, we get that limy o, 0™ - (1 — Fx (b)) = 0, as desired.

2
Let X = (X1, X2) ~ Nao(p, X), where g = (1, p2) and X = 71 p01202 . Here p1, o € R,
pPO102 g5

02,02 >0, and p € (—1,1). That is, X follows a bivariate normal distribution with mean p and
covariance matrix X, which has joint pdf

1 1 931—m>2 <~"32—M2>2 (901—,“1) <£E2—,u2>
T1,T9) = exp | — + | — =2
fx(@1,22) 201094/ 1 — p? p< 2(1—p?) [( o1 02 P o1 02

The goal here is to work out four things: i) the marginal distributions of X; and Xo, ii) the
conditional distributions of Xo | (X7 = 1) and X7 | (X2 = x2), iii) the distribution of a.X; +bXo
for a,b € R, and iv) the quantities Cov(X7, X9) and Corr(Xy, Xs). Theoretically, all of these can
be found using integration and algebra alone, but that gets very tedious. Fortunately, there’s
an easier way.

(a) Let Z; and Z5 be independent N(0,1) random variables, and let Y1 = p; + 0121 and
Y, = Mo + 09 (le + 41— p2ZQ>. Prove that (Yl,YQ) i (Xl,Xg).



The pdf of (Z7, Z3) is, of course,

2
fa(o1,20) = [ —mme /2 = e i+,
=1

Vo 2m

Let y1(21,22) = 1 + o121 and ya(z1, 22) = p2 + 02 (pzl +4/1— pzzQ). Then the function
(21, 22) = (y1(21, 22),y2(21, 22)) is a smooth bijection between R and R with inverse

Y1 —m 1 Y2 — 2 Y1 —
9 = (2 9 y R ) - 9 - . y
(9192 = (11, 0). 220, 30) (Ul (e »

whose Jacobian has determinant

0z 0z 1 0
det <d(Zl7 ZQ)) = 1 Oy = 7 S )
d(y1,y2) Ozy Oz o109 /1 — p?

P 1
Oy Oys o1-\1—p2 o09-/1—p?

so the joint pdf of (Y1, Ys) is
- 1 - - d
fz n M17 <y2 H2 7p'yl M1> -‘det( (21,Z2)>‘
o1 \/1—p? 02 o1 d(y1,y2)
_ 1 1 <y1—u1>2 1 <y2—u2 yl—m)Q
= exp —_— + 5 —p-
201094/ 1 — p? 2 o1 I—p 02 o1
1 1 —m\? — 2\ 2 - -
_ exp | — . (yl Ml) i <y2 M2> — 2 <y1 #1) (y2 M2)
201094/ 1 — p? 2(1—p?) o1 02 o1 02

= [x(y1,v2)-

Since (Y7, Y2) and (X1, X2) have the same joint pdf, we’re done.

(b) Find the marginal distributions of X; and Xs, and then prove that X; and X, are inde-
pendent if and only if p = 0.3

We have . ;
X1 =Y = + 012y ~ N(us,0%)

and

d, d
Xo =Y = pa + 02 (021 +v1- /)222) ~ N (p2,03),

where we used the fact that Z; and Zs are independent (and hence aZy+bZy ~ N (0, a2+bz)
for a,b € R, which is easily shown using mgfs, if you haven’t already seen it).

Now, X7 and X5 are independent if and only if their joint pdf factorizes into the product
of the marginal pdfs, and by our findings above this happens if and only if

1 1 1 — p1 2 Ty — 2 2 T1 — p1 Ty — 2
exp | — 5 + | —] —2p
2101094/ 1 — p? 2(1 - p?) o1 op) ot P

3In other words: if a pair of normal random variables jointly follows a bivariate normal distribution, then the (normally
distributed) marginals are independent if and only if they’re uncorrelated. Unfortunately, students tend to forget about
the qualifier at the start of that statement, resulting in the extremely common and extremely incorrect misconception
that “two normal random variables are independent if and only if they’re uncorrelated.” Please never say this.




2 2
1 o 1 <:E1—[L1> 1 o 1 (ZL‘Q—,LLQ)
= X _—— . X [
V2o P 2 o1 V2mog P 2 op)
for all z1,x9 € R, which (by inspection) happens if and only if p = 0.

Find the conditional distributions of Xo | (X1 = 1) and X | (X2 = z9).
Hint: after finding the first one, argue how the second follows immediately by symmetry.

First of all, using the equivalent joint distribution above, this is the same thing the con-
ditional distribution of s + o9 (le +4/1— p2Z2> given Z1 = (x1 — p1) /o1, which is the
distribution of

T — o
Ho + o2 - <p ! lm + \/1—pQZ2> = <M2+pgi($1 —M1)> + V1 —po1Zs

g

which, using the fact that a + bZ; ~ N(a,b?) for a,b € R, is
1 —
N <M2 + p021071m7 (1- ,02)U§> :

Since fx(z1,z2) is symmetric in (1 — p1)/o1 and (x2 — pa)/o2, all we need to do to get
the distribution of X | (X2 = x9) is swap p1 with g and o7 with o9 above, which gives us

.
X | (=) ~ N (4 pon 22, 1 2ot )

Let a,b € R. Find the distribution of aX; + bX5.

Again, using the equivalent joint distribution above, this is the same thing as

a (Ml + 01Z1)+b (,uz + o2 (le + 41— p2ZQ>> = (a,ul + bM2)+(a01+bagp)Zl+b\/ 1— pQUQZQ,

which gives
aXi+bXy ~ N (ap + bug, a*of + 2abpoios + b*o3) .

Find Cov(X1, X5) and Corr(Xy, Xo).

The first one is

COV(Xl,XQ) = Cov (ul + 0121, 2 + o2 <le ++1- ,02Z2)>
= Cov (012,007 + /1 — p202Z2)

= Cov (01721, 09p71) + Cov <01Z1, ﬂ@Zg)
= Cov (0121, 02p77)
= poioyVar (Z)
= po102
and the second is
Cov(X1, Xo) pPO102
v/ Var (X1) - Var (X») N N -

COH‘(Xl, Xz) =




*29. Let X ~ N(i,02) and let f(z,A) = P(X > z | X € A), where A C R is some set. Letting
Z ~ N(0,1) and using the standard normal cdf ®(-) if need be, compute the following:

(a) f(p, (=00, pl)

This is
o
}MXZM\X<MMHQX;Z;:O
(b) f(u,R)
This is
POXZulXeR) =g —h —F(* L 20)=Fz20 -3,
T
(¢) f(=p,[—p,00))
This is P(X > —p)
P(X>_M|X>_M)Z]P’(X>—,u):1
(d) fu, RN\ (—p, 1))
This is
P(X > ) 1/2

PR zulXs—nV X 20 = g e ST P(X 5 )~ S(2pjo) 712

because P(X > pu)=1/2 and P(X < —p) =P (X — p)/o < =2u/o) = &(—2u/0).

(e) i+ ko, [u+ jo,00)), where k, j € N

This is

P(X > max{y+ ko,u+ jo}) P(Z>max{k,j}) 1— ®(max{k,;

P(X>pu+ko|X>pu+jo)= = =

P(X > p+jo) P(Z > j)

(f) f(Y,R), where Y ~ N (u,0?) is independent of X

Since X and Y are independent, X — Y ~ A(0,202), so*

PX>Y|XeER) =P(X-Y >0)=P(Z>0)=-.

4Actually, P (X >Y) =1/2 for any continuous, independent, and identically distributed random variables X and Y.
To see this, observe that we must have 1 = P(X >Y)+P(X <Y)=P(X >Y)+P(X <Y), and since (X,Y) and
(Y, X) clearly have the same joint distributions, those two probabilities on the right must be equal. Intuitively, either
X exceeds Y or Y exceeds X, and since X and Y independent and follow the same distribution, neither one of those
events should have a higher/lower probability than the other.

1—®(j)



. _ [ e —a?)2
(g) f(Y ++/30,R), where (X,Y) ~ Na(p, X) with p = (u, ) and T = [ }

—0%/2  o?
From Question 28d, we see that X — Y ~ A(0,302), which gives

P<X2Y+\/§J|X6R):P(X—YZ\/éa):P(Zz1):1—<1>(1).

(h) E[f(u, (—00,Y])], where Y ~ N(u,0?) is independent of X

Conditioning on Y, the random variable inside the expectation is

P(XZMlXSY):W.HMSY
PO<Z<(Y-po)
P(Z< (Y —p)o)  O<s¥-wio
_ (Y —p)/o) - 2(0)
(Y — p)/o) 0<(Y—p)/o

d ®(0)
4 (1-57) e
= lo<z — (;{:((g)) ~lo<z

The expectation of that is

00 e—z2/2
P(0<Z)-E Ef((?)-ﬂogz] =1—‘P<O>“I’<°)'/o <I>(12) e

Making the substitution u(z) = ®(z) with du = e *"/2/y/27 dz turns the integral into

/cp(oo)ld tog (u) |, = Tog (2)
= du = log (u =lo ,
®(0) U & 1/2 &

so in the end, the expectation is

30. Fix ¢ > 0. Find a continuous random variable X and a discrete random variable Y such that
E[X9 =E[Y? = oo, but E[X?],E[Y?] < 0o for all 0 < p < g.

There are many ways to do this; I find that the easiest is to start with an integral/sum that we
know to converge or diverge based on a certain parameter, and then tweak the integrand/sum-
mand so that it looks like a familiar pdf/pmf times some function. In the continuous case, for
example, it’s easy to show (using integration by parts) that

/Oox_a-e_zdx - %fozZl
0 <oo Hfax<xl

which means that if p < ¢, then

/0Oo <$_(1/q)>q e Pdr =00 but /OOO (x—(l/q))p e de <o



So taking X = V~1/9 where V ~ Exp (1) does the trick.
For the discrete version, we can apply the same idea to a p-series, since we know

1 [0 ifa<1
P
n=1

<oo ifa>1

So, for example, let W be such that P (W =n) o< 1/n? for n = 1,2,... and take Y = W4,

31. Let X be a random variable with a finite second moment. Prove Cantelli’s inequality: for any
A > 0, we have

Var (X)
POX—E[X] 20 < g

Hint: Upper bound the left-hand side by P ((X — E[X] + z)? > (A + 2)?) for any = € R. Then
apply Markov’s inequality and optimize over x.

Following the hint, we see that for any x € R,
PX-EX]>N)=P(X-E[X]+2>\+2)
<P((X-EX]+2)*>(\+2)?)
E[(X - E[X] +2)]

By Markov’s inequality

- (A + )2
Var (X 72 After expanding the square as
= (—)E (X —E[X])2+22(X —E[X])+22.
(>‘ + l‘) and taking expectations

Now, the derivative of the last term with respect to x is

d (Var (X)+ 1:2) ~ 2z(\ +a) — 2(Var (X) + 2?)

dz (A + )2 A +x)3
and setting this to 0 gives x = Var (X)) /A, which the second derivative test confirms is a mini-
mum. Plugging this into our upper bound gives us what we’re looking for.

*32. The Cauchy-Schwarz inequality is one of the most ubiquitous inequalities in math; there’s a
good chance you’ve seen it before in one setting or another. Here’s a version that we’ll need in
our course, which is often called the covariance inequality: for any random variables X,Y with
finite second moments,

|Cov (X,Y)| < +/Var (X) - Var (Y), (1)

where equality holds if and only if X is a certain linear function of Y (with probability 1).
Let’s prove it! To be proper, we’ll declare right here that all statements about X and Y in this
question implicitly hold with probability 1.

(a) Prove the result when either Var (X) = 0 or Var (Y) = 0. With that taken care of, assume
going forward (without loss of generality) that Var (Y)) > 0.

Suppose that Var (X) = 0. Obviously the right-hand side of (1) is 0, so we want to show
that the left-hand side is also 0. But if Var (X) = 0, then X is constant;% say X = x for
some x € R. Therefore

ICov (X,Y)| = [E[XY]—E[X]-E[Y]| = |z -E[Y] —z-E[Y]| = 0.

°In other words, if we say something like X = Y, we really mean that P(X =Y) = 1. It’s okay to ignore this
technicality here because this question is about expectations, and expectations don’t care about events of probability 0.

%If you haven’t seen this in STA257, here’s one way to show it: since 0 = Var (X) = E [(X — E[X])?] and the thing
inside the expectation is always non-negative, we must have (X —E[X])? = 0, which is the same as X = E[X]. In other
words, X must be equal to its own expectation.



(b)

Show that the function f(t) = E [(X —tY)?] is quadratic in ¢, and explain why it must
have at most one real root.

Expand the square to get
ft)=E[X?] -2t E[XY]+#*-E[Y?],

which is indeed a quadratic function of ¢. Furthermore, it’s non-negative because it’s the
expectation of the non-negative thing (X —tY)?. A non-negative quadratic function looks
like a convex (or “concave up”) parabola that never dips below the z-axis. If the parabola
just touches the z-axis, then it has exactly one real root; otherwise, it has none at all.

Think back to the quadratic formula and use the last fact to obtain

BXY]| < VE[X?]-E[Y?]. (2)

The quadratic formula says that the roots of the quadratic at? + bt + ¢ are given by

_ —bE Vb —dac

2a

t4

and whether the t4 are real or complex depends solely on the discriminant b? — 4ac. If the
quadratic has at most one real root, then exactly one of two things are true: either it has
no real roots (in which case b — 4ac < 0), or it has a real root with multiplicity 2 (i.e., a
double root, in which case b*> — 4ac = 0). So the statement “at? + bt + ¢ has at most one
real root” is the same thing as “b* — 4ac < 0”. Substituting a = E [Y?], b = —2E [XY],
and ¢ = E [X?] means that 4E [XY)? —4E [X?] E [Y?] <0, which is equivalent to (2).

Show that equality in (2) holds if and only if X = ¢*Y, where t* = E[XY] /E [Y?].
(=) If X = t*Y, then

EXY]| =t E[Y?]|=|t|VEY?]-E[Y? = VE[X?]-E[Y?],

so equality holds in (2).

(<) In the derivation of (2), we saw that equality holds when the quadratic f(¢) has a
double root which, by the quadratic formula above, is given by

b E[XY]
 2a E[Y?]°
Then 0 = f(¢*) = E [(X — t*Y)?], which gives us X = ¢*Y.

Obtain (1) by replacing X and Y in (2) with X —E [X] and Y —E [Y], respectively. Exactly
when does equality hold?

(1) falls out immediately after performing the replacement. From (d), we know that equality
holds if and only if X — E[X] = t*(Y — E[Y]), where

E[(X -E[X])(Y —E[Y])] Cov(X,Y)

U= R -Ey)y  ~ Va )




Equivalently, equality holds in (1) if and only if
X =t"Y + s",
where

Cov (X,Y)

S =EX]-B[Y] 5

33. Prove the Paley-Zygmund inequality: if X is a non-negative random variable with a finite second
moment, then for any A € [0, 1],

&=

[X]”
(X2

P(X >X-E[X]) > (1-))?2-

&=

Hint: start by writing X = X - Iyx<ygx] + X - Lxsag[x], take expectations, and use (2)
somewhere.

Following the hint, we have
E[X]=E[X - Ix<gx) +E[X - Lxsagx)]

Inside the first expectation on the right, we have that X - 1 y<\g(x] < A-E[X] (because if X >
A - E[X] then the indicator function is 0), so by taking expectations we get E [X “Lx<ag X]] <
E[A-E[X]] = A-E[X]. On the other hand, applying (2) to the second expectation gives

E[X - Ixsagx)) < \/E [X?]-E [1§(>,\ E[XJ

= \/E E [1x>xE[x]]
= VE[X?] P(X > X\ -E[X]).
Therefore,
E[X] <A E[X]+VE[X2]-P(X > \-E[X)).
Equivalently,

(1-)\) -E[X]<VE[X2]-P(X > X -E[X]).

Squaring and rearranging gives us what we want.

34. Let X be a random variable taking values in the non-negative integers (assume this for all
random variables in this question) whose moments exist. The probability generating function

(pgf) of X is the function Gx(t) = E [t¥] = Yo P(X =) tl.
(a) Show that E[X] = G’4(1) and Var (X) = G% (1) + G4 (1) — [Gx(1)]?

We have
=Y jP(X=j)-t/"  sothat Gy(1)=) j-P(X =j)=E[X]
=0 =0

and

Zy (G—1)- ) 7% = Zg —j>~tj‘2—ij-P(X=j)-tj‘2
j=0



so that
Ge()=> 2 PX=4)-) j-P(X=j)=E[X*] -E[X]
j=0 J=0

and
Var (X) = E[X?] - E[X]* = G%(1) + +G’ (1) — [G’x (1)]%.

(b) If X1, Xo,...is a sequence of independent and identically distributed random variables with
pgf Gx(t), and N is another random variable independent of the X;’s with pgf G (¢), show
that the pgf of Y = Zjvzl X; is GN(Gx(1)).

We have
Gy(t)=E [tzﬁil X }

o " By the law of total ex-
= ZE [tzi:l XJ} -P(N =n) pectation (i.e., the “tower
n—0 rule”)
e oan Since the X; are indepen-
= ZE [t 1] -P(N =n) dent and identically dis-
n=0 tributed
[o.¢]
=Y Gx(t)"-P(N =n)
n=0
= Gn(Gx(1))

(c) Find the pgfs of the Binomial(k, p), the Poisson(A), and the Geometric(p) distributions.
If there are infinite series involved, assume whatever values of ¢ you need to make them
converge.

For X ~ Binomial(k, p):

k
B . 1 Since X can only take val-
GX(t)_Z]P(X_])'tJ ues in {0, ..., k}
=0
k
> () a-p
=0 N
k
k _
=5 (5) -
=0 M
=(tp+(1— p))k By the binomial theorem

For Y ~ Poisson (\):

- W =N S (A e (i
Gy(t):ZP(Y:]).tJ:Z i = ()j':e)\(t 1)
j=0 . 0 .

J=0

For Z ~ Geometric(p), using the version of the distribution supported on {1,2,...}:

value 0

o0
Gz(t) _ Z P (Z _ ]) -y Since Z cannot take on the
§=0



=> (1-p)lp-¥

J=1
[e.e]
=1p Z(t(l —p)F Substituting k = j — 1
k=0
Summing the geometric se-
_ tip ries, provided the series
11— t(1 —p)' converges (i.e., when [t| <

1/(1—p))



