
STA261 (Summer 2024) - Assignment 0

These problems are meant to refresh/flex your STA257 skills (and your calculus skills). They are
not to be handed in. Problems marked with stars (?) are results that will be used later in our course.

1. (a) Let X ∼ N
(
0, σ2

)
. Show that E

[
X2k+1

]
= 0 for any k ∈ N.

(b) Go a bit further and show that this is true for any continuous distribution which is sym-
metric about zero (i.e., its pdf satisfies fX(x) = fX(−x) for any x ∈ R), provided all of its
moments are finite of course. In other words, if a distribution is symmetric about zero, then
all of its odd moments must vanish. Can you generalize this result to distributions sym-
metric about an arbitrary point x0 (i.e., those whose pdf satisfies fX(x0 + x) = fX(x0− x)
for any x ∈ R)?

2. For any two (possibly dependent) random variables with finite second moments, show that

Var (X + Y ) + Var (X − Y ) = 2(Var (X) + Var (Y )).

3. Let X ∼ Poisson (λ) and let h : N→ R be any function such that E [h(X)] is finite. Prove that
E [λ · h(X)] = E [X · h(X − 1)].

4. Let X ∼ N
(
µ, σ2

)
and let g : R → R be any differentiable function that’s nice enough to

satisfy E [|g′(X)|] <∞ and lim|x|→∞ g(x) ·e−(x−µ)2/2σ2
= 0. Prove that E [g(X) · (X − µ)] = σ2 ·

E [g′(X)]. This is called Stein’s lemma (in fact the condition that lim|x|→∞ g(x) ·e−(x−µ)2/2σ2
= 0

is unnecessary, but proving that is a lot harder).

?5. For any set of univariate random variables X1, X2, . . . , Xn, the order statistics are the Xi’s placed
in ascending order, which are notated as X(1) ≤ X(2) ≤ · · · ≤ X(n). Thus the sample minimum
X(1) = min{X1, . . . , Xn} and the sample maximum X(n) = max{X1, . . . , Xn}.
In STA257, you may have learned that if X1, X2, . . . , Xn are an independent sample from a
continuous distribution with pdf fX and cdf FX , then fX(1)

(x) = n · fX(x) · (1−FX(x))n−1 and

fX(n)
(x) = n · fX(x) · FX(x)n−1. Let’s generalize those formulas by finding the pdf of X(j), for

any 1 ≤ j ≤ n.

(a) Let h > 0 be nice and small. Explain why

P
(
X(j) ∈ [x, x+ h]

)
= P (One of the Xi’s is in [x, x+ h] and exactly j − 1 of the others are < x) .



(b) Show that the probability on the right is equal to

n · P (X1 ∈ [x, x+ h]) · P (exactly j − 1 of X2, X3, . . . , Xn are < x) .

(c) Think binomially and show that

P (exactly j − 1 of X2, X3, . . . , Xn are < x) =

(
n− 1

j − 1

)
· FX(x)j−1 · (1− FX(x))n−j .

(d) Put the pieces together, divide both sides by h, and take the limit as h→ 0 to get

fX(j)
(x) =

n!

(j − 1)! · (n− j)!
· fX(x) · FX(x)j−1 · (1− FX(x))n−j .

?6. LetX1, X2, . . . , Xn be independent Unif (0, 1) random variables. ShowX(j) ∼ Beta (j, n− j + 1),
and use that fact to find E

[
X(j)

]
and Var

(
X(j)

)
.

7. What’s the probability that an unbiased coin lands on heads 500 times in 1000 flips, rounded
to five decimal places? You know that the exact answer is

(
1000
500

)
0.51000, but good luck trying

to evaluate that on a calculator – you’ll either end up with numerical underflow or overflow.
You might think to calculate the log of that and then exponentiate it after – that will definitely
help with the 0.51000 part, but you’ll still have to deal with log (1000!) − 2log (500!), and you
just can’t evaluate either of those factorials directly. You may have heard of Stirling’s formula,
which gives an approximation of the factorial function. With a bit of hand-waving, we’ll derive
a simple version of it here.

(a) Let X1, X2, . . . , Xn be independent Exp (λ) random variables. Using mgfs (or anything
else), show that

∑n
i=1Xi ∼ Gamma (n, λ). This is sometimes called an Erlang distribution.

(b) Set λ = 1 and fix x ∈ R. Explain why we can write

d

dx
P
(
X̄n − 1

1/
√
n
≤ x

)
≈ φ(x)

when n is large, where φ(x) = (
√

2π)−1/2 · e−x2/2 is the standard normal pdf.

(c) Carry out the differentiation on the left-hand side, via a u-substitution and the fundamental
theorem of calculus.

(d) Set x = 0 on both sides and rearrange a bit to get

n! ≈
√

2π · nn+
1
2 · e−n,

which is Stirling’s formula.

(e) Approximate (to five decimal places) the probability that an unbiased coin lands on heads
500 times in 1000 flips. I get 0.02523...



8. Let k ≥ 1 be an integer and let λ > 0. Let X ∼ Gamma (k, λ) (this is the Erlang distribution
from Question 7a). Using mathematical induction,1 show that the cdf X can be written as

P (X ≤ x) = 1−
k−1∑
j=0

e−λx · (λx)j

j!
.

9. Let U1, U2, . . . , Un, V be independent Unif (0, 1) random variables, where n ≥ 2. Find the pdf of
Z = (

∏n
i=1 Ui)

V .

Hint : start by finding the distribution of − log (Z). This might be the toughest (or at least the
longest) question of the batch. For an easier version, try to solve it for the n = 2 case.

10. Let U1, U2, . . . be independent Unif (0, 1) random variables. Let M be a random variable inde-
pendent of the Ui’s, with distribution

P (M = m) =
c

m!
, m = 1, 2, 3, . . .

for some c ∈ R. Find the value of c, and then find the pdf of X = min{U1, U2, . . . , UM}. That’s
the minimum of a random number of Ui’s, so you’ll have to do some kind of conditioning.

11. Suppose you repeatedly draw independent Unif (0, 1) random variables and add them together.
What’s the expected number of draws you need for the sum to exceed 1? Let’s answer that.

(a) Let U1, U2, . . . , Un be independent Unif (0, 1) random variables, and let Sn =
∑n

i=1 Ui.
Using mathematical induction, prove that P (Sk ≤ t) = tk/k! for t ∈ (0, 1).

(b) Let N = min{k : Sk > 1}. Argue that P (N = n) = P (Sn−1 ≤ 1)− P (Sn ≤ 1).

(c) Use that to evaluate E [N ]. Think about where your summation starts!

12. If X = (X1, X2, X3, X4) is jointly distributed according to

fX(x1, x2, x3, x4) =
3

4
(x21 + x22 + x23 + x24), 0 < xi < 1, i = 1, 2, 3, 4,

find P
(
X1 <

√
X2 < X3 <

√
X4

)
and E

[√
X1 ·X3

]
.

13. Let B and C be independent Unif (0, 1) random variables. Find the probability that the random
quadratic x2 +Bx+C has a real root. For a harder version, let A ∼ Unif (0, 1) be independent
of B and C and find the probability that Ax2 +Bx+ C has a real root.

?14. Let Y be a random variable whose first two moments exist. Hypothesize which x ∈ R minimizes
E
[
(Y − x)2

]
, and then prove it.

15. Let X ∼ Poisson (λ) and Y ∼ Poisson (ν) be independent. Find the conditional distribution of
X | (X + Y = n).

1If you don’t know what this is, just follow these steps: first prove the result holds for the base case k = 1. Then
assume the result holds for any k ∈ N, and show that this implies the result must also hold for k + 1. The principle of
mathematical induction says that if you’ve done that, then you’ve proven the result holds for all k ∈ N.



16. Let X ∼ Gamma (λ, 1) and Y ∼ Gamma (ν, 1) be independent. Name the distributions of
G = X + Y and B = X/(X + Y ), and show they’re independent. Don’t try to start by finding
the marginals – instead, go straight for the joint distribution of (G,B) and see what pops out.

17. Let X and Y be independent N (0, 1) random variables.

(a) Let R =
√
X2 + Y 2 and Θ = arctan

(
Y
X

)
, where the range of arctan is taken as [0, 2π].

Name the distributions of R2 and Θ, and show they’re independent. Again, go straight for
their joint distribution. If your trig is rusty, remember that tan(x) = sin(x)/ cos(x) and
sin2(x) + cos2(x) = 1.

(b) Use your work to show that if U1 and U2 are independent Unif (0, 1) random variables,

then X
d
=
√
−2log (U1) · cos(2πU2) and Y

d
=
√
−2log (U1) · sin(2πU2). This is called the

Box-Muller transform.

(c) If I give you only a pocket calculator and two independent draws from the Unif (0, 1)
distribution, explain how you can give me back independent draws from the N

(
µ1, σ

2
1

)
distribution and the N

(
µ2, σ

2
2

)
distribution.

18. Let X1, X2 and X3 be uncorrelated random variables, all with expectation µ and variance σ2.
Find expressions for Cov (X1 +X2, X2 +X3) and Cov (X1 +X2, X1 −X2) in terms of µ and σ2.

?19. Let X1, X2, . . . , Xn be independent random variables with E [Xi] = µ and Var (Xi) = σ2. Define
the sample mean X̄n = 1

n

∑n
i=1Xi and the sample variance S2

n = 1
n−1

∑n
i=1(Xi − X̄n)2. Prove

that E
[
X̄n

]
= µ and Var

(
X̄n

)
= σ2/n and also E

[
S2
n

]
= σ2.

Hint : for the last one, you can make life easier by writing Xi − X̄n = (Xi − µ)− (X̄n − µ).

20. In the same setting as above, show that the sample variance satisfies

S2
n =

n− 2

n− 1
S2
n−1 +

1

n
(X̄n−1 −Xn)2.

Why might this identity be useful?

Hint : add and subtract X̄n−1 inside the summands being squared in S2
n.

21. Let A be an n × n matrix whose entries are independent N (0, 1) random variables. Let B =
(A+A>)/2, which you might notice is symmetric. What’s the joint pdf of the n(n+1)/2 entries
in the upper triangle of B? This has matrices in it, but it doesn’t need any linear algebra; if
you remember what the transpose of a matrix is, you can do this! If you’re looking for a name
for your pdf, you can call it fB11,B12,...,Bnn(b11, b12, . . . , bnn).

22. Fix some n ∈ N with n > 1. Prove that if I give you some fixed µ ∈ R and σ2 > 0, you can give
me x1, x2, . . . , xn ∈ R such that

x̄ :=
1

n

n∑
i=1

xi = µ



and
1

n− 1

n∑
i=1

(xi − x̄)2 = σ2.

What — if any — are some statistical implications of this?

Hint : start with n = 2, and you’ll get an explicit form for x1 and x2. Use those to take a
guess at the case for general 2n, and prove that it gives you what you want. For odd n, add an
appropriate x2n+1 to the 2n case.

23. In STA257, you learned Chebyshev’s inequality, a corollary of which says that if E [X] = µ and
Var (X) = σ2, then P (|X − µ| ≥ λ) ≤ σ2/λ2 for any λ > 0. This is the most basic example of a
concentration inequality, so named because it essentially says that random variables with finite
moments tend to “concentrate” around their means — in this case, the probability that X is
at a distance at least x away from µ decays like 1/x2. It turns out that Chebyshev’s inequality
is often rather weak, and for sums of nice independent random variables, we can obtain much
stronger concentration.

(a) First show that Chebyshev’s inequality is tight (i.e., equality holds for some random variable
X and some λ > 0). The easiest example is discrete — try and construct X so that it gives
you what you need.

(b) Let Xi ∼ Bernoulli (pi) be independent for i = 1, . . . , n. Let X =
∑n

i=1Xi and µ =
∑n

i=1 pi.

i. Let MX(t) be the mgf of X. Use the fact that 1+x ≤ ex to show that MX(t) ≤ eµ(et−1).

ii. Use Markov’s inequality and the inequality above to show that for any δ > 0 and any
t ∈ R \ {0},

P (X ≥ µ(1 + δ)) ≤

(
e(e

t−1)

et(1+δ)

)µ
.

iii. Minimize the right-hand side in t to show that

P (X ≥ (1 + δ)µ) ≤
(
eδ−(1+δ) log(1+δ)

)µ
.

iv. Prove that δ − (1 + δ)log (1 + δ) ≤ −δ2/3 for δ ∈ (0, 1) and conclude that

P (X ≥ (1 + δ)µ) ≤ e−δ2µ/3,

which is called a Chernoff bound. How does this compare to the kind of bound you’d
get with Chebyshev?
Hint : for the first inequality, look at how the derivative of f(x) = x−(1+x)log (1 + x)+
x2/3 behaves on (0, 1/2) and (1/2, 1).

24. In STA257, you may have also learned that the distribution of a random variable X is charac-
terized by the random variable’s mgf MX(t), at least when the mfg exists (a necessary condition
is that MX(t) is finite when |t| is arbitrarily small). Does this mean that a distribution is
characterized by its integer moments? Unfortunately not. The following lognormal “family” is
probably the simplest counterexample:



(a) Let

f(x) =
1√
2πx

exp

(
− log (x)2

2

)
, x > 0,

and for any ε ∈ [−1, 1], let fε(x) = f(x) · (1 + ε · sin(2π log (x))). Show that both f(x) and
fε(x) are pdfs on (0,∞).

(b) Let X ∼ f and Y ∼ fε. Show that E [Xn] = E [Y n] for all integers n ≥ 1.

(c) Show that MX(t) =∞ whenever t > 0.

Hint : the easiest way is probably to bound the integral from below by another integral that
you know diverges. Use properties of the exponential function.

25. Show that a continuous random variable X is symmetric around 0 (see Question 1b) if and only
if X and −X have the same distribution. Generalize to random variables symmetric about an
arbitrary point x0.

26. Is there a way to measure the “distance” between two probability distributions? One measure —
which is not actually a metric, but still shows up all over statistics owing to its deep theoretical
properties — is called the KL divergence. For distributions F and G supported on the same set
with respective pdfs/pmfs f and g, it’s defined like this:

DKL(F || G) = E
[

log

(
f(X)

g(X)

)]
, X ∼ F.

(a) Calculate the KL divergence between two Poisson distributions: DKL(Poisson (λ1) || Poisson (λ2)).

(b) Calculate the KL divergence between two exponential distributions: DKL(Exp (λ1) || Exp (λ2)).

(c) Calculate the KL divergence between two normal distributions: DKL(N (µ1, σ
2
1) || N (µ2, σ

2
2)).

Hint : you can do this without any integration.

27. Let X ∼ FX be a continuous random variable supported on [0, b), for some b > 0. Show that

E [Xn] = n

∫ b

0
xn−1 · (1− FX(x)) dx.

For an extra challenge, replace b with ∞ and show the same thing (assume that E [Xn] exists to
begin with). When n = 1 this result is called the Darth Vader rule, for some reason.

28. Let X = (X1, X2) ∼ N2(µ,Σ), where µ = (µ1, µ2) and Σ =

[
σ21 ρσ1σ2

ρσ1σ2 σ22

]
. Here µ1, µ2 ∈ R,

σ21, σ
2
2 > 0, and ρ ∈ (−1, 1). That is, X follows a bivariate normal distribution with mean µ and

covariance matrix Σ, which has joint pdf

fX(x1, x2) =
1

2πσ1σ2
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[(
x1 − µ1
σ1

)2

+

(
x2 − µ2
σ2

)2

− 2ρ

(
x1 − µ1
σ1

)(
x2 − µ2
σ2

)])
.



The goal here is to work out four things: i) the marginal distributions of X1 and X2, ii) the
conditional distributions of X2 | (X1 = x1) and X1 | (X2 = x2), iii) the distribution of aX1+bX2

for a, b ∈ R, and iv) the quantities Cov(X1, X2) and Corr(X1, X2). Theoretically, all of these can
be found using integration and algebra alone, but that gets very tedious. Fortunately, there’s
an easier way.

(a) Let Z1 and Z2 be independent N (0, 1) random variables, and let Y1 = µ1 + σ1Z1 and

Y2 = µ2 + σ2

(
ρZ1 +

√
1− ρ2Z2

)
. Prove that (Y1, Y2)

d
= (X1, X2).

(b) Find the marginal distributions of X1 and X2, and then prove that X1 and X2 are inde-
pendent if and only if ρ = 0.2

(c) Find the conditional distributions of X2 | (X1 = x1) and X1 | (X2 = x2).

Hint : after finding the first one, argue how the second follows immediately by symmetry.

(d) Let a, b ∈ R. Find the distribution of aX1 + bX2.

(e) Find Cov(X1, X2) and Corr(X1, X2).

?29. Let X ∼ N (µ, σ2) and let f(x,A) = P(X ≥ x | X ∈ A), where A ⊆ R is some set. Letting
Z ∼ N (0, 1) and using the standard normal cdf Φ(·) if need be, compute the following:

(a) f(µ, (−∞, µ])

(b) f(µ,R)

(c) f(−µ, [−µ,∞))

(d) f(µ,R \ (−µ, µ))

(e) f(µ+ kσ, [µ+ jσ,∞)), where k, j ∈ N

(f) f(Y,R), where Y ∼ N (µ, σ2) is independent of X

(g) f(Y +
√

3σ,R), where (X,Y ) ∼ N2(µ,Σ) with µ = (µ, µ) and Σ =

[
σ2 −σ2/2
−σ2/2 σ2

]

(h) E [f(µ, (−∞, Y ])], where Y ∼ N (µ, σ2) is independent of X

30. Fix q > 0. Find a continuous random variable X and a discrete random variable Y such that
E [Xq] = E [Y q] =∞, but E [Xp] ,E [Y p] <∞ for all 0 ≤ p < q.

2In other words: if a pair of normal random variables jointly follows a bivariate normal distribution, then the (normally
distributed) marginals are independent if and only if they’re uncorrelated. Unfortunately, students tend to forget about
the qualifier at the start of that statement, resulting in the extremely common and extremely incorrect misconception
that “two normal random variables are independent if and only if they’re uncorrelated.” Please never say this.



31. Let X be a random variable with a finite second moment. Prove Cantelli’s inequality : for any
λ > 0, we have

P(X − E [X] ≥ λ) ≤ Var (X)

Var (X) + λ2
.

Hint : Upper bound the left-hand side by P
(
(X − E [X] + x)2 ≥ (λ+ x)2

)
for any x ∈ R. Then

apply Markov’s inequality and optimize over x.

?32. The Cauchy-Schwarz inequality is one of the most ubiquitous inequalities in math; there’s a
good chance you’ve seen it before in one setting or another. Here’s a version that we’ll need in
our course, which is often called the covariance inequality : for any random variables X,Y with
finite second moments,

|Cov (X,Y ) | ≤
√

Var (X) ·Var (Y ), (1)

where equality holds if and only if X is a certain linear function of Y (with probability 1).
Let’s prove it! To be proper, we’ll declare right here that all statements about X and Y in this
question implicitly hold with probability 1.3

(a) Prove the result when either Var (X) = 0 or Var (Y ) = 0. With that taken care of, assume
going forward (without loss of generality) that Var (Y ) > 0.

(b) Show that the function f(t) = E
[
(X − tY )2

]
is quadratic in t, and explain why it must

have at most one real root.

(c) Think back to the quadratic formula and use the last fact to obtain

|E [XY ] | ≤
√

E [X2] · E [Y 2]. (2)

(d) Show that equality in (2) holds if and only if X = t∗Y , where t∗ = E [XY ] /E
[
Y 2
]
.

(e) Obtain (1) by replacing X and Y in (2) with X−E [X] and Y −E [Y ], respectively. Exactly
when does equality hold?

33. Prove the Paley-Zygmund inequality : if X is a non-negative random variable with a finite second
moment, then for any λ ∈ [0, 1],

P(X > λ · E [X]) ≥ (1− λ)2 · E [X]2

E [X2]
.

Hint : start by writing X = X · 1X≤λ·E[X] + X · 1X>λ·E[X], take expectations, and use (2)
somewhere.

34. Let X be a random variable taking values in the non-negative integers (assume this for all
random variables in this question) whose moments exist. The probability generating function
(pgf) of X is the function GX(t) = E

[
tX
]

=
∑∞

j=0 P(X = j) · tj .

(a) Show that E [X] = G′X(1) and Var (X) = G′′X(1) +G′X(1)− [G′X(1)]2

3In other words, if we say something like X = Y , we really mean that P (X = Y ) = 1. It’s okay to ignore this
technicality here because this question is about expectations, and expectations don’t care about events of probability 0.



(b) If X1, X2, . . . is a sequence of independent and identically distributed random variables with
pgf GX(t), and N is another random variable independent of the Xi’s with pgf GN (t), show
that the pgf of Y =

∑N
j=1Xj is GN (GX(t)).

(c) Find the pgfs of the Binomial(k, p), the Poisson(λ), and the Geometric(p) distributions.
If there are infinite series involved, assume whatever values of t you need to make them
converge.


