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The Bayesian Model
So ◊ is now treated as a random variable with its own distribution expressing
our beliefs

The Bayesian framework for inference contains the statistical model
{f◊ : ◊ œ �} and adds a prior probability measure � : � æ [0, 1] describing
our beliefs about ◊ before we observe the data

We usually refer to the prior by its pdf/pmf, which we denote generically as
fi(·)
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A Simple Example of a Prior
Suppose we’re shown a coin, and we are told to infer whether it’s biased or
not just from looking at it

If X = heads, then we want to make inferences about the random variable p,
where X | p ≥ Bernoulli (p)

What should our prior on � = [0, 1] look like?

It depends on what we know (or don’t know) about the coin

Here are three of many possible choices
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Prior Distributions for the Coin Example
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The Prior Predictive Distribution
What if we were asked to predict the likelihood of the coin coming up heads
at this point?

It’s reasonable to take a weighted average of all possible Bernoulli (p)
distributions, each one weighted by our prior confidence fi(p), which is

⁄

�
Pp(X = 1) · fi(p) dp =

⁄ 1

0
p · fi(p) dp

There’s a name for this

Definition 6.1: Given a pdf f◊ and a prior distribution fi on ◊, the prior

predictive distribution of the data x is given by the pdf

f(x) =
⁄

�
f◊(x) · fi(◊) d◊.
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Prior Predictive Distributions for the Coin Example
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The Posterior Distribution - A Motivation
Now, suppose we actually flip the coin once and observe X = 1

If we were asked what the likelihood of some p
Õ œ [0, 1] is now, we could take

our prior probability fi(pÕ) and weigh it down by the likelihood of observing
X = 1 if the “true” parameter really were p

Õ

That is, it’s reasonable to answer with PpÕ(X = 1) · fi(pÕ), since data in
support of p

Õ will make this relatively high, while data in support of some p
ÕÕ

far away from p
Õ will make it relatively low

To put everything on the same scale, may as well normalize those quantities
over all possible p œ [0, 1] and answer instead with

PpÕ(X = 1) · fi(pÕ)
s 1

0 Pp(X = 1) · fi(p) dp

= p
Õ · fi(pÕ)

s 1
0 p · fi(p) dp
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Posterior Distributions for the Coin Example (X = 1)
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The Posterior Distribution - A Derivation
In general, f◊(x) · fi(◊) is the joint pdf of (X, ◊)

From Bayes’ rule, the conditional pdf of ◊ | X is given by

f◊(x) · fi(◊)
f(x)

There’s also a name for this

Definition 6.2: The posterior distribution of ◊ is the conditional
distribution of ◊ | (X = x), given by the pdf

fi(◊ | x) = f◊(x) · fi(◊)s
� f◊(x) · fi(◊) d◊

.
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Poll Time!

On Quercus: Module 6 - Poll 1
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More on the Posterior
The posterior fi(◊ | x) is a function of ◊, and the data x is observed

So we could write fi(◊ | x) Ã f◊(x) · fi(◊)

Thus, [
s

� f◊(x) · fi(◊) d◊]≠1 plays the role of normalizing constant for the
unnormalized pdf f◊(x) · fi(◊)

If the functional form of f◊(x) · fi(◊) looks familiar, then we’ll know what
(
s

� f◊(x) · fi(◊) d◊)≠1 must be, and we can get fi(◊ | x) for free

Example 6.1: Suppose we calculate f◊(x) · fi(◊) Ã ◊
x+1(1 ≠ ◊)2≠x for

◊ œ (0, 1). What is fi(◊ | x)?
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More on the Posterior
The observed data dictates how much the posterior distribution di�ers from
the prior

Consider three di�erent priors:
I fi1 is highly concentrated at ◊1 œ �
I fi2 is highly concentrated at ◊2 œ �
I fi3 is Unif (�)

Now we observe x; suppose the likelihood L(◊ | x) = f◊(x) “supports” ◊2 in
the frequentist sense

What do the posteriors look like?
I fi1(· | x)
I fi2(· | x)
I fi3(· | x)

Even if the prior is strong, the likelihood will eventually “overpower” it as the
sample size n grows
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When the Prior and the Data Disagree

Rob Zimmerman (University of Toronto) STA261 - Module 6 August 6-8, 2024 14 / 62

Actualdata X Binn 09

n 100 S

n 5

n 1

Actual
Beta2,9

prior

10.9



Computing Posteriors: Examples
Example 6.2: Suppose that fi(p) = Beta (–, —) and
X1, X2, . . . , Xn

iid≥ Bernoulli (p). Find the posterior fi(p | x).

Rob Zimmerman (University of Toronto) STA261 - Module 6 August 6-8, 2024 15 / 62

ITPID α x ̅ p Ip x ̅ ITp Upx ̅

P lp IIPGp
a pexit lpyexit This.ie iikedaaB I

f

itplz TExitα th Ex B

Exita MnEx g
P
E l p

Exits 1

SameparametricfamilyasIlp
p x ̅ BetaEx α n Ex B butwiththeoriginalparameters

updated inlightofx ̅ x ̅



Computing Posteriors: Examples
Example 6.3: Suppose that fi(⁄) = Gamma (–, —) and
X1, X2, . . . , Xn

iid≥ Poisson (⁄). Find the posterior fi(⁄ | x).
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The Return of Su�ciency
What if instead of observing x, we only have access to a su�cient statistic
T (x)?

Su�ciency kind of carries over to the Bayesian setting, in the following sense

Theorem 6.1: Let X1, X2, . . . , Xn

iid≥ f◊ and let fi(◊) be a prior on ◊. If
T (X) is a su�cient statistic for ◊ (in the frequentist sense), then
fi(◊ | x) = fi(◊ | T (x)).
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Computing Posteriors: Examples
Example 6.4: Suppose that fi(p) = Beta (–, —) and
X1, X2, . . . , Xn

iid≥ Bernoulli (p). Find the posterior fi(p |
q

n

i=1 xi).
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Hyperparameters
In the previous example, the prior fi(◊) = Gamma (–, —) had its own set of
parameters:

Definition 6.3: The parameters ⁄ of a prior distribution fi⁄(·) in a parametric
family {fi⁄ : ⁄ œ �} are called hyperparameters.

Sometimes the hyperparameter ⁄ is a given constant (either known from
prior experience or chosen based on the situation)

Other times, we go meta and assign a prior distribution to ⁄ itself (called a
hyperprior, possibly with its own hyperhyperparameters)

Models of this sort are called hierarchical Bayesian models

We could keep going and assign a hyperhyperprior to the
hyperhyperparameters, and a hyperhyperhyperprior to the
hyperhyperhyperparameters, and...
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Poll Time!

On Quercus: Module 6 - Poll 2
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Choosing Priors
How do we choose an appropriate prior (both for the parameter associated
with the data, as well as any hyperparameters)?

There’s no single answer to this question

One of a Bayesian statistician’s key roles is arguing with other statisticians
about prior selection

Some priors are simply not sensible given the parametric family for the data

Example 6.5:

We’ll discuss several commonly used methods of prior selection, but these
certainly aren’t the only ones (nor are they mutually exclusive)
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Objectivity Versus Subjectivity
One can very roughly classify Bayesians into two groups: objective Bayesians
and subjective Bayesians

Subjective Bayesians prefer to integrate personal beliefs about the world – or
lack thereof – into their inferences, and they would choose priors that reflect
their beliefs (to the extent possible)

Of course, these would influence the posterior, so two subjective Bayesians
might come up with di�erent posteriors (even if they both agree on a model
for the data itself); these reflect their di�ering opinions

Objective Bayesians prefer to let the data speak for itself, and they would
choose priors that do not reflect any personal biases

To an objective Bayesian, there should be a fixed procedure for choosing a
prior, and therefore everyone should agree on the same posterior

Rob Zimmerman (University of Toronto) STA261 - Module 6 August 6-8, 2024 22 / 62



Conjugate Priors
In the previous examples, the posterior distribution was in the same
parametric family as the prior (albeit with “updated” parameters)

This doesn’t always happen – most of the time, the posterior will be an
unfamiliar distribution – but when it does happen, there’s a special name for
it

Definition 6.4: A family of priors {fi⁄ : ⁄ œ �} for the parameter ◊ of the
model F = {f◊ : ◊ œ �} is called conjugate for F if, for all data x œ X n

and all ⁄ œ �, the posterior fi(· | x) œ {fi⁄ : ⁄ œ �}

Example 6.6:

Example 6.7:
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Conjugate Priors
Example 6.8: Suppose that fi(µ) = N

!
◊, ·

2"
and

X1, X2, . . . , Xn

iid≥ N
!
µ, ‡

2"
where ‡

2 is known. Find the posterior fi(µ | x).
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Conjugate Priors
In those examples, it was no coincidence that both prior and likelihood were
in exponential families

Theorem 6.2: Let X1, X2, . . . , Xn

iid≥ f◊ where f◊ is in an exponential family:

f◊(x) = h(x) · g(◊) · exp

Q

a
kÿ

j=1
÷j(◊) · Tj(x)

R

b .

If we choose an exponential family prior of the form

fi(◊) Ã g(◊)‹ · exp

Q

a
kÿ

j=1
÷j(◊) · ›j

R

b

where ‹ and ›1, . . . , ›k are hyperparameters, then fi(◊) is a conjugate prior
for f◊.

Rob Zimmerman (University of Toronto) STA261 - Module 6 August 6-8, 2024 26 / 62

Ghat
happenswhene isreallycloseto 0

Orwhennisverylarge

ProfEXERCISE Identifythe updatedparameterstoo



Why Conjugate Priors?
Conjugacy is very mathematically convenient

But is a conjugate family actually relevant to whatever the statistical
situation is?

It’s widely acknowledged that most conjugate families are rich enough to
express a wide spectrum of prior beliefs

Example 6.9:
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Elicitation
Even if we do have a particular parametric family {fi⁄ : ⁄ œ �} selected for
our prior, how do we actually set the hyperparameters?

Ideally, we’ll have some experts in the field (possibly ourselves) available to
give us their thoughts on what they believe is plausible, based on their own
past experiences

We can’t expect them to just tell us raw numbers for ⁄, but with enough
information, we can try and work out the best match

Translating those thoughts into a choice of hyperprior is called prior

elicitation
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Poll Time!

On Quercus: Module 6 - Poll 3
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Elicitation: Examples
Example 6.10: Suppose we’re sampling from an N

!
µ, ‡

2"
distribution with µ

unknown and ‡
2 known, and we restrict attention to the family

{N
!
µ0, ·

2"
: µ0 œ R, ·

2
> 0}. If an expert tells us they’re 50% certain that

µ lies between 2 and 3, how can we elicit our prior?
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Expressing Ignorance
What if the experts are keeping quiet and we have nothing to work with?

Or maybe we’re objective Bayesians and “expert advice” is irrelevant to us

How do we choose a prior that expresses complete ignorance about ◊?

In the coin example, choosing fi(p) = Unif (0, 1) would work

What about a completely objective prior on µ in the N
!
µ, ‡

2"
model?

There’s no uniform distribution on R

And yet, if we take fi(µ) = 1,
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Uninformative Priors
Definition 6.5: A function fi(◊) used in place of a true prior distribution that
does not relect any prior beliefs about ◊ is called an uninformative (or
noninformative or default or reference) prior.

Example 6.11:

We have a special name for choices like fi(µ) = 1 above

Definition 6.6: If an uninformative prior fi(◊) is not a true distribution (i.e.,s
� fi(◊) d◊ is divergent), then it is called an improper prior.

Improper priors are controversial, and they’re di�cult to interpret
probabilistically

Moreover, if chosen haphazardly they can lead to improper posteriors (which
are truly meaningless)
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Problems With Uninformative Priors
Example 6.12: Suppose that X ≥ Bernoulli (p). What is the posterior
fi(p | x) based on the Haldane prior fi(p) = 1

p(1≠p) ?
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Problems With Uninformative Priors
Example 6.13: Suppose that X ≥ Bernoulli (p) and we choose
fi(p) = Unif (0, 1). What prior does this correspond to for the log-odds
· = log

1
p

1≠p

2
?
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Oh No
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Ignorance From All Perspectives
The previous example shows that ignorance about ◊ does not necessarily
translate to the same ignorance about ·(◊)

In other words, if fi◊ is a prior for the model parameterized by ◊ and fi· is a
prior for the model parameterized by · = ·(◊),

fi· (t) ”= fi◊(·≠1(t)) ·
----

d
dt

·
≠1(t)

----

in general

What if we insisted on “equivalent” ignorance for all monotone
re-parametrizations of ◊?

It turns out there’s a way to make this happen using the Fisher information
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Je�reys’ Prior
Definition 6.7: Let X1, X2, . . . , Xn

iid≥ f◊ where ◊ is univariate. Je�reys’

prior for ◊ is given by fi
J

◊
(◊) Ã


I1(◊).

Notice that this prior depends only the model – there’s no room for any
subjectivity beyond the choice of model

Je�reys felt that invariance under monotone transformations is a suitably
uninformative property for a prior

Theorem 6.3: Under the regularity conditions of the Cramér-Rao Lower
Bound, Je�reys’ prior is invariant under monotone transformations, in the
sense that

fi
J

·
(t) = fi

J

◊
(·≠1(t))

----
d
dt

·
≠1(t)

----

if · : � æ R is monotone and di�erentiable.
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Proof.
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Je�reys’ Prior: Examples
Example 6.14: Let X1, X2, . . . , Xn

iid≥ Bernoulli (p). Determine Je�reys’ prior
for this model, and determine the posterior fi(p | x) based on it.
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Je�reys’ Prior: Examples
Example 6.15: Let X1, X2, . . . , Xn

iid≥ N
!
µ, ‡

2"
with ‡

2 known. Determine
Je�reys’ prior for this model, and determine the posterior fi(µ | x) based on
it.
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Inferences Based On the Posterior
If we’re satisfied with a choice of prior and we’ve computed (or estimated)
the posterior, what do we actually do with this distribution?

The inferential techniques of Modules 2-4 (point estimation, hypothesis
testing, and confidence intervals) can’t be directly applied here, since ◊ | x is
not a fixed constant

Our goal is to find Bayesian analogues of these techniques
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Bayesian Point Estimation
If X ≥ f◊, how do we “estimate” either ◊ itself or some quantity · = ·(◊) in
the Bayesian context?

We have a posterior distribution fi(◊ | x) to work with

What quantities can we extract from it that can meaningfully take the place
of our frequentist estimates?

If we use some characteristic ◊̂ of fi(◊ | x), then it must be a function of the
data x and we can write ◊̂ = ◊̂(x)

That makes ◊̂(X) a genuine point estimator, which we can compare to our
favourite frequentist estimators like the MLE

To keep the notation simple, we’ll work with ◊ itself, but everything carries
over to ·(◊)
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MAP Estimators
One reasonable approach is to choose the value that the posterior says is
most probable – that is, the mode of the posterior

Definition 6.8: Given a posterior distribution fi(◊ | x), a maximum a
posteriori (MAP) estimator of ◊ is given by the conditional mode of the
posterior:

◊̂MAP(X) = argmax
◊œ�

fi(◊ | X).

If we want the MAP estimator of · = ·(◊), we’ll need to maximize fi(· | x)

But that’s the same as maximizing f(x) · fi(· | x) = fi(·) · f· (x), so we
don’t need to bother with the normalizing constant f(x), which is usually a
nasty integral

Rob Zimmerman (University of Toronto) STA261 - Module 6 August 6-8, 2024 43 / 62

assumingtheposterior
isunimodal



Posterior Means
We might prefer to take a weighted average of all ◊

Õ œ �, each weighed down
by how probable the posterior says it is – that is, the expectation of the
posterior

Definition 6.9: Given a posterior distribution fi(◊ | x), the posterior mean

estimator – if it exists – is given by the conditional expectation of the
posterior:

◊̂B(X) = E [◊ | X] =
⁄

�
◊ · fi(◊ | x) d◊.

The posterior mean estimator is nice because it minimizes the expected MSE
under the posterior:

◊̂B(·) = argmin
T (·)

E [MSE◊ (T (X))]
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Bayesian Point Estimation: Examples
Example 6.16: Let X1, X2, . . . , Xn

iid≥ Bernoulli (p), and suppose we place a
Beta (–, —) prior on p. Find the MAP estimator and the posterior mean
estimator for p, and describe how they compare to the MLE.
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Bayesian Point Estimation: Examples
Example 6.17: Let X1, X2, . . . , Xn

iid≥ N
!
µ, ‡

2"
with ‡

2 known, and
suppose we place a N

!
◊, ·

2"
prior on µ. Find the MAP estimator and the

posterior mean estimator for µ, and describe how they compare to the MLE.
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Poll Time!

On Quercus: Module 6 - Poll 4
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Bayesian Hypothesis Testing
What about Bayesian hypothesis testing?

We might think to test every hypothesis by simply computing probability
under fi(◊ | x), we’d quickly run into problems

For example, if the posterior is continuous, then we’d reject every simple
hypothesis H : ◊ = ◊0

We might try to get around this by computing a Bayesian p-value

�({◊ : fi(◊ | x) Æ fi(◊0 | x)} | x), but there can be problems with that as well
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Bayesian p-Values Aren’t Great
Example 6.18: Suppose fi(◊ | x) = Beta (2, 1). Compute Bayesian p-values
for H0 : ◊ = 3

4 under the posterior of ◊ | x and the posterior of ◊
2 | x.
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Tweaking the Prior
These issues happen when the prior fi(◊) assigns zero probability to H0, and
can be avoided by tweaking the prior in such a way to fix this

This isn’t unreasonable; if we have reason to test H : ◊ œ A, then we suspect
it could be true, which would be contradicted if �(◊ œ A) = 0

If we start with a continuous prior fi2, we can create a new one using

fi(◊) = – · fi1(◊) + (1 ≠ –) · fi2(◊),

where fi1 is degenerate at ◊0 and – œ (0, 1)

This gives
�({◊0} | x) = –f1(x)

–f1(x) + (1 ≠ –)f2(x) ,

where fi(x) is the prior predictive distribution under the prior fii
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Bayes Factors
There’s a popular approach to Bayesian hypothesis testing involves the odds

Definition 6.10: Let fi(◊) be a prior, let X ≥ f◊(x), and let fi(◊ | x) be the
posterior for the model. Suppose that H0 : ◊ œ �0 and HA : ◊ œ �c

0 are two
competing hypotheses about plausible values of ◊.

The prior odds in favour of H0 is the ratio �(�0)
�(�c

0) = �(�0)
1 ≠ �(�0) .

The posterior odds in favour of H0 is the ratio �(�0 | x)
�(�c

0 | x) = �(�0 | x)
1 ≠ �(�0 | x) .

Provided that �(�0) > 0, the Bayes factor in favour of H0 is given by the
ratio of the posterior odds to the prior odds:

BFH0 = �(�0 | x)
1 ≠ �(�0 | x)

? �(�0)
1 ≠ �(�0) .
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Bayes Factors
What’s the point of Bayes factors?

For one, if we let r be the prior odds, then

�(�0 | x) = r · BFH0

1 + r · BFH0

So a small/large Bayes factor means a small/large posterior probability of H0

Moreover, Bayes factors have a surprising connection to likelihood ratios

Theorem 6.4: If we want to test H0 : ◊ œ �0 and we choose a prior mixture
fi(◊) = – · fi1(◊) + (1 ≠ –) · fi2(◊) such that �1(�0) = �2(�c

0) = 1, then

BFH0 = f1(x)
f2(x) .
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Bayes Factors: Examples
Example 6.19: Suppose that X1, X2, . . . , Xn

iid≥ Bernoulli (◊) and we place a
Unif (0, 1) prior on ◊. Compute the Bayes factor in favour of H0 : ◊ = ◊0.
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Credible Intervals
Assuming that � ™ R, what’s a reasonable Bayesian analogue of confidence
intervals?

Now, it’s perfectly reasonable to ask what the probability is that l Æ ◊ Æ u

for l, u œ �

Definition 6.11: Let fi(◊ | x) be a posterior distribution on �. A
(1 ≠ –)-credible interval for ◊ is an interval [L(x), U(x)] ™ � such that

�(L(x) Æ ◊ Æ U(x) | x) =
⁄

U(x)

L(x)
fi(◊ | x) d◊ Ø 1 ≠ –.

As with confidence intervals, there are usually plenty of credible intervals
available for a given posterior, so we look for some desirable properties
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Two Types of Credible Intervals
Definition 6.12: If fi(◊ | x) is unimodal, the (1 ≠ –)-credible interval
[L(x), U(x)] such that the length U(x) ≠ L(x) is minimized is called the
(1 ≠ –)-highest posterior density (HPD) interval for ◊

An HPD interval really does capture the most likely values in �, since any
region outside of it will be assigned a lower posterior probability

Definition 6.13: The (1 ≠ –)-credible interval [L(x), U(x)] which satisfies

�((≠Œ, L(x)] | x) = �([U(x), Œ) | x) = –/2

is called the (1 ≠ –)-equal tailed interval (ETI) for ◊

An ETI exists for any continuous posterior, unimodal or otherwise

One can show that if fi(◊ | x) is symmetric, unimodal, and continuous, then
the HPD interval and the ETI will be equal
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Credible Intervals: Examples
Example 6.20: Suppose that X1, X2, . . . , Xn

iid≥ N
!
µ, ‡

2"
where ‡

2 is
known, and we place a N

!
◊, ·

2"
prior on µ. What do (1 ≠ –)-HPD intervals

and ETIs for µ look like? What happens as ·
2 æ Œ?
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Credible Intervals: Examples
Example 6.21: Suppose that X1, X2, . . . , Xn

iid≥ Poisson (⁄) and we place a
Gamma (–, —) prior on ⁄. What do 95% HPD intervals and ETIs for ⁄ look
like?
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ETIs are Invariant
We’ve seen that posterior distributions can do unexpected things when we’re
interested in inferences of ·(◊)

In general, a credible interval for ◊ may tell us nothing about a credible
interval (or credible region) for ·(◊)

But ETIs have a special property that bypasses this issue

Theorem 6.5: ETIs are invariant under monotone transformations of ◊, in the
sense that if (L(x), U(x)) is a (1 ≠ –)-ETI for ◊ and · : � æ R is monotone
increasing, then (·(L(x)), ·(U(x))) is a (1 ≠ –)-ETI for ·(◊).

Proof.

Example 6.22:
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Poll Time!

On Quercus: Module 6 - Poll 5
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The Bernstein-von Mises Theorem
Bayesian and frequentist inference unite in this monumental result

Theorem 6.6 (Bernstein-von Mises): Let X1, X2, . . . , Xn

iid≥ f◊0 , let fi(◊)
be a prior distribution placing positive mass around ◊0, and let
◊n ≥ fi(◊ | xn). Under suitable regularity conditions,

Ô
n

1
◊n ≠ ◊̂MLE(xn)

2
d≠æ N

3
0,

1
I1(◊0)

4
.

This statement is a vast simplification of the actual Bernstein-von Mises
theorem, but it preserves the essence

The takeaway is that as the sample size of our data n gets larger, the choice
of fi(◊) matters less and the likelihood dominates

Roughly speaking, the posterior fi(◊ | xn) converges to a degenerate
distribution on ◊0, for any well-behaved prior (!)
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The Bernstein-von Mises Theorem: It’s True
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The End
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