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The Bayesian Model

@ So 6 is now treated as a random variable with its own distribution expressing
our beliefs

@ The Bayesian framework for inference contains the statistical model
{fo : 0 € ©} and adds a prior probability measure I1: © — |0, 1] describing
our beliefs about 6 before we observe the data (\n " b e phor version)

@ We usually refer to the prior by its pdf/pmf, which we denote generically as
7(-)
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A Simple Example of a Prior

@ Suppose we're shown a coin, and we are told to infer whether it's biased or
not just from looking at it (e, befire pu“,i,\g;g

@ If X = ljeads, then we want to make inferences about the random variable p,
where X | p ~ Bernoulli (p)

@ What should our prior on © = [0, 1] look like?

@ It depends on what we know (or don't know) about the coin

@ Here are three of many possible choices
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Prior Distributions for the Coin Example
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The Prior Predictive Distribution

@ What if we were asked to predict the likelihood of the coin coming up heads
at this point?

@ It's reasonable to take a weighted average of all possible Bernoulli (p)
distributions, each one weighted by our prior confidence w(p), which is

/@IP’p(X =1) - 7(p)dp = /Olp-ﬂ(p)dp

@ [here’s a name for this

@ Definition 6.1: Given a pdf fy and a prior distribution 7 on 6, the prior
predictive distribution of the data x is given by the pdf

— & X~ Repoulii(@), this
: ° 9 deo L ) ‘ ’
Fx) /@ folx) - m(0) s [ or0-a™ ol 40
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Prior Predictive Distributions for the Coin Example
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The Posterior Distribution - A Motivation

@ Now, suppose we actually flip the coin once and observe X =1

o If we were asked what the likelihood of some p’ € [0, 1] is now, we could take
our prior probability 7(p’) and weigh it down by the likelihood of observing
X = 1 if the “true” parameter really were p’

@ That is, it's reasonable to answer with P, (X = 1) - 7(p’), since data in
support of p’ will make this relatively high, while data in support of some p”
far away from p’ will make it relatively low

@ To put everything on the same scale, may as well normalize those quantities
over all possible p € |0, 1] and answer instead with

Ppy(X=1)70) _ _p-7(pf) ExeeaE:
1 ! ¢ e o Valh
Jy Bo(X =1) - m(p)dp [y p-m(p)dp 0 Kooy
C“‘l‘—-ftmﬁnfeb
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Posterior Distributions for the Coin Example (X = 1)
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The Posterior Distribution - A Derivation

o In general, fy(x) - w(#) is the joint pdf of (X,6) AED-= );‘e(;\e)

@ From Bayes’ rule, the conditional pdf of 6 | X is given by

fo(x) - m(0)
f (X) &— poiar grediehive dishebotin’
Hz) - Sa Fols) we) o

@ There's also a name for this

@ Definition 6.2: The posterior distribution of 0 is the conditional
distribution of 6 | (X = x), given by the pdf

_ Je(x)-m(0)
O = T o (@) a8
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Poll Time!

On Quercus: Module 6 - Poll 1
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@ The posterior (6 | x) is a function of §, and the data x is observed

£ 18

Shvande ..
usril- 0

o Thus, [[g fo(x) - m(6)d]~" plays the role of normalizing constant for the
unnormalized pdf fy(x) - 7(0)

@ So we could write (0 | x) x fp(x) - 7(60) ‘becowse WEBIK)=

o If the functional form of fo(x) - m(A) looks familiar, then we'll know what

(fg fo(x) - m(0)df)~" must be, and we can get (0 | x) for free

"temel” & o distibubion (Ledhe oart
S o\ withwithe
@ Example 6.1: Suppose we calculate fo(x) - m(0) oc 0*T1(1 — 6)%~% for WM)Q

0 (0,1). What is (6 | x)?
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More on the Posterior

@ The observed data dictates how much the posterior distribution differs from
the prior

@ Consider three different priors:

» 71 is highly concentrated at #; € ©
» 7o is highly concentrated at 0 € ©
> T3 IS Unlf(@)

@ Now we observe x; suppose the likelihood L(0 | x) = fg(x) “supports” 65 in
the frequentist sense

@ What do the posteriors look like?
> m1(- | %) bl b lexr concetorad of O,

> T2(- | X) will be oun pare reatwind ob B2
> m3(- | X) wik e (omabe) (mcentaied ok 62

@ Even if the prior is strong, the likelihood will eventually “overpower” it as the
sample size n grows
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When the Prior and the Data Disagree
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Computing Posteriors: Examples

@ Example 6.2: Suppose that 7(p) = Beta («, 8) and
X1, Xo,..., X, Y Bernoulli (p). Find the posterior 7(p | x).
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Computing Posteriors: Examples

@ Example 6.3: Suppose that 7(\) = Gamma («, 8) and
X1, Xo, ..., X,, “ Poisson (A\). Find the posterior 7(\ | x).

(AR < =) LD

“ X e (T[ X‘e"')
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The Return of Sufficiency

@ What if instead of observing x, we only have access to a sufficient statistic
T(x)?

@ Sufficiency kind of carries over to the Bayesian setting, in the following sense

@ Theorem 6.1: Let X1, Xo,..., X, g fo and let w(0) be a prior on 6. If

T(X) is a sufficient statistic for 6 (in the frequentist sense), then

M“di"m Ruoteror g ?_(ﬁ_ E\AE?-C% \
mHad X=2 () s 'w;
£TE)
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Computing Posteriors: Examples TD ZG s sfcian
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Hyperparameters

Bala.
In the previous example, the prior 7(6) = @amm===(«, §) had its own set of
parameters: ol opd B 0. geheric. poromater (live "0” used 1o 52,

which could be o, vector: e, M=(», B)

Definition 6.3: The parameters A\ of a prior distribution 7, (-) in a parametric
family {7y : A € A} are called hyperparameters.

Sometimes the hyperparameter \ is a given constant (either kiR From
prior experience or chosen based on the situation)

Other times, we go meta and assign a prior distribution to A itself (called a
hyperprior, possibly with its own hyperhyperparameters)

Q—'W\W WGA‘.

Models of this sort are called hierarchical Bayesian models

We could keep going and assign a hyperhyperprior to the
hyperhyperparameters, and a hyperhyperhyperprior to the
hyperhyperhyperparameters, and... .. ot pa'e oyt st fomashone!
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Poll Time!

On Quercus: Module 6 - Poll 2
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Choosing Priors

How do we choose an appropriate prior (both for the parameter associated
with the data, as well as any hyperparameters)?

There's no single answer to this question

One of a Bayesian statistician’s key roles is arguing with other statisticians
about prior selection Amost evet popz ok ogplies Bagerion clotictics w'nl(dugﬂy tho
choices & prias... \'VMPIM ]
Some priors are simply not sensible given the parametric family for the data
i . = - !
) SR Beinodl(p> w(p) = Unk 4,0 ks o sflm
Example 6.5: ﬂ(@"\)(*lc’,@ nolces (o <ok,

K. )ﬁg NQ’!") e = Uit (3 S.GD prbadly rot ok sensible...

We'll discuss several commonly used methods of prior selection, but these
certainly aren’t the only ones (nor are they mutually exclusive)
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Obijectivity Versus Subjectivity

@ One can very roughly classify Bayesians into two groups: objective Bayesians
and subjective Bayesians

@ Subjective Bayesians prefer to integrate personal beliefs about the world — or
lack thereof — into their inferences, and they would choose priors that reflect
their beliefs (to the extent possible)

@ Of course, these would influence the posterior, so two subjective Bayesians
might come up with different posteriors (even if they both agree on a model
for the data itself); these reflect their differing opinions

@ Objective Bayesians prefer to let the data speak for itself, and they would
choose priors that do not reflect any personal biases

@ To an objective Bayesian, there should be a fixed procedure for choosing a
prior, and therefore everyone should agree on the same posterior
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Conjugate Priors

@ In the previous examples, the posterior distribution was in the same
parametric family as the prior (albeit with “updated” parameters)

@ This doesn't always happen — most of the time, the posterior will be an
unfamiliar distribution — but when it does happen, there's a special name for
it

@ Definition 6.4: A family of priors {7 : A € A} for the parameter 6 of the
model F = {fy : 0 € O} is called conjugate for F if, for all data x € X"
and all A\ € A, the posterior 7(- | x) € {my : A € A}

e Example 6.6: @e‘m«(d\@‘\g (o2 G Renadli(pd (owd Ein&,@ (2rd o¥he)

® Example 6.7: (':\O\M\o‘(ﬁ\& [ c»&u&z‘@ b %m(»
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Conjugate Priors

@ Example 6.8: Suppose that 7(u) = N (6’,7’2) and
X1, X9,..., X, N (,u, 02) where o2 is known. Find the posterior m(u | x).
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_ : wwwu\zzﬂsmdﬁdm'bO?
Conjugate Priors \ Or vho ¢ vy g2

@ In those examples, it was no coincidence that both prior and likelihood were
in exponential families

@ Theorem 6.2: Let X1, Xo,..., X, g fo where fg is in an exponential family:

k
fo(x) = h(z) - g(0) - exp Zm‘(@) T;()

If we choose an exponential family prior of the form

k
m(0) o< g(0)” - exp an(e) &

where v and &1, ..., & are hyperparameters, then () is a conjugate prior
for f@.

?ﬂo‘:ﬁ EYERCSE ‘ \M\&A‘H@ "tﬁmﬂﬂw'{m[
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Why Conjugate Priors?

@ Conjugacy is very mathematically convenient

@ But is a conjugate family actually relevant to whatever the statistical
situation is?

@ It's widely acknowledged that most conjugate families are rich enough to
express a wide spectrum of prior beliefs

@ Example 65.9: The N(e,tj’) gfwf'&«/) inthe NQ’.G’B model . § wate anwc\\rv_
“gpmmatec ond  iseodol prier \Cm‘eé@z cbout o, then Aiis

ooinmodetes & (ot

The Betlz, B prior £5 p in the Bemolip) meodol: con handle uifem pri- belich,
m\%m in (0,)), &tc...
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Elicitation

@ Even if we do have a particular parametric family {my : A € A} selected for
our prior, how do we actually set the hyperparameters?

@ Ideally, we'll have some experts in the field (possibly ourselves) available to
give us their thoughts on what they believe is plausible, based on their own
past experiences

@ We can't expect them to just tell us raw numbers for A\, but with enough
information, we can try and work out the best match

@ Translating those thoughts into a choice of hyperprior is called prior
elicitation
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Poll Time!

On Quercus: Module 6 - Poll 3
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Elicitation: Examples

@ Example 6.10: Suppose we're sampling from an N/ (,u,aQ) distribution with u
unknown and o2 known, and we restrict attention to the family
{N (o, 72) : o € R, 72 > 0}. If an expert tells us they're 50% certain that

1 lies between 2 and 3, how can we elicit our prior?

(ot thome p.=2.5. Whok cbwt 7
gm/,»l\\(‘z.s v2). We |t flat !é=(\{/c(2,?3)

Than [-5=4 - ﬂ‘zy@(,a)
2%’2.S>
T

(25,P) pf )’i e 2725
/N L “)( T T "¢

‘Rz %)+ Pl 0%) o, 2N
2 ﬂ-os

afea” 2
> = -0.5
2 3 .‘(03'5)

S o doid de. > > NC25, (i) )
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Expressing Ignorance

@ What if the experts are keeping quiet and we have nothing to work with?
@ Or maybe we're objective Bayesians and “expert advice” is irrelevant to us
@ How do we choose a prior that expresses complete ignorance about 67

@ In the coin example, choosing 7(p) = Unif (0, 1) would work

@ What about a completely objective prior on u in the N (,u,az) model?
There's no uniform distribution on R SG l/o dor 1ok exist f"ma ct0 ()

e And yet, if we take m(pu) =1, Lereum c@,%

Yt = L- e ‘zf”\ ex(52)

=ZpR AN TR Tiigis o tongleiRly lefitinate. posteter!
K cloaty leking the. dolo dooll e tulking..
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Uninformative Priors

Definition 6.5: A function 7(6) used in place of a true prior distribution that
does not relect any prior beliefs about 6 is called an uninformative (or
noninformative or default or reference) prior.

0 )o‘i’m-\'huy,q’) makl, o R, r* kneun
1: me)~ 1 in the Wi(0©) molal, 620

Example 6.1
(@) = 4. in the Banelilp) mold, pelond

We have a special name for choices like m(1) = 1 above

Definition 6.6: If an uninformative prior 7(6) is not a true distribution (i.e.,
Jo m(6) df is divergent), then it is called an improper prior.

Improper priors are controversial, and they're difficult to interpret
probabilisticall

¢ wed s \mproper W cwle) s tpropar, -Qra,n& c>0

Moreover, if chosen haphazardly they can lead to improper posteriors (which
are truly meaningless)
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Problems With Uninformative Priors

@ Example 6.12: Suppose that X ~ Bernoulli (p). What is the posterior

m(p | #) based on the Haldane prior 7(p) = 37
s 16 imgrapar So(“(\’“\””“- [ G
pe (o = (el = 1521
eli) ~ \"("PB. e (WP7" = S.'_FET»“?Z S.‘—é; dp = _loi‘:\\')%l(lb
= (W

e &his o, o 2 So‘ w(plRDdp = S; o (D " do

= sc(an  Colwls evet !
= T

sin(nw)
s 0 shnweZ .. vhichiste cmbee
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This con never Lawm whon e, dvoe cv Tope ?c'\oc‘...
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Problems With Uninformative Priors

@ Example 6.13: Suppose that X ~ Bernoulli (p) and we choose
m(p) = Unif (0,1). What prior does this correspond to for the log-odds

T = log (1%?)? '\7()‘ \*6"’ “epit Cunction” mops (B to X
LM 5) gt fncin” wops (0 1o R

TC;,(@(D - E?( ?(Q'
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= e
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lgnorance From All Perspectives

@ The previous example shows that ignorance about 6 does not necessarily
translate to the same ignorance about 7(6)

@ In other words, if mg is a prior for the model parameterized by 6 and 7 is a
prior for the model parameterized by 7 = 7(6),

in general

@ What if we insisted on “equivalent” ignorance for all monotone
re-parametrizations of 67

@ It turns out there's a way to make this happen using the Fisher information
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Jetfreys' Prior

@ Definition 6.7: Let X1, X5,..., X, g fo where 0 is univariate. Jeffreys’
prior for 0 is given by 7 (0) oc 1/11(0).

@ Notice that this prior depends only the model — there's no room for any
subjectivity beyond the choice of model

o Jeffreys felt that invariance under monotone transformations is a suitably
uninformative property for a prior

@ Theorem 6.3: Under the regularity conditions of the Cramér-Rao Lower
Bound, Jeffreys' prior is invariant under monotone transformations, in the
sense that

s

) =i 0) | 7 0)

if 7: 00 — R is monotone and differentiable.
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Jeffreys' Prior: Examples

@ Example 6.14: Let X1, Xo,..., X, Y Bernoulli (p). Determine Jeffreys' prior
for this model, and determine the posterior w(p | x) based on it.

e frow fon old etoff thot L) 705 « © Hot TR« |7 =¥ 3s.

\ £ 5 £) dievibidtion'
Our posteriors mefpl) « -, (3 e o Bete(s, 5)
P 0
= ?i)(i"z_ (\'_P ""iao.-z
= ?‘3\4 ~ '\éeb(éx; «-";3_, n-Sx«
WM '-& ‘t(@ = O/Csin (\\F5 7 = ?[Q = S"mz('t)
° S
~ d\:_eéc(;b‘) = () * w4 'L\c ?@1 by Tharam 63
& acs'm(;‘s’) G éo %) = Si"z(t)-)i (\- 5"\’('055—" \2 cinfe) c:s(ﬂ\
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Jeffreys' Prior: Examples
o Example 6,15 Let X1, Xo,..., X,, SN (1, 0%) with o known. Determine
Jeffreys’ prior for this model, and determine the posterior 7(u | x) based on
It.

Ot posteraris rrgob‘%) o L) H —
*1- &?(_(;44\)
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Inferences Based On the Posterior

o If we're satisfied with a choice of prior and we've computed (or estimated)
the posterior, what do we actually do with this distribution?

@ The inferential techniques of Modules 2-4 (point estimation, hypothesis
testing, and confidence intervals) can’t be directly applied here, since 6 | x is
not a fixed constant

@ Our goal is to find Bayesian analogues of these techniques

Thee e LOTS & Roysiann avolopes & Sraggartist oveepts,
h’r @"mt} none oe e"‘“ﬁ 08“203 Upon bg oll Eagesicm...
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Bayesian Point Estimation

o If X ~ fy, how do we “estimate” either @ itself or some quantity 7 = 7(6) in
the Bayesian context?

@ We have a posterior distribution 7(6 | x) to work with

@ What quantities can we extract from it that can meaningfully take the place
of our frequentist estimates?

= | "
@ If we use some characteristic 6 of w(6 | x), then it must be a function of the
data x and we can write 6 = 6(x)

the meon e radion,, sore qooviie....

@ That makes é(X) a genuine point estimator, which we can compare to our
favourite frequentist estimators like the MLE

@ To keep the notation simple, we'll work with 6 itself, but everything carries
over to 7(6)
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MAP Estimators

@ One reasonable approach is to choose the value that the posterior says is
most probable — that is, the mode of the posterior

@ Definition 6.8: Given a posterior distribution 7(6 | x), a maximum a
posteriori (MAP) estimator of 0 is given by the conditional mode of the

posterior: A 1
HMAP(X) = argmaxw(@ ‘ X) (Mwa%?«l’ad‘
0cO '\sm'\mdcb

o If we want the MAP estimator of 7 = 7(6), we'll need to maximize 7 (7 | x)

@ But that's the same as maximizing f(x) - 7(7 | x) = 7(7) - f-(x), so we
don't need to bother with the normalizing constant f(x), which is usually a
nasty integral

Rob Zimmerman (University of Toronto) August 6-8, 2024 43 /62



Posterior Means

@ We might prefer to take a weighted average of all 8/ € O, each weighed down
by how probable the posterior says it is — that is, the expectation of the
posterior

@ Definition 6.9: Given a posterior distribution 7(60 | x), the posterior mean
estimator — if it exists — is given by the conditional expectation of the
posterior:

éB(X):E[eyX]:/GG-w(e\X)de

@ The posterior mean estimator is nice because it minimizes the expected MSE
under the posterior:

¢ S W\SQ(T(xS) eloi o

Og(-) = argminE [MSE,y (T'(X)
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Bayesian Point Estimation: Examples

@ Example 6.16: Let X1, Xo,..., X, Y Bernoulli (p), and suppose we place a
Beta («, 8) prior on p. Find the MAP estimator and the posterior mean
estimator for p, and describe how they compare to the MLE.

Tiom ’C\tm‘;(o, 02, plx)=Rek(r+2x:, Btn-4x).
'_w’ﬁ?I &\?"b- Marmize o, ete. Pé} fo&. A(G} wmb. TM.&% e O Mﬁg M[ )!',.. &(6)3.

: KB % o . L feikldd
B (5,00 = S FD 4@+ BI4) = G- F =0 S8 a3 e
s\ AE2¥-) _ 2Xitar\
go ﬁm(yb —M SY;a b+n-2X; -2 B k4 Bb+n-2
£X'c"'°‘ - ZXMO\

Pod'd‘w maon: the wan & o.Re\‘a[A,&) S :15 . Se §w(§>= ATSX; +Bth-4X; oaBen

ml_’_a'- %(?@"‘—)—(—n = é%;-
All fves e prty cm\t... Lot the pm‘\crmwé MAP estindres faflact W\Mm
(ie, vces & o 0 B in Mbhomet waps. Bk whians loge, the diferences oame 'Vﬂ\ﬁ‘b‘e* !
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Bayesian Point Estimation: Examples

@ Example 6.17: Let X1, Xo,..., X, %Z/\/'(u, o?) with o known, and

suppose we place a N (9,72) prior on . Find the MAP estimator and the
posterior mean estimator for 11, and describe how they compare to the MLE.

1

nx
¢
/

GG
fom Baungle 63, &+ Nl——— ———
T T e

(2] ﬂXn
Restwapr: ) __\_;U-"a—i-_/\_, ‘ :
bt Pz T = WX e
o(;)- 0-7-
WE 8 (D)= X Tor ¥e nomel distvibution,
prdlX= % the ma aggels e male
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Poll Time!

On Quercus: Module 6 - Poll 4
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Bayesian Hypothesis Testing

@ What about Bayesian hypothesis testing?

@ We might think to test every hypothesis by simply computing probability
under (6 | x), we'd quickly run into problems

@ For example, if the posterior is continuous, then we'd reject every simple
hypothesis H : 6 = 6,

@ We might try to get around this by computing a Bayesian p-value
S0 :7(0 | x) <7(fo | x)} | x), but there can be problems with that as well

(gl -[L A
é(t 2\ Llh‘?eﬁ?@\'aﬁm: we howe auidoxe W HD:=8, € B,
e 5,';3("" o refon & Lo pesterer oebity (ie, rego- shate, T ) s small)
Just fie. P,
but Bagesion!
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Bayesian p-Values Aren't Great

@ Example 6.18: Suppose 7(0 | x) = Beta (2,1). Compute Bayesian p-values
for Hy : 0 = % under the posterior of 6 | x and the posterior of 6° | x.

6D =28 fr el Now, MORD<w(%I2)

> 26 ‘2%
= e < 3/4\.
Y &7
‘ & 4 q
S o Buyasn prebe o T 24 (%) = _g wel£>de So 2640~ 1o -

Whot dnout wder (@ (2D? Thow wire ferkiny Ho:®*= (%) = Yo

We com (o\- O % '{ Reka{) N =it | ¢ w(@‘\i} =4 ¥O%elo,d (‘396 (0,03
drec!

Bk 421 2o w01R) ¢ a(%el ). Thoki olongs e, S TUE0: 131D =1,
(eﬁmé\suf x. Co {her csn never \:o.og%.e,vamca%dm(t Wo!.

Not o 8@&,
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Tweaking the Prior

These issues happen when the prior 7(6) assigns zero probability to Hy, and
can be avoided by tweaking the prior in such a way to fix this

This isn't unreasonable; if we have reason to test H : 6 € A, then we suspect
it could be true, which would be contradicted if II(6 € A) =0

If we start with a continuous prior w5, we can create a new one using

7(8) = a - my(6) + (1 —a) - my(8), &= ol o
Cinite mictwe Jistabution”
where 71 is degenerate at #y and o € (0, 1) phose P3F/prf ¢ & Hhe. o
k
ﬂb s id\')ji\bb uer
¢\
a f1(x) eack =0, é““zi' "

II({60} | x) = afi(x) + (1 — a)fa(x)’ ma_ké;& Sf.,l.?;ti\.s

where f;(x) is the prior predictive distribution under the prior m; o wiil pf lped:

This gives
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Bayes Factors N
y \I’\QW Wa(gm(ﬁ)}'@'hé&mw‘t RS2 ic/ace defired oc 1- )

@ There's a popular approach to Bayesian hypothesis testing involves the odds

@ Definition 6.10: Let 7(6) be a prior, let X ~ fy(x), and let 7w(0 | x) be the
posterior for the model. Suppose that Hy : 0 € ©g and H,4 : 0 € OF are two
competing hypotheses about plausible values of 6.

[1(©o)  T(Oo)

The pri dds in f f Hy is the rati = .
e prior odds in favour of Hy is eraloH(@S) I~ I1(60)

(O [x) (O] x)
(O [x) 116 [x)

The posterior odds in favour of Hy is the ratio

Provided that I1(©() > 0, the Bayes factor in favour of Hj is given by the
ratio of the posterior odds to the prior odds:

(6| x) 11(6)
Bl = / 1 —II(6g)

1 —H(@O ‘ X)
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Bayes Factors
MO e

e What's the point of Bayes fayle., = LTI Ted

@ For one, if we let r be the prior odds, then

’I“'BFHO - s, {

@ So a small/large Bayes factor means a small/large posterior probability of H
@ Moreover, Bayes factors have a surprising connection to likelihood ratios

@ Theorem 6.4: If we want to test Hy : 6 € Oy and we choose a prior mixture
7'('(9) = O 7'('1((9) —+ (1 — Oé) . 7T2((9) such that Hl(@()) = HQ(@(C)) = 1, then

fl (X) — &2?/&6 (')
fa(x)
Uate. 7, is e prar crabictve. dickbiion bedee 1, — e, J(D= | nfer 4.

BFy, =
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Bayes Factors: Examples

@ Example 6.19: Suppose that X1, X5, ..., X, ¢ Bernoulli () and we place a
Unif (0, 1) prior on #. Compute the Bayes factor in favour of Hy : 6 = 6.

Let v, be doerenie o B0 s ()= 1.
et @ = o | 5 TLL5D=0 &> TR (0,8, d) 1

_ S ®
Tharen (0.4, 3G, = —+=".
" VAR

Frier predidive wder T, TV, 5 degpreisie o B, 50 1D = 0 (1) @

— r( i)‘i“'b‘ r(ﬂ'{x;*b
6 o)

Vor prabictie. wder 5.2 1) f 1-0%(-65™

goix'. ( \_6‘5’ Sv; |
P(iﬁ.*b' P(ﬂ'fl: *b / P(N?)

(%) FYT: the “pdS/prk & o dopurecte. 3. B, s 0 "Dicac deto. feon (D (m('nchdl} o function) uhidh ‘f‘?‘
S‘ 39(93=1 ond ('\n%‘%ﬁ shwfies Ssg.(g\'a@c\eﬂa(% va}Mma(°) = j‘ () =j&,[9)'9£"("9) 440
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Credible Intervals

Assuming that ©® C R, what's a reasonable Bayesian analogue of confidence
intervals?

Now, it's perfectly reasonable to ask what the probability is that [ < 6 < u
for l,u € ©

Definition 6.11: Let w(# | x) be a posterior distribution on ©. A
(1 — a)-credible interval for 0 is an interval [L(x),U(x)] C O such that

U (x)
H(L(X)SQﬁU(XHX):/L( | w6 |x)dfd > 1 — «a.

As with confidence intervals, there are usually plenty of credible intervals
available for a given posterior, so we look for some desirable properties
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Two Types of Credible Intervals

Definition 6.12: If w(6 | x) is unimodal, the (1 — «)-credible interval
|L(x),U(x)] such that the length U(x) — L(x) is minimized is called the
(1 — a)-highest posterior density (HPD) interval for ¢

An HPD interval really does capture the most likely values in ©, since any
region outside of it will be assigned a lower posterior probability

Definition 6.13: The (1 — a)-credible interval [L(x), U (x)] which satisfies
(=00, L(x)] | x) = II([U(x), 00) | x) = /2

is called the (1 — «)-equal tailed interval (ETI) for 6

An ETI exists for any continuous posterior, unimodal or otherwise

One can show that if 7(6 | x) is symmetric, unimodal, and continuous, then
the HPD interval and the ETI will be equal
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Credible Intervals: Examples

e Example 6.20: Suppose that X, Xo,..., X, %i./\/'(,u, 0?) where o2 is

known, and we place a (8, 72) prior on p. What do (1 — a)-HPD intervals
and ETls for i look like? What happens as 72 — 00?

""Q G‘S{'@}("" T"‘g\ﬂf\ is mrml whidh i (ovtinuoss, unmoda), and Samnd\nc, So the \'(PDOVV[

4 \
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Credible Intervals: Examples

@ Example 6.21: Suppose that X1, Xo,..., X, Y Poisson (A) and we place a
Gamma (a, 3) prior on A\. What do 95% HPD intervals and ETls for A look
like?

Fﬂ’m 6‘0\“8\6 @"3, >\\§’°CT0V“M(¢ 1-€x.-, Av\-%.
et GCI%) ke fhe b d ot frvy.

ST ool “/éz\—\( (-, L6\ R) =W 12)=%

= % = (L D > G UD D)= \-%
= ((H=G(%\%) = U= § (-l ;5

Spoun (Rd-ET s [GED, GlsD).

WED . ippsiile %o & by hund ' (it o0 . stakivtical s prdiage
(or Moo Simdakion)) fv estimde i<
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ETls are Invariant

@ We've seen that posterior distributions can do unexpected things when we're
interested in inferences of 7(6)

@ In general, a credible interval for & may tell us nothing about a credible
interval (or credible region) for 7(6)

@ But ETls have a special property that bypasses this issue

@ [heorem 6.5: ETls are invariant under monotone transformations of 6, in the
sense that if (L(x),U(x)) is a (1 — «)-ETI for 8 and 7 : ® — R is monotone
increasing, then (7(L(x)),7(U(x))) is a (1 — «)-ETI for 7(6). \f ¢ is mwetee

decteasirg, e fligs )
(€ T (-, L)1) = TW [, D) =5, e g g i

Proof. ((—b, D(L(;&B % \\ S:'DCW}!D &‘> d/z [’Z’,(L(i%, ‘L(U(&] {4

o Example 6.22: o (1--ETl v o). W

E’MW,G"B redel , & ((~o)-ET ('H/P ic e ...
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Poll Time! ¢ v -

6 nx & e ,hx >
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On Quercus: Module 6 - Poll 5
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The Bernstein-von Mises Theorem

@ Bayesian and frequentist inference unite in this monumental result
i : id
@ Theorem 6.6 (Bernstein-von Mises): Let X1, X>,..., X, ~ fo,, let w(6)

be a prior distribution placing positive mass around 6, and let
0, ~ w(0 | x,). Under suitable regularity conditions,

NG (en _ éMLE(xn)) N (o, r (190)) |

@ This statement is a vast simplification of the actual Bernstein-von Mises

theorem, but it preserves the essence
YL« ¥re ochil make & omagane v “comagrence n ot wasctio’, i i Onegence. in piabilty (0 hare i it

@ The takeaway is that as the sample size of our data n gets larger, the choice

of m(#) matters less and the likelihood dominates
The qestei fands to cortar amund dre MLE... but the MUE Yends o oppadh Bo

@ Roughly speaking, the posterior 7(6 | x,) converges to a degenerate

distribution on 6, for any well-behaved prior (!)
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The Bernstein-von Mises Theorem: It's True
X, ..., K Benooli(e), w(E)=Retsl1,)=Upk0))
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