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Limitations of Finite Sample Sizes

In almost everything we’ve done so far, we’ve assumed a sample
X1, X2, . . . , Xn

iid≥ f◊ of fixed size n

We’ve needed to know the distributions of various statistics of
X1, X2, . . . , Xn

This requirement has been very limiting, as the distributions of most
statistics don’t have closed forms (or are unknown entirely)

Even the exact distribution of the sample mean 1
n

qn
i=1 Xi is only available

for a few parametric families
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Driving Up the Sample Size

On the other hand, we have plenty of limiting distributions as n æ Œ

Example 5.1:

Example 5.2:

Of course, we never have n = Œ in real life

But if we have the luxury of a very large sample size, the “di�erence”
between the exact distribution and the limiting distribution should (hopefully)
be tolerable

Since the normal distribution is particularly nice, we will milk the CLT for all
it’s worth
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A Review of Standard Limiting Results

In the following, let {Xn}nØ1 and {Yn}nØ1 be sequences of random
variables, let X be another random variable, let x, y œ R be constants, and
let g(·) be a continuous function

Theorem 5.1: If Xn
p≠æ X, then Xn

d≠æ X. If Xn
d≠æ x, then Xn

p≠æ x.

Theorem 5.2 (Slutsky’s theorem): If Xn
d≠æ X and Yn

p≠æ y, then
Yn · Xn

d≠æ y · X and Xn + Yn
d≠æ X + y.

Theorem 5.3 (Continuous mapping theorem): If Xn
p≠æ X, then

g(Xn) p≠æ g(X). If Xn
d≠æ X, then g(Xn) d≠æ g(X).
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Notation Update

For the rest of this module, we will accentuate statistics of finite samples
with the subscript n (so X is now Xn, etc.)

For a generic statistic, we’ll write Tn = Tn(Xn)

If we’re talking about a limiting property of a sequence {Tn}nØ1, we’ll abuse
notation and just write that Tn has that limiting property, when the meaning
is clear from context

Example 5.3:
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Two Big Ones

Theorem 5.4 (Weak law of large numbers (WLLN)): Let X1, X2, . . . be
a sequence of iid random variables with E [Xi] = µ. Then

X̄n
p≠æ µ.

Theorem 5.5 (Central limit theorem (CLT)): Let X1, X2, . . . be a
sequence of iid random variables with E [Xi] = µ and Var (Xi) = ‡

2. Then

X̄n ≠ µ
‡2/n

d≠æ N (0, 1) .

The CLT is equivalent to
Ô

n(X̄n ≠ µ) d≠æ N
!
0, ‡

2"
, which is the form we’ll

be using most often
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Poll Time!

On Quercus: Module 5 - Poll 1
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Asymptotic Unbiasedness

As in Module 2, we’re interested in estimators of ·(◊)

But now we’re concerned with their limiting behavious as n æ Œ

For finite n, we insisted that our “best” estimators be unbiased

In the asymptotic setup, we can relax that slightly

Definition 5.1: Suppose that {Wn}nØ1 is a sequence of estimators for ·(◊).
If Bias◊ (Wn) næŒ≠≠≠≠æ 0 for all ◊ œ �, then {Wn}nØ1 is said to be
asymptotically unbiased for ·(◊).

Example 5.4:
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Consistency

Xn
p≠æ µ is the prototypical example of an estimator converging in

probability to the “right thing”

We have a special name for this

Definition 5.2: A sequence of estimators Wn of ·(◊) is said to be consistent
for ·(◊) if Wn

p≠æ ·(◊) for every ◊ œ �.

Example 5.5:
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Showing Consistency

Sometimes it’s easy to show consistency directly from the definition

Example 5.6: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡

2"
, where µ œ R and ‡

2
> 0.

Show that the sample mean Xn is consistent for µ.
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Showing Consistency

It’s usually easier to use standard limiting results (Slutsky, continuous
mapping, etc.) than to go directly from the definition

Example 5.7: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡

2"
, where µ œ R and ‡

2
> 0.

Show that the sample variance S
2
n is consistent for ‡

2.
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Bringing Back the MSE

In Module 2, we compared estimators by their MSEs

To extend that idea to the asymptotic setup, we need a new mode of
convergence

Definition 5.3: Suppose that Wn is a sequence of estimators for ·(◊). If
MSE◊ (Wn) næŒ≠≠≠≠æ 0 for all ◊ œ �, then Wn is said to converge in MSE to
·(◊).

Example 5.8:
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Poll Time!

On Quercus: Module 5 - Poll 2
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Convergence in MSE is Already Good Enough

It turns out that convergence in MSE is strong enough to guarantee
consistency

Theorem 5.6: If Wn is a sequence of estimators for ·(◊) that converges in
MSE for all ◊ œ �, then Wn is consistent for ·(◊).

Proof.
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A Criterion for Consistency

If we know E◊ [Wn] and Var◊ (Wn), this next theorem often makes short
work out of checking for consistency

Theorem 5.7: If Wn is a sequence of estimators for ·(◊) such that
Bias◊ (Wn) næŒ≠≠≠≠æ 0 and Var◊ (Wn) næŒ≠≠≠≠æ 0 for all ◊ œ �, then Wn is
consistent for ·(◊).

Proof.
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The Sample Mean is Always Consistent

Example 5.9: Let X1, X2, . . . , Xn
iid≥ f◊, where E [Xi] = µ. Show that Xn is

consistent for µ.

Rob Zimmerman (University of Toronto) STA261 - Module 5 July 30 - August 1, 2024 16 / 57

Biasolx ̅ EdInn 0

Varo X Varo x 0

ByTheorem 5.7 Xnisconsistentfory

Also X is exactlywhattheWLLNsays



The Sample Variance is Always Consistent

One can (very tediously) show that if X1, X2, . . . , Xn are a random sample
from a distribution with a finite fourth moment, then

Var
!
S

2
n

"
=

E
#
(Xi ≠ E [Xi])4$

n
≠ Var (Xi)2 (n ≠ 3)

n(n ≠ 1)

Example 5.10: Let X1, X2, . . . , Xn
iid≥ f◊, where E [Xi] = µ and

Var (Xi) = ‡
2 and E

#
X

4
i

$
< Œ. Show that S

2
n is consistent for ‡

2.

Rob Zimmerman (University of Toronto) STA261 - Module 5 July 30 - August 1, 2024 17 / 57

Don'tneed

tomemorize

Bias S 0 fromAssignment 0

Vara s IEr X D 04 n 3 no

ByTheorem5.7 5 is consistentfor r



Choosing Among Consistent Estimators

Consistency is practically the bare minimum we can ask for from a sequence
of estimators

There are usually plenty of sequences that are consistent for ·(◊)

Which one should we use?

It’s tempting to go with whichever has the lowest variance for fixed n, but
that would rule out a lot of fine estimators

Example 5.11:
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Asymptotic Normality

There’s a much more useful criterion, but first we need an important
CLT-inspired definition

Definition 5.4: Let Tn be a sequence of estimators for ·(◊). If there exists
some ‡

2
> 0 such that

Ô
n[Tn ≠ ·(◊)] d≠æ N

!
0, ‡

2"
,

then Tn is said to be asymptotically normal with mean ·(◊) and
asymptotic variance ‡

2.

By virtue of the CLT, most unbiased estimators are asymptotically normal
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Asymptotic Normality: Examples

Example 5.12: Let X1, X2, . . . , Xn
iid≥ Bin (k, p). Show that the sample mean

Xn is asymptotically normal.
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Asymptotic Normality: Examples

Example 5.13: Let X1, X2, . . . , Xn
iid≥ Exp (⁄). Show that the second sample

moment X2
n is asymptotically normal.
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Asymptotic Distributions

More generally, we can talk about the limiting distribution of
Ô

n[Tn ≠ ·(◊)]
even when it’s not normal

Definition 5.5: Suppose that Tn is a sequence of estimators for ·(◊). When it
exists, the distribution of limnæŒ

Ô
n[Tn ≠ ·(◊)] is called the asymptotic

distribution (or limiting distribution) of Tn.

So if Tn is an asymptotically normal sequence of estimators for ·(◊) with
asymptotic variance ‡

2, then its asymptotic distribution is N
!
0, ‡

2"

Example 5.14:

We might prefer to speak of the distribution of Tn itself when n is large
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Poll Time!

On Quercus: Module 5 - Poll 3
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The Delta Method

If some sequence Tn is asymptotically normal for ◊ and some function g(·) is
nice enough, then the next result gives a remarkably easy method of
producing an asymptotically normal sequence of estimators of for g(◊)

Theorem 5.8 (Delta method): Suppose that ◊ œ � ™ R and
Ô

n(Tn ≠ ◊) d≠æ N
!
0, ‡

2"
. If g : R æ R is continuously di�erentiable with

g
Õ(◊) ”= 0, then

Ô
n[g(Tn) ≠ g(◊)] d≠æ N

!
0, [gÕ(◊)]2‡

2"
.

Proof.
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The Delta Method: Examples

Example 5.15: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡

2"
where µ œ R \ {0} and

‡
2

> 0. Find the limiting distribution of 1/Xn.
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The Delta Method: Examples

Example 5.16: Let X1, X2, . . . , Xn
iid≥ Bernoulli (◊) where ◊ œ (0, 1). Find

the limiting distribution of log
!
1 ≠ Xn

"
.
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The Delta Method: Examples

Example 5.17: Let X1, X2, . . . , Xn
iid≥ f◊ where E◊ [Xi] = ◊ and

Var◊ (Xi) = ‡
2. If · : R æ R is continuously di�erentiable with ·

Õ(◊) ”= 0,
describe the distribution of ·(Xn) as n becomes large.
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Back to Choosing Estimators

We know that when Tn = Xn, the CLT says that

Tn ≠ E◊ [Tn]
Var◊ (Tn)

d≠æ N (0, 1)

Recall the Fisher information In(◊) = Var◊ (S(◊ | Xn))

In Module 2, we said that an unbiased estimator Wn of ·(◊) was e�cient if
its variance attained the Cramér-Rao Lower Bound [· Õ(◊)]2/In(◊)

We also noticed that if the Xi’s were iid, then In(◊) = nI1(◊)
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Asymptotic E�ciency

So if we could replace the Tn in the CLT statement with a general unbiased
and e�cient Wn, it would look like

Wn ≠ ·(◊)
[· Õ(◊)]2/nI1(◊)

d≠æ N (0, 1)

Or equivalently
Ô

n[Wn ≠ ·(◊)] d≠æ N
3

0,
[· Õ(◊)]2
I1(◊)

4

This is not a result, but a condition that we can demand of our estimators

Definition 5.6: A sequence of estimators Wn is asymptotically e�cient for
·(◊) if

Ô
n[Wn ≠ ·(◊)] d≠æ N

3
0,

[· Õ(◊)]2
I1(◊)

4
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Asymptotic E�ciency: Examples

Example 5.18: Let X1, X2, . . . , Xn
iid≥ Exp (⁄), where ⁄ > 0. Show that

1/Xn is asymptotically e�cient for ⁄.
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Asymptotic E�ciency: Examples

Example 5.19: Let X1, X2, . . . , Xn
iid≥ Poisson (⁄), where ⁄ > 0. Show that

Xn is asymptotically e�cient for ⁄.
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Large Sample Behaviour for the MLE

We’re ready to see why the MLE is almost always the point estimator of
choice when n is large

To understand this, we need to distinguish between an arbitrary parameter
◊ œ � and the true parameter that generated the data, which we will call ◊0

We’ll show that the MLE is asymptotically e�cient, under certain “regularity
conditions”
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Regularity Conditions

Recall how the Cramér-Rao Lower Bound required some conditions:

Such conditions are generically referred to as regularity conditions, and
they’re used to rule out various pathological counterexamples and edge cases

The exact regularity conditions for our next result are quite technical and not
worth getting involved with in this course

Instead, we will go with four su�cient regularity conditions that are relatively
easy to check, and which are satisfied by many common parametric models
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The MLE is Often Asymptotically Normal

Theorem 5.9: Let X1, X2, . . .
iid≥ f◊0 , and let ◊̂n(Xn) be the MLE of ◊0

based on a sample of size n. Suppose the following regularity conditions hold:

I � is an open interval (not necessarily finite) in R
I The log-likelihood ¸(◊ | xn) is three times continuously di�erentiable in ◊
I The support of f◊ does not depend on ◊
I I1(◊) < Œ for all ◊ œ �

Then
Ô

n[◊̂n(Xn) ≠ ◊0] d≠æ N
3

0,
1

I1(◊0)

4
.

That is, ◊̂n(Xn) is a consistent and asymptotically e�cient estimator of ◊0.

Proof (sketch).
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A Useful Corollary

Theorem 5.10: Suppose the hypotheses of Theorem 5.9 hold, and that
· : � æ R is continuously di�erentiable with ·

Õ(◊0) ”= 0. Then

Ô
n[·(◊̂n(Xn)) ≠ ·(◊0)] d≠æ N

3
0,

[· Õ(◊0)]2
I1(◊0)

4
.

That is, ·(◊̂n(Xn)) is a consistent and asymptotically e�cient estimator of
·(◊0).
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Asymptotically E�cient MLEs: Examples

Example 5.20: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡

2"
, where µ œ R and ‡

2 is
known. Find the asymptotic distribution of the MLE of µ.
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Asymptotically E�cient MLEs: Examples

Example 5.21: Let X1, X2, . . . , Xn
iid≥ Bernoulli (p), where p œ (0, 1). Find

the asymptotic distribution of the MLE of p, and then that of 1/p.
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The MLE Isn’t Always Asymptotically Normal

Example 5.22: Let X1, X2, . . . , Xn
iid≥ Unif (0, ◊), where ◊ > 0. Show that

the MLE of ◊ is not asymptotically normal.
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Approximate Tests and Intervals

We’ve seen that a lot of statistics are asymptotically normal

What about test statistics?

If we’re willing to approximate a test statistic (whose exact distribution we
might not know for fixed n) by one with a normal distribution, we can
perform tests and create intervals that we couldn’t have before

As in Modules 3 and 4, we’ll start o� with tests and then use the test
statistics from those to construct confidence intervals
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Wilks’ Theorem

Recall the LRT statistic for testing H0 : ◊ = ◊0 versus HA : ◊ ”= ◊0 was given
by ⁄(Xn) = L(◊0|Xn)

L(◊̂|Xn) , where ◊̂ = ◊̂(Xn) is the unrestricted MLE of ◊ based
on Xn

Amazingly, the LRT statistic always converges in distribution to a known
distribution, regardless of the statistical model (assuming it’s nice enough)

Theorem 5.11 (Wilks’ theorem): Let X1, X2, . . .
iid≥ f◊, where the model

satisfies the same regularity conditions as in Theorem 5.9. If we test
H0 : ◊ œ �0 versus HA : ◊ œ �c

0 using ⁄(Xn), then

≠2 log (⁄(Xn)) d≠æ ‰
2
(1)

under H0.
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Approximate LRTs: Examples

Example 5.23: Let X1, X2, . . . , Xn
iid≥ Bernoulli (p), where p œ (0, 1).

Construct an approximate size-– LRT of H0 : p = p0 versus HA : p ”= p0.
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Approximate LRTs: Examples

Example 5.24: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡

2"
, where µ œ R. Construct an

approximate size-– LRT of H0 : µ = µ0 versus HA : µ ”= µ0.
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Wald Tests

Definition 5.7: Let X1, X2, . . . , Xn
iid≥ f◊. For testing H0 : ◊ = ◊0 versus

HA : ◊ ”= ◊0, a Wald test is a test based on the Wald statistic

Wn(Xn) = (◊̂n ≠ ◊0)2
In(◊̂),

where ◊̂n = ◊̂MLE(Xn) is the usual MLE.

Theorem 5.12: Let X1, X2, . . . , Xn
iid≥ f◊, where the model satisfies the same

regularity conditions as in Theorem 5.9. If we test H0 : ◊ = ◊0 versus
HA : ◊ ”= ◊0 using Wn(Xn), then

Wn(Xn) d≠æ ‰
2
(1)

under H0.
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Wald Tests: Examples

Example 5.25: Let X1, X2, . . . , Xn
iid≥ Bernoulli (p), where p œ (0, 1).

Construct an approximate size-– Wald test of H0 : p = p0 versus
HA : p ”= p0.
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Wald Tests: Examples

Example 5.26: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡

2"
, where µ œ R. Construct an

approximate size-– Wald test of H0 : µ = µ0 versus HA : µ ”= µ0.
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Score Tests

Definition 5.8: Let X1, X2, . . . , Xn
iid≥ f◊. For testing H0 : ◊ = ◊0 versus

HA : ◊ ”= ◊0, a score test (also called a Rao test or a Lagrange multiplier
test) is a test based on the score statistic

Rn(Xn) = [Sn(◊0 | Xn)]2
In(◊0) .

Theorem 5.13: Let X1, X2, . . . , Xn
iid≥ f◊, where the model satisfies the same

regularity conditions as in Theorem 5.9. If we test H0 : ◊ = ◊0 versus
HA : ◊ ”= ◊0 using Rn(Xn), then

Rn(Xn) d≠æ ‰
2
(1)

under H0.
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Score Tests: Examples

Example 5.27: Let X1, X2, . . . , Xn
iid≥ Bernoulli (p), where p œ (0, 1).

Construct an approximate size-– score test of H0 : p = p0 versus
HA : p ”= p0.
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Score Tests: Examples

Example 5.28: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡

2"
, where µ œ R. Construct an

approximate size-– score test of H0 : µ = µ0 versus HA : µ ”= µ0.
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The Trinity of Tests

The LRT, the Wald test, and the score test form the backbone of classical
hypothesis testing

Observe that under H0, all three tests are asymptotically equivalent (i.e., all
three test statistics all converge in distribution to a ‰

2
(1))

For this reason, the three tests are sometimes collectively referred to as the
trinity of tests

Although asymptotically equivalent, the speed of convergence to ‰
2
(1) can be

quite di�erent for each one – for small n, they can be quite di�erent in terms
of power and other “small-sample” properties

One might tell you to reject H0 while another might not!
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Approximate Confidence Intervals

Using any of the asymptotic tests to test H0 : ◊ = ◊0 versus HA : ◊ ”= ◊0, it’s
sometimes possible to invert any of the test statistics to obtain an
approximate (1 ≠ –)-confidence interval for ◊

Out of the three, the LRT is usually the hardest to invert into an actual
interval, and the Wald statistic is usually the easiest

In practice, you can always try to use numerical solvers when the algebra
doesn’t work

For Wald and score intervals, the standard recipe is to take the square root of
the test statistic and compare it to N (0, 1)
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Approximate Confidence Intervals: Examples

Example 5.29: Let X1, X2, . . . , Xn
iid≥ Bernoulli (p), where p œ (0, 1).

Construct an approximate (1 ≠ –)-confidence interval for p based on the
Wald statistic.

This confidence interval shows up everywhere in polling (and is a staple of
introductory Statistics classes); its half-length is called the margin of error
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Approximate Confidence Intervals: Examples

Example 5.30: Let X1, X2, . . . , Xn
iid≥ Bernoulli (p), where p œ (0, 1).

Construct an approximate (1 ≠ –)-confidence interval for log
1

p
1≠p

2
based on

the Wald statistic.
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Approximate Confidence Intervals: Examples

Example 5.31: Let X1, X2, . . . , Xn
iid≥ Poisson (⁄), where ⁄ > 0. Construct

an approximate (1 ≠ –)-confidence interval for ⁄ based on the Wald statistic.
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When the Fisher Information Causes Problems...

When f◊ is too complicated to allow for exact (1 ≠ –)-confidence intervals,
it’s standard practice to use Wald intervals and score intervals

But there might be another problem:

In real-life multiparameter models, In(◊) is a matrix and is often impossible
to work out directly, which makes calculating In(◊̂0) or In(◊̂) futile

When this happens, people like to swap In(·) with Jn(·) in the Wald and
score statistics

Moreover, in a famous 1978 paper, Efron and Hinkley showed empirically
that Jn(◊̂) is superior to In(◊̂)
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