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Limitations of Finite Sample Sizes

@ In almost everything we've done so far, we've assumed a sample
iid . :
X1,Xo,..., X, ~ fg of fixed size n

@ We've needed to know the distributions of various statistics of
X17X27° . °7Xn

@ This requirement has been very limiting, as the distributions of most
statistics don't have closed forms (or are unknown entirely)

@ Even the exact distribution of the sample mean % > X, is only available
for a few parametric families

o r\hoxc)?\r\ e e X like, @uaguhac!

OV\'\SI’Q— other VO"“\) Xr\ “_?; EDCB (m\%'\h— Kis oe W4, ED('DL“;d‘c)
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Driving Up the Sample Size

On the other hand, we have plenty of limiting distributions as n — oo

Example 5.1: \.GX X?_ "‘”N/J’(rb hen Xn'_; bé(L)UNN —X%

'_3“\(0:3\“3 ay
Example 5.2: Ao

\'e XAA%\V\(“)@ ‘()V\ O.Ié V\V,\'4>\>D 'HM X.\'% ?omm
Of course, we never have n = oo in real life (S5 or EXERCSE )

But if we have the luxury of a very large sample size, the “difference”
between the exact distribution and the limiting distribution should (hopefully)
be tolerable

Since the normal distribution is particularly nice, we will milk the CLT for all
it's worth
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A Review of Standard Limiting Results
Not: : §) head et Do defined alyon ! B cpamie, ¢80 ,é* $tatln worts (ond henct e con et OMT 4o g,
@ In the/following, let { X, },>1 and {Y, }n>1 be sequences of random M
variables, let X be another random variable, let x,y € R be constants, and

let g(-) be a continuous function

*“‘"“&“'\OH“M'\W m\gde-msmM
S — p
e Theorem 5.1: If X,, — X, then X, BN X If X, BN x, then X,, — x.

@ Theorem 5.2 (Slutsky’s theorem): If X, 4 X and Y, & y, then
Y, X, %Sy -Xand X, +Y, -5 X4y
Cuwﬂ%
@ Theorem 5.3 (Continuous mapping theorem): If X, L5 X, then
9(Xn) 25 g(X). If X, % X then g(X,,) -5 g(X).  FiT-owtne fras omgen,

# Y, =2 X mans ot T (3 =5 T oo s iy i € 5 Pm&s CTRAD (mogbe)

X Kn_% X mears that Ne20, RI%-x1=9) =50

MY %5 Y sk V520, PER N 7O €T rot usnd in 0¥ owice

’C 0. = olmost Sundly’
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Notation Update

@ For the rest of this module, we will accentuate statistics of finite samples
with the subscript n (so X is now X,,, etc.)

e For a generic statistic, we'll write T;, = T,,(X,,)

o If we're talking about a limiting property of a sequence {7}, },>1, we'll abuse
notation and just write that 7;, has that limiting property, when the meaning
is clear from context

Wnsteod & wr‘rﬂrg "t M& Somgle. haor i-)(—«%nu
Comags n gl 1o " well ot wite
¥ Conasps ‘\v\«qm\;d:&gf\o/u" o ey R

@ Example 5.3:
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Two Big Ones

@ Theorem 5.4 (Weak law of large numbers (WLLN)): Let X3, X5,... be
a sequence of iid random variables with E [ X;] = pu. Then

Xni>,u.

@ Theorem 5.5 (Central limit theorem (CLT)): Let X3, X5,... be a
sequence of iid random variables with E [X;] = i and Var (X;) = 0%. Then

X, —
a 1y N (0,1).
a?/n

o The CLT is equivalent to /n(X,, — ) N (0,02), which is the form we'll
be using most often K

\9% Slutsys theoom (E‘AE\‘(‘EE5
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Poll Time!

On Quercus: Module 5 - Poll 1
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Asymptotic Unbiasedness

@ As in Module 2, we're interested in estimators of 7(6)

@ But now we're concerned with their limiting behavious as n — oo
@ For finite n, we insisted that our “best” estimators be unbiased

@ In the asymptotic setup, we can relax that slightly

@ Definition 5.1: Suppose that {W,, },,>1 is a sequence of estimators for 7(6).

If Biasg (W,,) 2—=>2 0 for all # € ©, then {W,,},,>1 is said to be
asymptotically unbiased for 7(6).

@ Example 5.4: \h-\-\w/'\)gu D) Sz\u‘), nl 5)(‘ @ NWQM‘KWM &/J
(I‘)h&?, ['\ﬂi X') ,\.‘4/) So @ms ""‘5)(3 /)(n-u }
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Consistency U
\,‘&(Af

o X, — 1 is the prototypical example of an estimator converging in
probability to the “right thing”

@ We have a special name for this

@ Definition 5.2: A sequence of estimators W,, of 7(0) is said to be consistent
for 7(6) if W,, == 7(6) for every § € O.

@ Example 5.5: K|,)L2,.,.§g Ex?(»_ww /zr & Comistort (e X.

Why! X, =" gy WUN.
\t §R=%e, x+0, tron 3[_’\ "ég(& oy MT

= >3' Q\ e, ... R /’u“’b Hhon
e 2
= 2 =X *: s oniskank B¢ 7}*—;
| 5 (exercse)
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Showing Consistency

@ Sometimes it's easy to show consistency directly from the definition

@ Example 5.6: Let X1, Xo,..., X, YN (,u, 02), where 1 € R and o2 > 0.

Show that the sample mean X, is consistent for u. | G==(/,G“-3.
Lot ©0. Tron B \7(,.-/\4@

=Rl < X p <€)

- - c v - —g_—_

W %)

Rz 2 f) v MO

- HEN g

] ﬂﬁ’/‘b‘ﬁ(ﬁ

'\—;ﬂ

D TA L
=20, \7(«\7\4%“391 = X—>p.
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Showing Consistency

@ It's usually easier to use standard limiting results (Slutsky, continuous
mapping, etc.) than to go directly from the definition

@ Example 5.7: Let X1, Xo,..., X, YN (,u, 02), where 1 € R and o2 > 0.

Show that the sample variance S2 is consistent for o2.

» (v . €. _ P
aftieer)  OTH SR
RGP L | IR S e

v@’ 5 ® ‘qé LN £ VT

d x \an e N ,O'B
== L0 0) 1y SED e o o

- Hrok S s olutag Constank for N(X)
— g'z. N o \XA‘“\QM S| (cgsm.a Noc(X) <)
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Bringing Back the MSE

@ In Module 2, we compared estimators by their MSEs

@ To extend that idea to the asymptotic setup, we need a new mode of
convergence

@ Definition 5.3: Suppose that W, is a sequence of estimators for 7(6). If
n—oo

MSEy (W,,) —— 0 for all 6 € O, then W, is said to converge in MSE to
T(0) ", B (@)

@ Example 5.8: )(‘,X,?_/_" Ny @'\V\(.lﬁ,@. ’Wm\iﬂ w__\g\\:g
= LX)
Why? MSELR) = Biag (K5 Nor (%)

=0 m-f..\cohny wviomd fr ELX)

= Nog (<
= L“-\L?(\—@Mé 0. % 5_(‘“56—’9 Ep.
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Poll Timel

On Quercus: Module 5 - Poll 2
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Convergence in MSE is Already Good Enough

@ It turns out that convergence in MSE is strong enough to guarantee
consistency

@ Theorem 5.6: If W, is a sequence of estimators for 7(6) that converges in
MSE for all 8 € ©, then W, is consistent for 7(6).

Proof eEXeuse!  Hit: tse U/'ebg%ql_

July 30 - August 1, 2024 14 /57
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A Criterion for Consistency

o If we know Ey [W},] and Vary (W,,), this next theorem often makes short
work out of checking for consistency

@ Theorem 5.7: If W, is a sequence of estimators for 7(6) such that

n—oo

Biasg (W,,) —— 0 and Vary (W,,) =—=2 0 for all § € ©, then W,, is
consistent for 7(4).

Proof. %f on,A @5 @ J %QQWk* E\G-Se(mbl + v (wb

l.@.. |n
O 0

=2 e ===> O

'\%‘AFW\aomm 50, Wa's arsiclok o D). T
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The Sample Mean is Always Consistent

@ Example 5.9: Let X1, Xo,..., X, g fo, where E[X;] = u. Show that X, is

consistent for p.
Bigse ) = Bl X )7 O.
\/Ofo(—m - ?\"\IN‘QCXi\ =50.

%/(\_me\ 57 Ya's orestat & p

(A\So X. —?-3/) s Q)‘OC'“I} whot 4he. (OLLIN soys)

Rob Zimmerman (University of Toronto) STA261 - Module 5 July 30 - August 1, 2024 16 / 57



The Sample Variance is Always Consistent

@ One can (very tediously) show that if X, Xo,...,X,, are a random sample
from a distribution with a finite fourth moment, then

E|[(X; —E[X;])*] ~ Var (X;)? (n—3) (Dont neal

Var (S7) = n(n — 1) o ramaize ()

n

o Example 5.10: Let X1, Xo, ..., Xn % fo, where E[X;] = u and

Var (X;) = ¢* and E | X}!| < co. Show that S? is consistent for o2.

Rios (S2) =0 fom Pssigwant O.
\[N@Lg;\ = ‘E«*“\(;y\bﬂ _ 0‘0‘(“*75 naos

U WY(\ ) V\(ﬂ‘h '

'\'50“; O '\—30'5._3 O

> 0

@zﬂ\amv\ S, Suis etk G 62
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Choosing Among Consistent Estimators

@ Consistency is practically the bare minimum we can ask for from a sequence
of estimators

@ There are usually plenty of sequences that are consistent for 7(6)
Asci(wmfs - TONS & e:ravgb'\'o ?\aa win!

@ Which one should we use?

@ It's tempting to go with whichever has the lowest variance for fixed n, but
that would rule out a lot of fine estimators

o Example 5.11: 3(,/ X, ... \%'ssmﬁm' \>O.

Xuo‘f\é Sy e ooth mwastert-@e X, oy prsion SBF. Tor fived n ) we Voo (Nadole D)
-\-th )(«.IQ'“‘QWV\\"E'& >\,‘Du* does mes‘m\éow\'me\gwgi?

*%, Ya,... BN, S ond G20~ ZORY om o otk S ki
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Asymptotic Normality

@ There's a much more useful criterion, but first we need an important
CLT-inspired definition

T = WD
@ Definition 5.4: Let T, be a sequence of estimators for 7(0). If there exists

some o2 > 0 such that FYL: He Acfinibien extends to
where. JR ond €(6) ase veploced

B 5 St%m &M‘MS ibaznh ond
VilT, — 7 NO.0%)5 40 b lTeey dened

then T, is said to be asymptogfically normal with mean 7(6) and

asymptotic variance 0.
¥ 4

Q Notz: ¢(9) s not NausRxily.
‘e meon ¢ T,
, most unbiased estimators are asymptotically normal

@ By virtue of the

ko ek st futle dbaak Hlg. Sskbhim € T dsdf o6 hs?
sy sore. degorecta ditioion e, amviond. o =0, b cromle
T‘M Jicheindion ¢ JV_\()-ZA-)) 08 N>0° (& MEe Mmﬁa'
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Asymptotic Normality: Examples

o Example 5.12: Let Xy, Xo,..., X, Y Bin (k,p). Show that the sample mean

X, is asymptotically normal.

(% -EIRY) 45 N al)  #e 0T
— A\
2 In( ¥, - o) — N(O, \4?(\—@

G Y. agmm\wha nowel with mean ¥p ovd esymptove \aionte I (1-p).
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Asymptotic Normality: Examples

o Example 5.13: Let X3, Xo,..., X, g Exp (A). Show that the second sample

moment X2, is asymptotically normal.

E.OX) =V (xy+ BV =

e . (\C% - Ex( XA‘A - BT EYERASE : rove
S

}\‘\'
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Asymptotic Distributions

@ More generally, we can talk about the limiting distribution of \/n[T,, — 7(0)]
even when it's not normal

@ Definition 5.5: Suppose that T}, is a sequence of estimators for 7(6). When it
exists, the distribution of lim,, ., v/n[T,, — 7(0)] is called the asymptotic
distribution (or limiting distribution) of 7,.

\n ofher toods, if n(T.- o) 'é%‘( for come. 00, Y, hon the esyeplific Sistkedion € T, is exactly, the Setcbution of
e So if T;, is an asymptotically normal sequence of estimators for 7(6) with
asymptotic variance o2, then its asymptotic distribution is A/ (0, o?)

@ Example 5.14: \L‘ Y\z, . “l'%w([cr e) = Xy. Ihos &%WC&\SMW N(O,ILG((-&
! '©y Cromle SAL.

@ We might prefer to speak of the distribution of T, itself when n is large

We cen so} "R lageﬂ —\‘wéﬁﬂb@m& X.. oRpReechas N(\!-O wa-g,} ” Ji(f..-ww&' N(o,uo(l-e)\

bt e, ANNINOT < "4 lage n, Hhe dishbuind R . Ni(ks, £5L08)" 3
- ... Deuse s rot!
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Poll Timel

On Quercus: Module 5 - Poll 3
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The Delta Method

o If some sequence T, is asymptotically normal for 6 and some function g(-) is
nice enough, then the next result gives a remarkably easy method of
producing an asymptotically normal sequence of estimators of for g(f)

@ Theorem 5.8 (Delta method): Suppose that 6 € © C R and
vn(T, —0) N (0,07). If g: R — R is continuously differentiable with
g'(0) # 0, then Aesignwant S+ o

d / 2 2 wdjhww&
VRIS (Ty) = 9(8)] =45 N 0,15/ OF0?) g, g g2

Proof. T axpnd @o@»«a &t (DO (BN f . 6. bon
= Jn( §(W-g&) = 3,(?3 In(Th-6) Ry Sty
© L 5
©O: Sine T, 720 1y sw;ccu?m Jﬁ(am-g,teB — 3@"0(0"'3
B > 6. By (T, 4@ o5 NG, [8‘@?“;)'
G) Jn(T-0) > NE,e by sorghon. -
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The Delta Method: Examples

o Example 5.15: Let X1, Xo, ..., Xn SN (1, 0%) where € R\ {0} and

o2 > 0. Find the limiting distribution of 1/X,,.
Lef 8= | x+0. T g ="%c, x*0,
By the 0T, g (Ko ) = N, >,
Ry e S metvd, T o0-96) —> NO, (g’ )
= (Y- ) —>NO,7).
o V5_has omprtoric ftfin N(0, %)

Ef \Ouaa N, the dictibudion ¢ \/y(“ [ cwvxxmdwz\% N(\jo, G}ny%
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The Delta Method: Examples

o Example 5.16: Let X1, Xo,..., X, irz_fl Bernoulli (6) where 6 € (0,1). Find
the limiting distribution of log (1 — Xn).

-\ (
Lef 3(@ 21@(\">b for xelod = 3'(>Q= raveer VR (o).
%S’M LT $a(F-8) —> N(o, B>,
O\
Byt b, (%o~ 150 —>NO (3 u-0)

=N(o, 33) -

Y 2:5(\-?3 hes osgmptakic Sistibuton N, 22)

E" \(X‘(ae, N, the A\W\‘D&A\d\({' %(.\ ’SZD [ OW‘O)(\«\d‘e\} N([oa[\-e), °

n(\-8)
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The Delta Method: Examples

@ Example 5.17: Let X1, Xo,..., X, g fo where Eq [ X;] = 6 and
Varg (X;) = o2. If 7: R — R is continuously differentiable with 7/(0) # 0,

describe the distribution of 7(X,,) as n becomes large.

%‘5 the LU, \W\GZ.,—/D NS M(O,q%.
B b M, AR -43) 22N, 579,
So fhe paptotc detudon of 2K is (O, [xy oY)

Tor o300, the Aw&m‘m RIVATY ppetinctaly N, ()
e, tre distibdbon & Jr (2D 't(/)> 05 N->00
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Back to Choosing Estimators

e We know that when T}, = X,,, the CLT says that

Tn - EQ [Tn]

d \
\/Varg (T}) P N0, 1)

@ Recall the Fisher information I,,(0) = Varg (S(6 | X,,))

@ In Module 2, we said that an unbiased estimator W,, of 7(6) was efficient if
its variance attained the Cramér-Rao Lower Bound [7/(0)]?/1,,(0)

@ We also noticed that if the X;'s were iid, then I,,(0) = nl;(0)

- ‘915 Thaotam 010, under the. come. canditons as 4he (2IS i€
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Asymptotic Efficiency

@ So if we could replace the T;, in the CLT statement with a general unbiased
and efficient W,,, it would look like

W, —7(0)
VI ()12 /0l (0)

d>/\/(0,1)

@ Or equivalently

VW, —7(0)] = N (o, [7;1((99))] )

@ This is not a result, but a condition that we can demand of our estimators

@ Definition 5.6: A sequence of estimators W,, is asymptotically efficient for
7(0) if

Vi, - @) <4 a7 (0. 700
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Asymptotic Efficiency: Examples

@ Example 5.18: Let X1, Xo,..., X, g Exp (A\), where A > 0. Show that

1/ X, is asymptotically effiaent for .

Byde (0T, In(Wam "2 =2 N(O, 7).
et g%, x40 =G Ha > glA =X
By the dao metiad, i 5, = %) RO, )

Now, vreté T,(07 ,{(Nx\-—ngm - Ax
'—’3 Q(&\\b = yx-x
=2 ‘AQ(X\% =

Ceime, ‘\‘“‘a‘ So e conclude.
P TN E{ SUET RS

et 7, axpepiotisly
eHicont ke \-

- (T >\3" 2
A CRCB 1« —/- -
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Asymptotic Efficiency: Examples

o Example 5.19: Let X1, Xo,..., X, Y Poisson (M), where A > 0. Show that
X, is asymptotically efficient for \.

By tre T, J7 (%o 3 == N0, D,
L= S

TANRY = =N XAy ke, e ciefme £ S’mw—ﬂ;oigwmc
. %o is ¢quol to 4he
= =l voslancs o

CRLB Lor pwbiosed estimators €
= -2 = £ ' X,. is )
= = e eﬁpim :c{rc«;\jdeun ocgrriohy
= T n=E§ 25 o) T ER=A
oy,
G de ssgrphhc vahonce Kn s ( LW A
[ZRVEDY
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Large Sample Behaviour for the MLE

@ We're ready to see why the MLE is almost always the point estimator of
choice when n is large

@ To understand this, we need to distinguish between an arbitrary parameter
6 € O and the true parameter that generated the data, which we will call 6,

@ We'll show that the MLE is asymptotically efficient, under certain “regularity
conditions”
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Regularity Conditions

@ Recall how the Cramér-Rao Lower Bound required some conditions:

O Voo TRy e 460 (O pFATEY" | Salrvaedlas

(e, ve puch Ale doiubive Tside He Wt a)
@ Such conditions are generically referred to as reguf;‘mt conditions, and

they're used to rule out various pathological counterexamples and edge cases

@ The exact regularity conditions for our next result are quite technical and not
worth getting involved with in this course

@ Instead, we will go with four sufficient regularity conditions that are relatively
easy to check, and which are satisfied by many common parametric models
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Poll Time!

On Quercus: Module 5 - Poll 4
: Ay _
W\{’(D,@ dpcs ot Qoﬁhg{% 16 ch = S—;—-@

x

bectse fre appert 9= (0,8) depons on ©.
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The MLE is Often Asymptotically Normal

o Theorem 5.9: Let X1, Xo,... " f5 . and let 6,(X,.) be the MLE of 6,
based on a sample of size n. Suppose the following regularity conditions hold:

» O is an open interval (not necessarily finite) in R

» The log-likelihood £(6 | x,,) is three times continuously differentiable in 6
>

>

The support of fg does not depend on 6
I,(0) < oo for all € ©

Then .
A d
nld,,(X,,) — 0] — N (O, ) .
\/7[ ( ) 0] I (90)
That is, 0,,(X,,) is a consistent and asymptotically efficient estimator of 6.

Wiite Bz BIRS £ angheity
Proof (Sketch)- To¥e noToz\bl' <ovex ¢F l'(é..\?b WS 6,. Yer \aae_“. W‘-é""

r A o ) K “._ “ . @ h> < \S 0
ALBAR 2 A0 ¢ (Brrbiy LR vith apolly 1 w20 (s son b ity

= ) 2LEID (6oL e o e )
= 8,8, = AEW
° A(B1%)
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A -L L0 6
-> n 9,\ - 9 p =
J—( ‘» 7 L8 ®

(D~ LBR) = ~g SEAR) @)
--L Z GO -"\-' L(B:1%)
—y 2 clourn-O) 3% iR, .,
= (w2 ey -1 S(e,\xSS T 2,%9 S \M,
-0 2as - B[ saixi) " 2ce)
—> o, Vo (SBID)) byte UT | —> @q{—% LRI
= -N©O, L©) = -1, (e)

: ; i | \
Ry Sldstag thessam, (BB —=> 2o NOTEN = MO, V0.
Sg és. I "'Q['O‘:ltdl% CS’Y' end ! CMS.I('(;&\L& Lollows §rom g\«k’%& Yrerem (‘ae_""\ )
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A Useful Corollary

@ Theorem 5.10: Suppose the hypotheses of Theorem 5.9 hold, and that
7 : © — R is continuously differentiable with 7'(6g) # 0. Then

V[T (0,(X5)) — 7(60)] SN (O’ [7_[/1(56?0))] ) |

That is, 7(0,(X,)) is a consistent and asymptotically efficient estimator of
7'(00).

bf. ExEROSE !
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Asymptotically Efficient MLEs: Examples

@ Example 5.20: Let X1, Xo,..., X, N (,u, 02), where 1 € R and o2 is
known. Find the asymptotic dlstrlbutlon of the MLE of p. (/',‘“: )TD _

(Chedt. the. onditiars € Thewan 5.9
O B-Eonelispnn @/ Ll = 2
(19 =
" id \s Comti (1) v
© Lpiw-o. “"‘: T LORN® 4 o> L7
@ j(x\'—';‘_:q* e"% >0 YreR ,[“'(/,m =0
50 e suppert of J s 2, uhich doent c\@law‘/
@ L(/A:\/q-zéa‘ k‘/lt‘:?. /
By Thaoem 5.9, in=.\c ooty eicant ch osngftic. idiudan N, ¢

Jg(/,\xy c- (ﬁ;%’,mw frre & »
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Asymptotically Efficient MLEs: Examples

@ Example 5.21: Let X1, Xo,..., X, Y Bernoulli (p), where p € (0,1). Find
the asymptotic distribution of the MLE of p, and then that of 1/p.

CxeRLst ! Uee the daivo. metivd e /o .
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The MLE Isn't Always Asymptotically Normal
@ Example 5.22: Let Xq,Xo,..., X, g Unif (0, 6), where 6 > 0. Show that
the MLE of 6 is not asymptotically normal.

év\." X{.. .
I (Xa-0) == N0, 2), Hon Y= A0 X —>N(07) too.

B“-\ cee Fe(qv\ 9%\) 6XM gomzhmes A\W{: s(p..lug} f T,,‘e aivu.s

= Ko B Xon e /) interfing rens @ i .., Ko N, do

. Wa (XO-) 2D- ‘5/‘,7) 1-( —K:."/b ':’;.'l\_xeo bk Jr(%e-p) —A‘N(o,v"XB
] b -9\ Infhe ., %8 i 0,0 cose, whok -1 angthing -
|- (& ) oo N (52X~ B) e i distibsion 2
1=

N> 1 g/o > 0 _ i

e Ot o <0 - ,&LQZO ('l.e.,-\"\b anwq\'d‘\x- Jisteibechion £ Y,

)

Alﬁanerod'e. ot O, So ifs not & noaval ondom
vaipb\eD
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Approximate Tests and Intervals

@ We've seen that a lot of statistics are asymptotically normal
@ What about test statistics?

o If we're willing to approximate a test statistic (whose exact distribution we
might not know for fixed n) by one with a normal distribution, we can
perform tests and create intervals that we couldn’t have before

@ As in Modules 3 and 4, we'll start off with tests and then use the test
statistics from those to construct confidence intervals
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Wilks' Theorem

@ Recall the LRT statistic for testlng Hy : 0 =0y versus Hy : 0 # 6y was given

by A\(X,,) = I]’_J((eél}):n”)) where 6.= 0(X,,) is the unrestricted MLE of 0 based

on X,

@ Amazingly, the LRT statistic always converges in distribution to a known
distribution, regardless of the statistical model (assuming it's nice enough)

@ Theorem 5.11 (Wilks’ theorem): Let X, Xo,... % fo, where the model

satisfies the same regularity conditions as in Theorem 5.9. If we test
Hy: 60 € Oy versus Hy : 6 € ©F using A\(X,,), then

d
—2log (\(Xn)) — x{1)

under H.

Prodr, ExeRUSE!
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Poll Timel

On Quercus: Module 5 - Poll 5
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Approximate LR Ts: Examples

@ Example 5.23: Let X1, Xo,..., X, Y Bernoulli (p), where p € (0,1).
Construct an approximate size-« LRT of Hy : p = pg versus Hx : p # pyo.

Cuonfe 232 > N> = (£ [18)™

2/@(@5 [XJJ(?/XB (I- X‘“‘il’ ‘)}
=2 Al (N --2r\[><»1<j(?/\ (1- xb}%f )

%\M\a theoem R={gex -Zr\[ IJ(?/\ + (|- x\ﬂra,
1§ the (‘Pda:\\m (725\0:\ c{:w\ cpproimede See-o et & W,.0:0, » \’\A:6=t9.,.
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A imate LRTs: E |
pproximate s: Examp es.,.d ¢ poun

@ Example 5.24: Let X1, Xo,..., X,, ~ N (,u, 02), where 1 € R. Construct an
approximate size-a LRT of Hy : = g versus H 4 : i # L.

Erome 221 —= XY= e Tr (%)
= —24( XD = o (Ko

B&\ % thasom Rz ige %:,.(gy,sgx;“% e e e l‘@‘\m
of On opyoKivate <ive-ok tett & aipopo %t g, :

‘V\ {'ud,'ds'cv\ 2Dk C'ﬁe,—ol‘&e“t\. (,\)kg? Ca.?qp_e\-oa 2 -%est .~
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Wald Tests
22d

@ Definition 5.7: Let X1, Xs,..., X,, ~ fy. For testing Hy : 6 = 6 versus
H, : 0 +# 60, a Wald test is a test based on the Wald statistic

Wn(Xn) — (én - ‘90)2In(ér)a

L o
where 8, = OmLe(X,,) is the usual MLE. plg-in Fise/ iudmotion
@ Theorem 5.12: Let X¢, Xo,..., X, wd fo, where the model satisfies the same

regularity conditions as in Theorem 5.9. If we test Hy : 6 = 6 versus
Hy 2 0 # 60y using W, (X,,), then

d

under H.

Vok~. €xcroke |
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Wald Tests: Examples

@ Example 5.25: Let X1, Xo,..., X, Y Bernoulli (p), where p € (0,1).
Construct an approximate size-aw Wald test of Hy : p = pg versus
Hy :p # po.

(K = (én— %) - LY, vhere = >_<n/ oo St 50
n
Wt the. Bver inbmotin? L= (s = Llid* ok

o WN(XN = (;:(\ "\Yg 25> Way wher o, by Treomm 5.2,

S & i.i’t X (:;ﬁ?;“ 77;.«?'\9&@ \Qa:\-bma\m& me@rm«o&e size -k
et & Ho: P=B v Hg:p Fpo.
OR: R | Sois

J= (\-2/n

tost & H":?;?‘ . Hﬂ'-?’f?a.

> 2.‘,,} e fle «Qed\'m ngfion of gn afproxieche Si22-o

ExERost: doas R=R 7

Rob Zimmerman (University of Toronto) STA261 - Module 5 July 30 - August 1, 2024

47 /57



Wald Tests: Examples /vt‘m,\\
@ Example 5.26: Let X1, Xo,..., X, N (,u, 02), where 1 € R. Construct an

approximate size-a Wald test of Hy : = po versus H4 @ # pg. /3"= XA

Trom Exonle. 520, T() =" 50 WA 2 («% (Z2.

124 Theerem S.\2, RedgeA" L’%ﬁg > 7&.),“% is the rgiection r2gion &

Dn cproxirate (aock il cosel) size-x et & Hepzp, e

Mo e

oR: ®: ixe% \ \ > 24,5 s the jeckion ma\m& on opproximcie (exack)
Sie-K tek & ‘“yk/’- us o 4.

ks our o\d ‘Gr'\a'\é, Yo dwo-sided 2-test)
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Score Tests
@ Definition 5.8: Let X1, Xo,..., X, i fo. For testing Hy : 6 = 6y versus
H4 : 0 # 0, a score test (also called a Rao test or a Lagrange multiplier
test) is a test based on the score statistic

[S’n(eO ’ Xn)]Q
R,(X,) = :
@ Theorem 5.13: Let X4, X5,..., X, “d fo, where the model satisfies the same

regularity conditions as in Theorem 5.9. If we test Hy : 6 = 6y versus
Hy4 : 0 # 60 using R, (X,,), then

d

under Hy.

E%I'NACI\H(J ' S..(G.,\ X _’1_3 M(_,Ol b |

J L&)
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Score Tests: Examples

@ Example 5.27: Let X1, Xo,..., X, Y Bernoulli (p), where p € (0,1).
Construct an approximate size-« score test of Hy : p = pg versus

Hy p # Po- LQ({\’ ?{x:("ig\'éw
Ra(%0) = S(E:(XV\ LX) = Zx.-Lnlp) +(n-€6d- L1
o 2= fx-, _ n-fx, -n -
N
= “?—(& _ \- X ‘1‘ %[\"?o) S(Vl%\ ( B é_‘;
\ n
R Lo g (& £5) g
= (Xh' 202
Po(1-pe) /n,

Ry Taven 13, R 5 B o T {5 e st in € on el
gize-& TS Wop=p 6 Haptee.
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Score Tests: Examples

@ Example 5.28: Let X1, Xo,..., X, YN (,u, 02), where 1 € R. Construct an

approximate size-a score test of Hy : = g versus H 4 : 0 # .

CXERC\SE !
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The Trinity of Tests

@ The LRT, the Wald test, and the score test form the backbone of classical
hypothesis testing

@ Observe that under Hy, all three tests are asymptotically equivalent (i.e., all
three test statistics all converge in distribution to a X%l))

@ For this reason, the three tests are sometimes collectively referred to as the
trinity of tests

@ Although asymptotically equivalent, the speed of convergence to X%l) can be
quite different for each one — for small n, they can be quite different in terms

of power and other “small-sample” properties TN (€ L8 =08+ O+ 4o sme
: =

o9, c e, Won a\ fhme fesks oo
@ One might tell you to reject Hy while another might not! indent f fitde n

(proed in\482)
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Approximate Confidence Intervals

@ Using any of the asymptotic tests to test Hy : 0 = 6y versus H 4 : 0 #~ 0, it's
sometimes possible to invert any of the test statistics to obtain an
approximate (1 — «)-confidence interval for 6

@ Out of the three, the LRT is usually the hardest to invert into an actual
interval, and the Wald statistic is usually the easiest

@ In practice, you can always try to use numerical solvers when the algebra
doesn’t work

@ For Wald and score intervals, the standard recipe is to take the square root of
the test statistic and compare it to N (0, 1)
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Approximate Confidence Intervals: Examples

@ Example 5.29: Let X1, Xo,..., X, Y Bernoulli (p), where p € (0,1).
Construct an approximate (1 — a)-confidence interval for p based on the
Wald statistic.

|%.-
Eramle 525, |-« = “)(m:_\T £ 24| whnnis \agﬁb

@ This confidence interval shows up everywhere in polling (and is a staple of

introductory Statistics classes); its half-length is called the margin of error
\n prochice

ou olmost olways see = 0.05 (thans, Fidber..) , uhone. 25, # .4
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Approximate Confidence Intervals: Examples

@ Example 5.30: Let X1, Xo,..., X, Y Bernoulli (p), where p € (0,1).
Construct an approximate (1 — a)-confidence interval for Iog( A ) based on
the Wald statistic.

Tom Eramie. 52, cie ©+2 LTI 6 Pervtme g, bieion

¢ 2" "2, Ll Q< in T2, z‘(ri-x:)

n
(5@ - 2., [XLRS X t 2, [T

J ¢ fool-Z=\ 2
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So
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Approximate Confidence Intervals: Examples

@ Example 5.31: Let X1, Xo,..., X, Y Poisson (M), where A > 0. Construct
an approximate (1 — a)-confidence interval for A based on the Wald statistic.

S= % SR PN+ S Ll 4, hae.
— 2 S\ = _ & éX;
So Wn(X) = (%N - (%’@’ = Sy " ~
S Yt
~ >\_ )T'\ == - -\ -& = N

So (-Z;\_ B%JT%‘_—' Kt 2%@\} 1S on cppdximete (\-D-CT fo .
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When the Fisher Information Causes Problems...

@ When fy is too complicated to allow for exact (1 — «)-confidence intervals,
it's standard practice to use Wald intervals and score intervals

@ But there might be another problem: co\lw\ml'ir&{'l& Tider informodtion |

@ In real-life multiparameter models, I,,(0) is a matrix and is often impossible
to work out directly, which makes calculating I,,(6y) or I,,(0) futile

@ When this happens, people like to swap I,,(-) with J,(-) in the Wald and
score statistics .. buk ie -msqmo\\:\ Q\A\&\eA???

. t(:)es[ I con be, choon ot Sn(X) ¢ or Cordistent estinatr & T(BY)

@ Moreover, in a famous 1978 paper Efron and Hinkley showed empirically

that @ is superior to I, ( .
O(rhono‘l rec:A\rg\ i€ yolve Cuiolss. ...

j\n(xn\)
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