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Limitations of Finite Sample Sizes
In almost everything we’ve done so far, we’ve assumed a sample
X1, X2, . . . , Xn

iid∼ fθ of fixed size n

We’ve needed to know the distributions of various statistics of
X1, X2, . . . , Xn

This requirement has been very limiting, as the distributions of most
statistics don’t have closed forms (or are unknown entirely)

Even the exact distribution of the sample mean 1
n

∑n
i=1 Xi is only available

for a few parametric families
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Driving Up the Sample Size
On the other hand, we have plenty of limiting distributions as n→∞

Example 5.1:

Example 5.2:

Of course, we never have n =∞ in real life

But if we have the luxury of a very large sample size, the “difference”
between the exact distribution and the limiting distribution should (hopefully)
be tolerable

Since the normal distribution is particularly nice, we will milk the CLT for all
it’s worth
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A Review of Standard Limiting Results
In the following, let {Xn}n≥1 and {Yn}n≥1 be sequences of random
variables, let X be another random variable, let x, y ∈ R be constants, and
let g(·) be a continuous function

Theorem 5.1: If Xn
p−→ X, then Xn

d−→ X. If Xn
d−→ x, then Xn

p−→ x.

Theorem 5.2 (Slutsky’s theorem): If Xn
d−→ X and Yn

p−→ y, then
Yn ·Xn

d−→ y ·X and Xn + Yn
d−→ X + y.

Theorem 5.3 (Continuous mapping theorem): If Xn
p−→ X, then

g(Xn) p−→ g(X). If Xn
d−→ X, then g(Xn) d−→ g(X).
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Notation Update
For the rest of this module, we will accentuate statistics of finite samples
with the subscript n (so X is now Xn, etc.)

For a generic statistic, we’ll write Tn = Tn(Xn)

If we’re talking about a limiting property of a sequence {Tn}n≥1, we’ll abuse
notation and just write that Tn has that limiting property, when the meaning
is clear from context

Example 5.3:
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Two Big Ones
Theorem 5.4 (Weak law of large numbers (WLLN)): Let X1, X2, . . . be
a sequence of iid random variables with E [Xi] = µ. Then

X̄n
p−→ µ.

Theorem 5.5 (Central limit theorem (CLT)): Let X1, X2, . . . be a
sequence of iid random variables with E [Xi] = µ and Var (Xi) = σ2. Then

X̄n − µ√
σ2/n

d−→ N (0, 1) .

The CLT is equivalent to
√
n(X̄n − µ) d−→ N

(
0, σ2), which is the form we’ll

be using most often
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Poll Time!

On Quercus: Module 5 - Poll 1
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Asymptotic Unbiasedness
As in Module 2, we’re interested in estimators of τ(θ)

But now we’re concerned with their limiting behavious as n→∞

For finite n, we insisted that our “best” estimators be unbiased

In the asymptotic setup, we can relax that slightly

Definition 5.1: Suppose that {Wn}n≥1 is a sequence of estimators for τ(θ).
If Biasθ (Wn) n→∞−−−−→ 0 for all θ ∈ Θ, then {Wn}n≥1 is said to be
asymptotically unbiased for τ(θ).

Example 5.4:
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Consistency
Xn

p−→ µ is the prototypical example of an estimator converging in
probability to the “right thing”

We have a special name for this

Definition 5.2: A sequence of estimators Wn of τ(θ) is said to be consistent
for τ(θ) if Wn

p−→ τ(θ) for every θ ∈ Θ.

Example 5.5:
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Showing Consistency
Sometimes it’s easy to show consistency directly from the definition

Example 5.6: Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2), where µ ∈ R and σ2 > 0.

Show that the sample mean Xn is consistent for µ.
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Showing Consistency
It’s usually easier to use standard limiting results (Slutsky, continuous
mapping, etc.) than to go directly from the definition

Example 5.7: Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2), where µ ∈ R and σ2 > 0.

Show that the sample variance S2
n is consistent for σ2.
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Bringing Back the MSE
In Module 2, we compared estimators by their MSEs

To extend that idea to the asymptotic setup, we need a new mode of
convergence

Definition 5.3: Suppose that Wn is a sequence of estimators for τ(θ). If
MSEθ (Wn) n→∞−−−−→ 0 for all θ ∈ Θ, then Wn is said to converge in MSE to
τ(θ).

Example 5.8:
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Poll Time!

On Quercus: Module 5 - Poll 2
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Convergence in MSE is Already Good Enough
It turns out that convergence in MSE is strong enough to guarantee
consistency

Theorem 5.6: If Wn is a sequence of estimators for τ(θ) that converges in
MSE for all θ ∈ Θ, then Wn is consistent for τ(θ).

Proof.
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A Criterion for Consistency
If we know Eθ [Wn] and Varθ (Wn), this next theorem often makes short
work out of checking for consistency

Theorem 5.7: If Wn is a sequence of estimators for τ(θ) such that
Biasθ (Wn) n→∞−−−−→ 0 and Varθ (Wn) n→∞−−−−→ 0 for all θ ∈ Θ, then Wn is
consistent for τ(θ).

Proof.
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The Sample Mean is Always Consistent
Example 5.9: Let X1, X2, . . . , Xn

iid∼ fθ, where E [Xi] = µ. Show that Xn is
consistent for µ.
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The Sample Variance is Always Consistent
One can (very tediously) show that if X1, X2, . . . , Xn are a random sample
from a distribution with a finite fourth moment, then

Var
(
S2
n

)
=

E
[
(Xi − E [Xi])4]

n
− Var (Xi)2 (n− 3)

n(n− 1)

Example 5.10: Let X1, X2, . . . , Xn
iid∼ fθ, where E [Xi] = µ and

Var (Xi) = σ2 and E
[
X4
i

]
<∞. Show that S2

n is consistent for σ2.
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Choosing Among Consistent Estimators
Consistency is practically the bare minimum we can ask for from a sequence
of estimators

There are usually plenty of sequences that are consistent for τ(θ)

Which one should we use?

It’s tempting to go with whichever has the lowest variance for fixed n, but
that would rule out a lot of fine estimators

Example 5.11:
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Asymptotic Normality
There’s a much more useful criterion, but first we need an important
CLT-inspired definition

Definition 5.4: Let Tn be a sequence of estimators for τ(θ). If there exists
some σ2 > 0 such that

√
n[Tn − τ(θ)] d−→ N

(
0, σ2) ,

then Tn is said to be asymptotically normal with mean τ(θ) and
asymptotic variance σ2.

By virtue of the CLT, most unbiased estimators are asymptotically normal
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Asymptotic Normality: Examples
Example 5.12: Let X1, X2, . . . , Xn

iid∼ Bin (k, p). Show that the sample mean
Xn is asymptotically normal.
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Asymptotic Normality: Examples
Example 5.13: Let X1, X2, . . . , Xn

iid∼ Exp (λ). Show that the second sample
moment X2

n is asymptotically normal.
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Asymptotic Distributions
More generally, we can talk about the limiting distribution of

√
n[Tn − τ(θ)]

even when it’s not normal

Definition 5.5: Suppose that Tn is a sequence of estimators for τ(θ). When it
exists, the distribution of limn→∞

√
n[Tn − τ(θ)] is called the asymptotic

distribution (or limiting distribution) of Tn.

So if Tn is an asymptotically normal sequence of estimators for τ(θ) with
asymptotic variance σ2, then its asymptotic distribution is N

(
0, σ2)

Example 5.14:

We might prefer to speak of the distribution of Tn itself when n is large
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Poll Time!

On Quercus: Module 5 - Poll 3
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The Delta Method
If some sequence Tn is asymptotically normal for θ and some function g(·) is
nice enough, then the next result gives a remarkably easy method of
producing an asymptotically normal sequence of estimators of for g(θ)

Theorem 5.8 (Delta method): Suppose that θ ∈ Θ ⊆ R and
√
n(Tn − θ)

d−→ N
(
0, σ2). If g : R→ R is continuously differentiable with

g′(θ) 6= 0, then
√
n[g(Tn)− g(θ)] d−→ N

(
0, [g′(θ)]2σ2) .

Proof.
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The Delta Method: Examples
Example 5.15: Let X1, X2, . . . , Xn

iid∼ N
(
µ, σ2) where µ ∈ R \ {0} and

σ2 > 0. Find the limiting distribution of 1/Xn.
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The Delta Method: Examples
Example 5.16: Let X1, X2, . . . , Xn

iid∼ Bernoulli (θ) where θ ∈ (0, 1). Find
the limiting distribution of log

(
1−Xn

)
.
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The Delta Method: Examples
Example 5.17: Let X1, X2, . . . , Xn

iid∼ fθ where Eθ [Xi] = θ and
Varθ (Xi) = σ2. If τ : R→ R is continuously differentiable with τ ′(θ) 6= 0,
describe the distribution of τ(Xn) as n becomes large.

Rob Zimmerman (University of Toronto) STA261 - Module 5 July 30 - August 1, 2024 27 / 57



Back to Choosing Estimators
We know that when Tn = Xn, the CLT says that

Tn − Eθ [Tn]√
Varθ (Tn)

d−→ N (0, 1)

Recall the Fisher information In(θ) = Varθ (S(θ | Xn))

In Module 2, we said that an unbiased estimator Wn of τ(θ) was efficient if
its variance attained the Cramér-Rao Lower Bound [τ ′(θ)]2/In(θ)

We also noticed that if the Xi’s were iid, then In(θ) = nI1(θ)
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Asymptotic Efficiency
So if we could replace the Tn in the CLT statement with a general unbiased
and efficient Wn, it would look like

Wn − τ(θ)√
[τ ′(θ)]2/nI1(θ)

d−→ N (0, 1)

Or equivalently
√
n[Wn − τ(θ)] d−→ N

(
0, [τ ′(θ)]2

I1(θ)

)
This is not a result, but a condition that we can demand of our estimators

Definition 5.6: A sequence of estimators Wn is asymptotically efficient for
τ(θ) if

√
n[Wn − τ(θ)] d−→ N

(
0, [τ ′(θ)]2

I1(θ)

)
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Asymptotic Efficiency: Examples
Example 5.18: Let X1, X2, . . . , Xn

iid∼ Exp (λ), where λ > 0. Show that
1/Xn is asymptotically efficient for λ.
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Asymptotic Efficiency: Examples
Example 5.19: Let X1, X2, . . . , Xn

iid∼ Poisson (λ), where λ > 0. Show that
Xn is asymptotically efficient for λ.
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Large Sample Behaviour for the MLE
We’re ready to see why the MLE is almost always the point estimator of
choice when n is large

To understand this, we need to distinguish between an arbitrary parameter
θ ∈ Θ and the true parameter that generated the data, which we will call θ0

We’ll show that the MLE is asymptotically efficient, under certain “regularity
conditions”
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Regularity Conditions
Recall how the Cramér-Rao Lower Bound required some conditions:

Such conditions are generically referred to as regularity conditions, and
they’re used to rule out various pathological counterexamples and edge cases

The exact regularity conditions for our next result are quite technical and not
worth getting involved with in this course

Instead, we will go with four sufficient regularity conditions that are relatively
easy to check, and which are satisfied by many common parametric models
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Poll Time!

On Quercus: Module 5 - Poll 4
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The MLE is Often Asymptotically Normal
Theorem 5.9: Let X1, X2, . . .

iid∼ fθ0 , and let θ̂n(Xn) be the MLE of θ0
based on a sample of size n. Suppose the following regularity conditions hold:

I Θ is an open interval (not necessarily finite) in R
I The log-likelihood `(θ | xn) is three times continuously differentiable in θ
I The support of fθ does not depend on θ
I I1(θ) < ∞ for all θ ∈ Θ

Then
√
n[θ̂n(Xn)− θ0] d−→ N

(
0, 1
I1(θ0)

)
.

That is, θ̂n(Xn) is a consistent and asymptotically efficient estimator of θ0.

Proof (sketch).
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A Useful Corollary
Theorem 5.10: Suppose the hypotheses of Theorem 5.9 hold, and that
τ : Θ→ R is continuously differentiable with τ ′(θ0) 6= 0. Then

√
n[τ(θ̂n(Xn))− τ(θ0)] d−→ N

(
0, [τ ′(θ0)]2

I1(θ0)

)
.

That is, τ(θ̂n(Xn)) is a consistent and asymptotically efficient estimator of
τ(θ0).
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Asymptotically Efficient MLEs: Examples
Example 5.20: Let X1, X2, . . . , Xn

iid∼ N
(
µ, σ2), where µ ∈ R and σ2 is

known. Find the asymptotic distribution of the MLE of µ.
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Asymptotically Efficient MLEs: Examples
Example 5.21: Let X1, X2, . . . , Xn

iid∼ Bernoulli (p), where p ∈ (0, 1). Find
the asymptotic distribution of the MLE of p, and then that of 1/p.

Rob Zimmerman (University of Toronto) STA261 - Module 5 July 30 - August 1, 2024 39 / 57



The MLE Isn’t Always Asymptotically Normal
Example 5.22: Let X1, X2, . . . , Xn

iid∼ Unif (0, θ), where θ > 0. Show that
the MLE of θ is not asymptotically normal.

Rob Zimmerman (University of Toronto) STA261 - Module 5 July 30 - August 1, 2024 40 / 57



Approximate Tests and Intervals
We’ve seen that a lot of statistics are asymptotically normal

What about test statistics?

If we’re willing to approximate a test statistic (whose exact distribution we
might not know for fixed n) by one with a normal distribution, we can
perform tests and create intervals that we couldn’t have before

As in Modules 3 and 4, we’ll start off with tests and then use the test
statistics from those to construct confidence intervals
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Wilks’ Theorem
Recall the LRT statistic for testing H0 : θ = θ0 versus HA : θ 6= θ0 was given
by λ(Xn) = L(θ0|Xn)

L(θ̂|Xn) , where θ̂ = θ̂(Xn) is the unrestricted MLE of θ based
on Xn

Amazingly, the LRT statistic always converges in distribution to a known
distribution, regardless of the statistical model (assuming it’s nice enough)

Theorem 5.11 (Wilks’ theorem): Let X1, X2, . . .
iid∼ fθ, where the model

satisfies the same regularity conditions as in Theorem 5.9. If we test
H0 : θ ∈ Θ0 versus HA : θ ∈ Θc

0 using λ(Xn), then

−2 log (λ(Xn)) d−→ χ2
(1)

under H0.
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Poll Time!

On Quercus: Module 5 - Poll 5
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Approximate LRTs: Examples
Example 5.23: Let X1, X2, . . . , Xn

iid∼ Bernoulli (p), where p ∈ (0, 1).
Construct an approximate size-α LRT of H0 : p = p0 versus HA : p 6= p0.
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Approximate LRTs: Examples
Example 5.24: Let X1, X2, . . . , Xn

iid∼ N
(
µ, σ2), where µ ∈ R. Construct an

approximate size-α LRT of H0 : µ = µ0 versus HA : µ 6= µ0.
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Wald Tests
Definition 5.7: Let X1, X2, . . . , Xn

iid∼ fθ. For testing H0 : θ = θ0 versus
HA : θ 6= θ0, a Wald test is a test based on the Wald statistic

Wn(Xn) = (θ̂n − θ0)2In(θ̂),

where θ̂n = θ̂MLE(Xn) is the usual MLE.

Theorem 5.12: Let X1, X2, . . . , Xn
iid∼ fθ, where the model satisfies the same

regularity conditions as in Theorem 5.9. If we test H0 : θ = θ0 versus
HA : θ 6= θ0 using Wn(Xn), then

Wn(Xn) d−→ χ2
(1)

under H0.
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Wald Tests: Examples
Example 5.25: Let X1, X2, . . . , Xn

iid∼ Bernoulli (p), where p ∈ (0, 1).
Construct an approximate size-α Wald test of H0 : p = p0 versus
HA : p 6= p0.
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Wald Tests: Examples
Example 5.26: Let X1, X2, . . . , Xn

iid∼ N
(
µ, σ2), where µ ∈ R. Construct an

approximate size-α Wald test of H0 : µ = µ0 versus HA : µ 6= µ0.
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Score Tests
Definition 5.8: Let X1, X2, . . . , Xn

iid∼ fθ. For testing H0 : θ = θ0 versus
HA : θ 6= θ0, a score test (also called a Rao test or a Lagrange multiplier
test) is a test based on the score statistic

Rn(Xn) = [Sn(θ0 | Xn)]2

In(θ0) .

Theorem 5.13: Let X1, X2, . . . , Xn
iid∼ fθ, where the model satisfies the same

regularity conditions as in Theorem 5.9. If we test H0 : θ = θ0 versus
HA : θ 6= θ0 using Rn(Xn), then

Rn(Xn) d−→ χ2
(1)

under H0.
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Score Tests: Examples
Example 5.27: Let X1, X2, . . . , Xn

iid∼ Bernoulli (p), where p ∈ (0, 1).
Construct an approximate size-α score test of H0 : p = p0 versus
HA : p 6= p0.
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Score Tests: Examples
Example 5.28: Let X1, X2, . . . , Xn

iid∼ N
(
µ, σ2), where µ ∈ R. Construct an

approximate size-α score test of H0 : µ = µ0 versus HA : µ 6= µ0.
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The Trinity of Tests
The LRT, the Wald test, and the score test form the backbone of classical
hypothesis testing

Observe that under H0, all three tests are asymptotically equivalent (i.e., all
three test statistics all converge in distribution to a χ2

(1))

For this reason, the three tests are sometimes collectively referred to as the
trinity of tests

Although asymptotically equivalent, the speed of convergence to χ2
(1) can be

quite different for each one – for small n, they can be quite different in terms
of power and other “small-sample” properties

One might tell you to reject H0 while another might not!
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Approximate Confidence Intervals
Using any of the asymptotic tests to test H0 : θ = θ0 versus HA : θ 6= θ0, it’s
sometimes possible to invert any of the test statistics to obtain an
approximate (1− α)-confidence interval for θ

Out of the three, the LRT is usually the hardest to invert into an actual
interval, and the Wald statistic is usually the easiest

In practice, you can always try to use numerical solvers when the algebra
doesn’t work

For Wald and score intervals, the standard recipe is to take the square root of
the test statistic and compare it to N (0, 1)
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Approximate Confidence Intervals: Examples
Example 5.29: Let X1, X2, . . . , Xn

iid∼ Bernoulli (p), where p ∈ (0, 1).
Construct an approximate (1− α)-confidence interval for p based on the
Wald statistic.

This confidence interval shows up everywhere in polling (and is a staple of
introductory Statistics classes); its half-length is called the margin of error
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Approximate Confidence Intervals: Examples
Example 5.30: Let X1, X2, . . . , Xn

iid∼ Bernoulli (p), where p ∈ (0, 1).
Construct an approximate (1− α)-confidence interval for log

(
p

1−p

)
based on

the Wald statistic.
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Approximate Confidence Intervals: Examples
Example 5.31: Let X1, X2, . . . , Xn

iid∼ Poisson (λ), where λ > 0. Construct
an approximate (1− α)-confidence interval for λ based on the Wald statistic.

Rob Zimmerman (University of Toronto) STA261 - Module 5 July 30 - August 1, 2024 56 / 57



When the Fisher Information Causes Problems...
When fθ is too complicated to allow for exact (1− α)-confidence intervals,
it’s standard practice to use Wald intervals and score intervals

But there might be another problem:

In real-life multiparameter models, In(θ) is a matrix and is often impossible
to work out directly, which makes calculating In(θ̂0) or In(θ̂) futile

When this happens, people like to swap In(·) with Jn(·) in the Wald and
score statistics

Moreover, in a famous 1978 paper, Efron and Hinkley showed empirically
that Jn(θ̂) is superior to In(θ̂)
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