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Limitations of Finite Sample Sizes

@ In almost everything we've done so far, we've assumed a sample
jid , .
X1, Xo,..., X, X fy of fixed size n

@ We've needed to know the distributions of various statistics of
X, X,..., X,

@ This requirement has been very limiting, as the distributions of most
statistics don't have closed forms (or are unknown entirely)

@ Even the exact distribution of the sample mean %Z?zl X is only available
for a few parametric families
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Driving Up the Sample Size

@ On the other hand, we have plenty of limiting distributions as n — oo
@ Example 5.1:

@ Example 5.2:

o Of course, we never have n = oo in real life

@ But if we have the luxury of a very large sample size, the “difference”
between the exact distribution and the limiting distribution should (hopefully)
be tolerable

@ Since the normal distribution is particularly nice, we will milk the CLT for all
it's worth

Rob Zimmerman (University of Toronto) STA261 - Module 5 July 30 - August 1, 2024 3/57



A Review of Standard Limiting Results

@ In the following, let {X,,},>1 and {Y,},,>1 be sequences of random
variables, let X be another random variable, let x,y € R be constants, and
let g(-) be a continuous function

e Theorem 5.1: If X,, = X, then X, X f Xn 4, z, then X, -2 z.

@ Theorem 5.2 (Slutsky’s theorem): If X, %5 X and Y,, % g, then
Y, Xo -5y X and X, +Y, -5 X 1.

@ Theorem 5.3 (Continuous mapping theorem): If X,, % X, then
9(X,) 5 g(X). If X, -5 X, then g(X,,) % g(X).
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Notation Update

@ For the rest of this module, we will accentuate statistics of finite samples
with the subscript n (so X is now X,,, etc.)

@ For a generic statistic, we'll write T, = T,,(X,,)

o If we're talking about a limiting property of a sequence {7}, },>1, we'll abuse
notation and just write that 7;, has that limiting property, when the meaning
is clear from context

o Example 5.3:
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Two Big Ones

@ Theorem 5.4 (Weak law of large numbers (WLLN)): Let X, X5, ... be
a sequence of iid random variables with E [X;] = u. Then

Xni>,u.

@ Theorem 5.5 (Central limit theorem (CLT)): Let X;,X5,... be a
sequence of iid random variables with E [X;] = p and Var (X;) = 0. Then

o The CLT is equivalent to \/n(X, — p1) == N (0,0?), which is the form we'll
be using most often
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Poll Time!
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Asymptotic Unbiasedness

As in Module 2, we're interested in estimators of 7(6)
But now we're concerned with their limiting behavious as n — oo
For finite n, we insisted that our “best” estimators be unbiased

In the asymptotic setup, we can relax that slightly

Definition 5.1: Suppose that {W,,},>1 is a sequence of estimators for 7(9).

n—oo

If Biasg (W,,) —— 0 for all 8 € ©, then {W,},,>1 is said to be
asymptotically unbiased for 7(6).

e Example 5.4:
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Consistency

o X, % 1 is the prototypical example of an estimator converging in
probability to the “right thing”

@ We have a special name for this

@ Definition 5.2: A sequence of estimators W,, of 7(0) is said to be consistent
for 7(6) if W, -2+ 7(0) for every 6 € ©.

@ Example 5.5:

Rob Zimmerman (University of Toronto) STA261 - Module 5 July 30 - August 1, 2024 9/57



Showing Consistency

@ Sometimes it's easy to show consistency directly from the definition
o Example 5.6: Let X1, Xo,..., Xn "N (1,0%), where 1 € R and 2 > 0.
Show that the sample mean X, is consistent for .
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Showing Consistency

@ It's usually easier to use standard limiting results (Slutsky, continuous
mapping, etc.) than to go directly from the definition

o Example 5.7 Let X1, Xa,..., Xn "N (1,0%), where 1 € R and 2 > 0.
2

Show that the sample variance S? is consistent for 2.
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Bringing Back the MSE

@ In Module 2, we compared estimators by their MSEs

@ To extend that idea to the asymptotic setup, we need a new mode of
convergence

@ Definition 5.3: Suppose that W, is a sequence of estimators for 7(6). If

n— oo

MSEy (W,,) —— 0 for all § € ©, then W, is said to converge in MSE to
7(0).

o Example 5.8:
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Poll Time!

On Quercus: Module 5 - Poll 2
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Convergence in MSE is Already Good Enough

@ It turns out that convergence in MSE is strong enough to guarantee
consistency

@ Theorem 5.6: If W, is a sequence of estimators for 7(6) that converges in
MSE for all § € ©, then W, is consistent for 7(6).

Proof.
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A Criterion for Consistency

o If we know Eg [W,,] and Vary (W,,), this next theorem often makes short
work out of checking for consistency

@ Theorem 5.7: If W, is a sequence of estimators for 7(6) such that
n— 0o n—oo

Biasy (W,,) —— 0 and Vary (W,,) —— 0 for all € ©, then W,, is
consistent for 7(6).

Proof.
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The Sample Mean is Always Consistent

consistent for p.

o Example 5.9: Let Xy, Xo,..., X, -~ fo, where E [X;]

= p1. Show that X, is
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The Sample Variance is Always Consistent

@ One can (very tediously) show that if X7, X5,...,X,, are a random sample
from a distribution with a finite fourth moment, then

E[(X; —E[Xi])*]  Var(X;)®(n—3)

Var (53) = n n(n —1)

o Example 5.10: Let Xy, Xo,..., X, (S fo, where E[X;] = p and
Var (X;) = 0% and E [X}!] < oo. Show that S2 is consistent for 2.
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Choosing Among Consistent Estimators

o Consistency is practically the bare minimum we can ask for from a sequence
of estimators

@ There are usually plenty of sequences that are consistent for 7(6)
@ Which one should we use?

@ It's tempting to go with whichever has the lowest variance for fixed n, but
that would rule out a lot of fine estimators

@ Example 5.11:
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Asymptotic Normality

@ There's a much more useful criterion, but first we need an important
CLT-inspired definition

o Definition 5.4: Let T}, be a sequence of estimators for 7(6). If there exists
some 02 > 0 such that

ValT, —7(0)] -4 N (0,62,

then T, is said to be asymptotically normal with mean 7(#) and
asymptotic variance 2.

@ By virtue of the CLT, most unbiased estimators are asymptotically normal
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Asymptotic Normality: Examples
o Example 5.12: Let X1, Xo,..., X, % Bin (k,p). Show that the sample mean
X, is asymptotically normal.
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Asymptotic Normality: Examples
o Example 5.13: Let X1, Xo,..., X, . Exp (A). Show that the second sample
moment X2, is asymptotically normal.
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Asymptotic Distributions

@ More generally, we can talk about the limiting distribution of \/n[T,, — 7(6)]
even when it's not normal

@ Definition 5.5: Suppose that T, is a sequence of estimators for 7(6). When it
exists, the distribution of lim,,_, . v/n[T;, — 7(8)] is called the asymptotic
distribution (or limiting distribution) of T;,.

@ So if T}, is an asymptotically normal sequence of estimators for 7(#) with
asymptotic variance o2, then its asymptotic distribution is A/ (0,02)

o Example 5.14:

@ We might prefer to speak of the distribution of T;, itself when n is large
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The Delta Method

o If some sequence T, is asymptotically normal for § and some function g(-) is
nice enough, then the next result gives a remarkably easy method of
producing an asymptotically normal sequence of estimators of for g(f)

@ Theorem 5.8 (Delta method): Suppose that § € © C R and
Vn(T, —0) N (0,0?). If g: R — R is continuously differentiable with
g'(8) # 0, then

Proof.
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The Delta Method: Examples

@ Example 5.15: Let X1, Xa,..., X, @N(u,a2) where p € R\ {0} and

02 > 0. Find the limiting distribution of 1/X,.
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The Delta Method: Examples

o Example 5.16: Let X1, Xo,..., X, ”,;_Si Bernoulli (6) where 6 € (0,1). Find
the limiting distribution of log (1 — X,).

Rob Zimmerman (University of Toronto) STA261 - Module 5 July 30 - August 1, 2024 26 /57



The Delta Method: Examples

@ Example 5.17: Let X1, Xo,..., X, i fo where Eg [X;] = 0 and
Varg (X;) = 0. If 7: R — R is continuously differentiable with 7/() # 0,
describe the distribution of 7(X,,) as n becomes large.
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Back to Choosing Estimators

@ We know that when T, = X,,, the CLT says that

T, —E¢ [T},

o Boll] 4, 5oy
Varg (T7,)

@ Recall the Fisher information I,,(0) = Varg (S(0 | X,,))

@ In Module 2, we said that an unbiased estimator W,, of 7(6) was efficient if
its variance attained the Cramér-Rao Lower Bound [7/(0)]?/1,,(0)

@ We also noticed that if the X;'s were iid, then I,(0) = nI;(0)
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Asymptotic Efficiency

@ So if we could replace the T, in the CLT statement with a general unbiased
and efficient W,,, it would look like

W, —7(0)
[7/(6))?/n11(0)

4 N (0,1)

@ Or equivalently

valw, ~ (o) <4 & (0,700

@ This is not a result, but a condition that we can demand of our estimators

o Definition 5.6: A sequence of estimators W,, is asymptotically efficient for
7(9) if

e 2
valw, - (6] 4 & (0,700
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Asymptotic Efficiency: Examples

e Example 5.18: Let X1, Xo,..., X, . Exp (A), where A > 0. Show that
1/X,, is asymptotically efficient for A.
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Asymptotic Efficiency: Examples

e Example 5.19: Let X3, Xo,..., X, “ Poisson (M), where A > 0. Show that
X, is asymptotically efficient for A.
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Large Sample Behaviour for the MLE

@ We're ready to see why the MLE is almost always the point estimator of
choice when n is large

@ To understand this, we need to distinguish between an arbitrary parameter
0 € © and the true parameter that generated the data, which we will call 6y

@ We'll show that the MLE is asymptotically efficient, under certain “regularity
conditions”
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Regularity Conditions

@ Recall how the Cramér-Rao Lower Bound required some conditions:
@ Such conditions are generically referred to as regularity conditions, and
they're used to rule out various pathological counterexamples and edge cases

@ The exact regularity conditions for our next result are quite technical and not
worth getting involved with in this course

@ Instead, we will go with four sufficient regularity conditions that are relatively
easy to check, and which are satisfied by many common parametric models
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The MLE is Often Asymptotically Normal

@ Theorem 5.9: Let Xy, Xo,... i fo,, and let én(Xn) be the MLE of 0,
based on a sample of size n. Suppose the following regularity conditions hold:

© is an open interval (not necessarily finite) in R

The log-likelihood £(6 | x,,) is three times continuously differentiable in 6
The support of fy does not depend on 6

I (0) < oo for all 6 € ©

vvYyVvVvly

Then
VAl (X,) — 0]~ A (0, 11(100)> .

That is, én(Xn) is a consistent and asymptotically efficient estimator of 6.

Proof (sketch).
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A Useful Corollary

@ Theorem 5.10: Suppose the hypotheses of Theorem 5.9 hold, and that
7 : © — R is continuously differentiable with 7/(6p) # 0. Then

. 7_/ 2
Valr(B,(X,)) — 7(00)] -5 N (o, %) .

That is, T(én(Xn)) is a consistent and asymptotically efficient estimator of
T(&Q).
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Asymptotically Efficient MLEs: Examples
@ Example 5.20: Let X1, Xa,..., X, if@N(u,a2), where 1 € R and o2 is
known. Find the asymptotic distribution of the MLE of p.
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Asymptotically Efficient MLEs: Examples

o Example 5.21: Let X1, Xo,..., X, “ Bernoulli (p), where p € (0,1). Find
the asymptotic distribution of the MLE of p, and then that of 1/p.
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The MLE Isn't Always Asymptotically Normal
o Example 5.22: Let X1, Xo,..., X, . Unif (0, 6), where 8 > 0. Show that
the MLE of @ is not asymptotically normal.
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Approximate Tests and Intervals

@ We've seen that a lot of statistics are asymptotically normal
@ What about test statistics?

o If we're willing to approximate a test statistic (whose exact distribution we
might not know for fixed n) by one with a normal distribution, we can
perform tests and create intervals that we couldn’t have before

@ As in Modules 3 and 4, we'll start off with tests and then use the test
statistics from those to construct confidence intervals
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Wilks' Theorem

@ Recall the LRT statistic for testing Hg : 6 = 0y versus H4 : 0 # 6y was given
by M(X,,) = £%Xn) “\here = A(X,,) is the unrestricted MLE of 6 based

L(6]Xn)
on X,,

@ Amazingly, the LRT statistic always converges in distribution to a known
distribution, regardless of the statistical model (assuming it's nice enough)

@ Theorem 5.11 (Wilks’ theorem): Let X7, Xo,... ud fo, where the model
satisfies the same regularity conditions as in Theorem 5.9. If we test
Hy: 0 € Og versus Hy : 0 € ©F using A(X,,), then
d 2
—2log (A(Xn)) — X{1)

under Hy.
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Approximate LRTs: Examples

o Example 5.23: Let X1, Xo,..., Xn “ Bernoulli (p), where p € (0,1).
Construct an approximate size-a LRT of Hy : p = pg versus H4 : p # po.
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Approximate LRTs: Examples
o Example 5.24: Let X1, Xo,..., X, if@N(u,a2), where p € R. Construct an
approximate size-a LRT of Hy : p = pg versus Ha @y # pig-
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Wald Tests

@ Definition 5.7: Let X1, X5, ..., X, . fo. For testing Hy : 6 = 6y versus
Hp : 0 # 0, a Wald test is a test based on the Wald statistic

Wn(Xn) = (én - 00)2In(é)v
where 0,, = Oye(X,,) is the usual MLE.
@ Theorem 5.12: Let X1, X5,..., X, ud fo, where the model satisfies the same

regularity conditions as in Theorem 5.9. If we test Hy : § = 0y versus
Hy : 0 +# 0y using W, (X,,), then

d

under Hy.
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Wald Tests: Examples

o Example 5.25: Let X1, Xo,..., X, “ Bernoulli (p), where p € (0,1).
Construct an approximate size-a Wald test of Hy : p = pg versus
Ha :p# po.
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Wald Tests: Examples

o Example 5.26: Let X1, Xo,..., X, if@N(u,a2), where p € R. Construct an

approximate size-a Wald test of Hy : = pg versus H 4 : pn # pig.
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Score Tests

@ Definition 5.8: Let X1, X, ..., X, . fo. For testing Hy : 6 = 6y versus
Hy : 0 # 69, a score test (also called a Rao test or a Lagrange multiplier
test) is a test based on the score statistic

[Sn(eo | Xn)]2
R,(X,) = —r——""
@ Theorem 5.13: Let X1, X5,..., X, u fo, where the model satisfies the same

regularity conditions as in Theorem 5.9. If we test Hy : § = 0y versus
Hy : 0 # 0y using R, (X,,), then

d
Rn (Xn) — X%l)

under Hy.
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Score Tests: Examples

o Example 5.27: Let X1, Xo,..., X, “ Bernoulli (p), where p € (0,1).
Construct an approximate size-« score test of Hy : p = pg versus
Ha :p# po.
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Score Tests: Examples
o Example 5.28: Let X1, Xo,..., X, W (,u,a2), where p € R. Construct an
approximate size-a score test of Hy : 1 = pg versus Hy : 1 # po.
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The Trinity of Tests

@ The LRT, the Wald test, and the score test form the backbone of classical
hypothesis testing

@ Observe that under Hy, all three tests are asymptotically equivalent (i.e., all
three test statistics all converge in distribution to a X%l))

@ For this reason, the three tests are sometimes collectively referred to as the
trinity of tests

@ Although asymptotically equivalent, the speed of convergence to X%1) can be
quite different for each one — for small n, they can be quite different in terms
of power and other “small-sample” properties

@ One might tell you to reject Hy while another might not!
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Approximate Confidence Intervals
@ Using any of the asymptotic tests to test Hy : 0 = 0y versus Hy : 0 # 6y, it's

sometimes possible to invert any of the test statistics to obtain an
approximate (1 — «)-confidence interval for 6

@ Out of the three, the LRT is usually the hardest to invert into an actual
interval, and the Wald statistic is usually the easiest

@ In practice, you can always try to use numerical solvers when the algebra
doesn't work

@ For Wald and score intervals, the standard recipe is to take the square root of
the test statistic and compare it to A/ (0,1)
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Approximate Confidence Intervals: Examples

@ Example 5.29: Let X1, Xo,..., X, “ Bernoulli (p), where p € (0,1).
Construct an approximate (1 — «)-confidence interval for p based on the
Wald statistic.

@ This confidence interval shows up everywhere in polling (and is a staple of
introductory Statistics classes); its half-length is called the margin of error

Rob Zimmerman (University of Toronto) STA261 - Module 5 July 30 - August 1, 2024 54 /57



Approximate Confidence Intervals: Examples

e Example 5.30: Let X1, Xa,..., X, ~ Bernoulli (p), where p € (0,1).
Construct an approximate (1 — a)-confidence interval for log ( 12— ) based on
the Wald statistic.
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Approximate Confidence Intervals: Examples

o Example 5.31: Let X1, Xo,..., X, “ Poisson (M), where A > 0. Construct
an approximate (1 — a)-confidence interval for A based on the Wald statistic.

Rob Zimmerman (University of Toronto) STA261 - Module 5 July 30 - August 1, 2024 56 /57



When the Fisher Information Causes Problems...

@ When fy is too complicated to allow for exact (1 — «)-confidence intervals,
it's standard practice to use Wald intervals and score intervals

@ But there might be another problem:

@ In real-life multiparameter models, I,,(0) is a matrix and is often impossible
to work out directly, which makes calculating I,,(6) or I,,(0) futile

@ When this happens, people like to swap I,,(-) with J,(-) in the Wald and
score statistics

@ Moreover, in a famous 1978 paper, Efron and Hinkley showed empirically

~ IN

that J,,(0) is superior to I,,(6)
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