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Uncertainty in Point Estimates

@ In Module 2, we learned how to produce the “best” point estimates of 6
possible using statistics of our data

@ The “best” unbiased estimator é(X) is the one that has the lowest possible
variance among all unbiased estimators of 6

o But even so, suppose we observe X = x and calculate 6(x); how do we know
this is close to the true 87 (Ne dont \

@ We can’'t know for sure

@ But we can use the data to get a range of plausible values of 6
%‘ U&t "“"5"*‘“’ N(/’ub. e . gtwse Wwe ca\cu\ake;)mWO: %=5'6
S ey woe. qlavible. ot e tvue. o i fodd e in (5, 0) Hhan (2,4)
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Random Sets

@ Suppose for now that © C R o et which s & fanction f 4he.
ondom souge K. (ar, (%1, %o))

o If A(X) is a continuous random variable, thep®; (9 = é(X)) =0

@ But we can try to find a random set C'(X) C R based on X such that
Py (6 € C(X)) = 0.95, for example

@ Example 4.1: Let X ~ N (u,1) where u € R. Show that the region
C(X) = (X 4 20.975, X + 20.025) satisfies P, (1 € C(X)) = 0.95=1-« («:0.05)
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Interval Estimators and Confidence Intervals

@ Definition 4.1: An interval estimate of a parameter § € © C R is any pair
of statistics L,U : X™ — R such that L(x) < U(x) for all x € X". The
random interval (L(X),U (X)) is called an interval estimator.

TN 4 a1 corcom ondpaimts
e Example 4.2: _ Are Hhase good? Bod?
T NG < (Y, %08 Bemalli): (- K- &, %utB) Dot o ttema

@ Definition 4.2: Suppose a € [0, 1]. An interval estimator (L(X),U (X)) is a
(1 — a)-confidence interval for 0 if Py (L(X) < 6 < U(X)) > 1 — « for all
0 € ©. We refer to 1 — « as the confidence level of the interval.

Mon, M'm ton hae o (\-2)- Confidorce. (elfion C(x) ¢ @' whidh saticfies (0 CC‘»’())? - 90e®,
@ Example 4.3:

X @ N(/.B => (e ik domed v Ex &l ok

(o 2y X302 5 o0 (P oot et o p
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One-Sided Intervals

@ Definition 4.3: A lower one-sided confidence interval is a confidence interval
of the form (L(X), c0). An upper one-sided confidence interval is a
confidence interval of the form (—oo, U(X)).

@ Example 4.4: Let X1, Xo,..., X, %Z/\/'(u, 1). Find a lower one-sided

0.5-confidence interval for p.

05= W20 war 2~N(on)

TBUE O
= R(%. <)
*Blpe(%s)

Se ()2",@ < o lowe one-sidel
0.5-CT fv p.

" onfidamte ivhenal”

ot (X‘,,o% i ovotler one. !

Go (IF-~)-Cle ae ret uﬁ\% |
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Confidence Intervals: Warmups

@ The reason for the “> 1 — «" in the definition is that Py (L(X) < 0 < U (X))
may not be free of 8, depending on the choices of L(X) and U(X)

@ The lower bound means we want 1 — « confidence even in the “worst case’;

equivalently,

inf Py (L(X)<O0<UX))>1—a
0cO \_— \/ 5

roge frbob

@ Example 4.5: Let X4, Xo, .. X '~ Unif (0 % where § > 0. Find a € R
such that (aX(,), 2aX(n)) is a 9k§u% confldence interval for 6.

\- ot = \%( Be (u\(,..,, 2axr-b> - (
M (6Xen ¢ 6 < 2;)(,.) 5‘3‘- " (aY ok
=R(_2€“<)Q.\< ) = (hoose 0. ® (l\_-_2) (e
F (- F ()
[9/03 (9/2°'>
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Poll Timel

On Quercus: Module 4 - Poll 1
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Some Confidence Intervals Are Better Than Others

@ A confidence interval is only useful when it tells us something we didn't know
before collecting the data

o Example 4.6: Suppose X1, Xo, ..., X, ~ Bernoulli (0), where 8 € (0,1).
Find a 100%=confidence interval for 6.

(OD).... ot helgfil ot ol
(K-t YD) .. s cot bagfut (e (.1, el gco,\b

(X.-200, w). extmdy rot hepful L N 1007 -CT contains © and

Pl 4ele ts no’fh'wg! We Mt’
@ A good confidence interval shouldn’t be any longer than necessary yrew 4ot

Pe®

@ We interpret the length of the interval as a measure of how accurately the
data allow us to know the true value of 6
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Bringing Back Hypothesis Tests

@ In Module 3, we learned about test statistics and rejection regions for
hypothesis tests

@ Pick some arbitrary 6y € ©, and suppose we want a level-« test of
Hy : 0 = 0g versus H 4 : 6 # 0y using a test statistic T'(X)

@ This means finding a rejection region Ry, such that

PQO (T(X) & RQO) < o

o This is equivalent to finding an acceptance region Ay, = Ry such that

Py, (T(X) € Ag,) > 1—a

If 4is hobs ¥Ore® Ao §X: T ey dis
O (1=~ Confidorce «ﬁ{m |
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Confidence Intervals Via Test Statistics

o If the statement T'(X) € Ay, can be manipulated into an equivalent
statement of the form L(X) < 6y < U(X), then

Po, (L(X) <0y <U(X)) >1—«
e But 6y € © was arbitrary!

@ So if we did this right, we must have

Py (L(X)<O<UX))>1—a forallecO

@ This method of finding confidence intervals is called inverting a hypothesis
test

© We can also go the other way! i, gtart with o (- CT (L(i)u(@ ond
"t it 4o b o, \awkon tet @ Uor0-0 s Y0¥ 8o (esigmrone ),
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Famous Examples: Z-Intervals

o Example 4.7: Let X1, Xs,..., X, "N (1, 0*) where € R and o
known. Find a (1 — a)-confldence interval for p by inverting the two-sided

/-test.
Le&/u.cP_. We nead o lewki fert & o0 95 oo,
Tan Euomie 3.5, g,=§ie2“- \‘%‘i\ﬁa
ﬂf\/)o -{xeX -
Thaoke, (- = B Ke AD)

Y( %L%/

\JF/:LE"/

o

\?(Xn 3,, \F’; < p LX,;\’%&\)P)

S° o (FA)- (T fGr/J @ b’(ﬂ - 2%%' Yo ¥ 2»,;\‘?/:\» 2- intervel”
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Famous Examples: One-Sided Z-Intervals

@ Example 4.8: Let X1, Xo,..., X, YN (,u, 02) where 1 € R and o2 is
known. Find a lower one—S|ded (1 — «)-confidence interval for y by inverting
an appropriate one-sided Z-test.

Ex 3.\(4 g 12,;2&7(": %’%,;wa& = A,.=2ie7f"= %‘%‘i.

cn =P %
G (B(Té

—V( ‘ 2“"-)_0:-"—» CYERCISE: @i\,éo:\nﬁw

@I(/>)(v. %S—> ('\L\:‘\leorj)uwa

= (Lare (K- 295, &)
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Famous Examples: ¢-Intervals

@ Example 4.9: Let X1, Xo,..., X, YN (,u, 02) where 1 € R and o2 > 0.
Find a (1 — «)-confidence mterval for p by inverting the two-sided ¢-test.

e300 Ry bre? 5= b
>P'/,;%~ ?xe'?[" _)‘g%\ :‘*/z

S \-n= @'(—{3'\-\,»“ %\‘ 'E«-w
(\/?'(ﬁ 'E,.M e 4/J X‘“‘\— "’%@

= (rocse (32*' %""m'\]? ) Kt ‘E.\,.%@ -l
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Famous Examples: One-Sided ¢-Intervals

@ Example 4.10: Let X1, Xo,..., X, YN (,u, 02) where 1 € R and o2 > 0.

Find an upper one-sided (1 — «)-confidence interval for u by inverting an
appropriate one-sided t-test.

Exeecse ! Chald He oaveonding Ko be
Hospepn e Hosps po 2
P it ok
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An LRT-Based Interval _,-«®) 4w
TR

@ Example 4. 11 46t X1, Xo,.. .. X,, be a random sample from a distribution
with pdf fy(z) = e~ (=9 where 6 € R. Find a (1 — a)-confidence
interval for 6 by inverting a )

fom Ex. 321, He (2T & H,. 0200 w5 Ric@=Bo hed o rgjaction 45hin & He fim
Qeﬁgie%“: )((.3’90— -1:-4'(:) 0L Xinyé 03.
— P‘&zzi*'{‘- % < 8- %‘Q D Km’e°§ =2i“7{‘3 )(m’"ga!_‘\‘eo‘xmg
Co ' e dhae ¢ o ke Yok Rg, o Size-x fest, e (Km*l%% Yoy ) Wil be
n(-D-CT . Hew? aluiyivoe |
NN\
‘o= B[ Xer£0- B4 A %,20)
:‘;\)a(Xmé(-)- ‘&é{:})
= (- ((-Glo- 42 X
=-(\-1\s e;e(-(@’%&"‘e»
= (\ﬂm* %(’T) Xm\ i§ o (\"A‘CS. (‘ar O.

Tl-e = (ese oo
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Functions of the Data and the Parameter

@ In constructing our confidence intervals, we've often encountered statements
that look like

Py (o < Q(X,0) <b) >1-a,

where () : X" x ©® — R is a function of the data X and the parameter 6, and
a,b are constants

@ We were able to choose those constants a and b because we knew exactly
what the distribution of Q(X, ) was

@ We could then “invert” the statement a < Q(X,6) < b to produce a
confidence interval for 6 Q(‘,‘Ey,).q N(o,D)

N

%0 ;3 \=)-
@ Example 4.12: N ( ,W‘),cr‘mw \B(&,A G 23, )= \-~

)_(tés_g.é'_>=\—og‘\,),maku Grosan a5 bokne

(
o Example 4.13: Wif©,8)- ﬂ(_fo: :

QXY | distibuton ves frmo d &

Rob Zimmerman (University of Toronto) July 23-25, 2024 16 /55




Pivotal Quantities

@ The key in these examples was that the distribution of Q(X,0) is free of 6

@ Definition 4.4: A random variable Q(X, ) is a pivotal quantity (or pivot)
for 6 if its distribution is free of 6.

. d
o Soif X ~ fp, and Y ~ fp,, then Q(X,01) = Q(Y,65) \swg};

rJ‘\\(o.\\""‘,,h\\
@ Every ancillary statistic is a pivotal quantlty

@ Example 4.14: ng,q%’qﬂ Wwaon (3,(-2,, % \ '
e Example 4.15: Eyz?bb O\(X% A r~’ E,‘Q(\\t—lcma@)\’é’-: e pivotel for \
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Poll Time!

(e tn cdadate Q(\L,GB for ang we X ot 0 ®.
Rt i"ff, ™ mo,am \row Hre disibudion & Q8" € D'+D...

On Quercus: Module 4 - Poll 2

Rob Zimmerman (University of Toronto) July 23-25, 2024 18 /55



Confidence Intervals from Pivotal Quantities

o Example 4.16 Let X1, Xo, ..., Xn " Exp(A), A > 0. Show that

Q(X,A) =2X>"" | X, is a pivotal quantity, and use it to find a 1 — «
confidence interval for A.

Use mg?sl. My (€)= (%7) tek = szax;(”‘y"(ﬁb: (i_'u

The Wﬁ*"\s fe€ N, o e disteibudin & Z)QX; s 400 =D 2 X2X: ¢ pivotal |
In ?adr, the wg( tellc s Yok 2NEX; @ g, (F“(’L'\}

Co b \-x = R(o\ c 2,\6)(;4’5 Cor some 05 ¢ I wik 0eb.

Thay et wiidy 1-oc= 5 (- (@) Moy e X
T e € 12 chose o= O, Yo \-n= i (9 = b= T (129 = Zone
S o= R(022XEK: 2 ona)

N\
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Finding Pivotal Quantities

@ There's no all-purpose strategy to finding pivotal quantities, but there's a
neat trick that sometimes lets us pull one out of the pdf of a statistic T'(X)

@ Theorem 4.1: Suppose that T'(X) ~ fy is univariate and continuous, such
that the pdf can be expressed as

() =9(Q(10) - | 5Q00)

for some function g(-) which is free of § and some function Q(t, ) which is

continuously differentiable and one-to-one as a function of ¢ (i.e., with
fixed). Then Q(T(X),6) is a pivot.

Proof.

‘(_&? wo“(vg...
\J|
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Fix 0e® od et holg) ke Ye pd & QATR),8) = Re(TR.
Lot Qg(9) ke tre fnckind imere & Q).
he(= 5[ Qa®) \ %LQS(@\ by the el Hnimotion € veicles formlo

_ ] 4
) fe( Qo(‘;\s' | EQS(Q ‘

&= Qalo
= 3( Qe(Qe‘(q}b -j—{: Qe(‘ﬁ‘ | | 'j—Qe('Q ‘ -]
— — /_{03?/ § QL
Y osnghon

:—8(4)3  uhidhis foe € O,
Co dhe distelotipn ¢ QTRD,8) i fre £ 6. O
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. . . 9
Finding Pivotal Quantities: Examples fe(”:g(Q(ta@))'ﬁQ(W)

@ Example 4.17: Let X1, Xo,..., X, g Unif (0, 0) where 6 > 0. Find a pivotal

quantity based on T'(X) = X,), and use it to construct a 1 — o confidence

interval for 6. Assim’ro i
ot

f = oy
The ot ¢ TR s S TW = w5 (E) ~ 71
'@3 Therew 41 ) Q( Xm,@B = % ¢ o Pieta) s/\m\_\*a 3(-) (Q“,Q)

[Wheké & distabetion? Tor xe(on),

E \ Crodse acb s
e el B )R
" B (Yo e Ox*) TRITChY
= oxS ¥ anfe, e 0:% 525175,
= (95_> é\'““’!i‘%ﬁ“‘ﬁ

° T
= x = QK B) ~ Wiklo = (e (G , 7o)
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Finding Pivotal Quantities: Examples

@ Example 4.18: Let X ~ fy(x) = 2(99;‘7") - Llo<z<p, where 8 > 0. Find a

pivotal quantity based on X, and use it to construct a 1 — « confidence

interval for 6. 9 . Q( )
- -X - 9. =2 |9
Ossane et F Qly, &= T, Hon AG= L QLD 15, Qb ‘

-9(@(‘.93) whare. (22
@A'W\Qm \4 Q(*(eﬁ - OX is o pivotal q’m\*& Wheke e dictabidin 2

o xe CR) ?\Ml\hf croices 4o ra¥e \- o @(M- ——c )
ez,

for aronge, ¢ a-O ‘rhm\:-m. The

\-9&2 Pe(o c \\_:—}
X
\-<

= Caee (%, %)
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Confidence Intervals: Interpretations

@ Confidence intervals are almost as widely misinterpreted as p-values

@ Suppose that in a published scientific study, you see a stated 95% confidence
interval such as (0.932,1.452)

t(’r@
@ How do you interpret this correctly?
(0.432, 1453 s gn "oblmed ee of e 95%-CT (LD, WD) .
(LD, W) s rondom (L), ULRD) s ohsrued
N2 (andom aidles Z,

@ Should we be surprised if we try and reproduce the study and calculate a 95%
confidence interval of (0.824,1.734)7

e What about (—0.232,1.440)7
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Poll Time! \ X'/"/X\u}gfa, By dcfinoin 0.95 £ R LI < © < U)
Cle¢o cw%'x
TELZ L oo
—% QVCOEEEERD

?ébﬁs On Quercus: Module 4 - Poll 3
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Confidence Intervals: Interpretations

@ Here are ten observed 95% Z-intervals for 1 calculated from ten random
samples of size n = 15 from a N (u, 1) distribution:

262.0~

261.5-

W)J--%l

260.5-

CT midpminds (’\h%’\s Case, eadh -
it o difFeront otsavad ) —
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Questioning Our Assumptions...

All of the theory we've done up to this point has depended on the
assumption of an underlying statistical model

When we say “Suppose X1, Xo,..., X, g fo...", we're assuming the data

follows one of the distributions in the parametric family {fy : 6 € ©} and
only the parameter 6 is unknown

If we get the statistical model wrong, then any inferences we make about 6
are likely to be completely invalid

So it's extremely important to be able to check that statistical model
assumption
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Nothing Is Certain

@ Of course, we can't know for sure that a model is correct

o [\nless we aev\e(di‘e, Ye doto. owrsalues... \wd' then thae would ko v\: ?o'mv-\l-hu\
n oiry irference. |

@ But we can perform checks that give us confidence in our assumptions

@ This is called model checking

@ We will study two kinds of model checks: visual diagnostics and
goodness-of-fit tests

July 23-25, 2024 28 /55
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Histograms: Preliminaries

@ Suppose we have iid data X7, X5, ..., X,,, which we hypothesize are
distributed according to a cdf Fjy

@ Let's group the range of the data into bins [h1, hs], (ho, hsl, ...\ (hm—_1, hm]

6’(‘"“‘0
@ By the law of large numbers,

lE;[ 'I‘X.el h\,q

— Z Lx,e(hy hysn] — Po(X, € (hg»h3+1])
=1 = ﬂ) h’ ¢ X“L‘t’b EO‘\D UO

@ So if n is large and we're correct about Fjy, then

1 n
n Z ﬂXiE(hwhHl] ~ FG(thrl) - FH(hj)

1=1
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The Histogram Density Function ‘
'.FG('\
@ If, in addition, we believe the X;'s are continuous with pdf fy, then there
exists h* € (hj,hjy1) such that

Fo(hiy1) — Fo(h, )
Z Xi€(hj,hjia] ~ 9( ;L+1) he( j) — f9(h )
J+1 Jg+1 — 1Yy

hﬁ“m Mean Nolie thayom |

@ Definition 4.5: Given data Xi,...,X,, and a partition Ay < hy < -+ < hyp,
the density histogram function is defined as

F — ”(hj+11—hj) Z’?:l HXiE(hj,thrl]? t e (hja hj+1]
0, otherwise

|

A vandom function (( ince. vks im?\iciﬂg,a fnctan & R rv's X, .., X0
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Histograms

@ If we believe that our observed data z1, ..., x,, are realizations of
id - :
X1,X5,..., X, ~ fg, then the observed f,(t) should look like a

“discretized” version of fy(t)

@ ...and the resemblance should improve as n gets larger and each bin size
hj+1 — h; gets smaller

o Definition 4.6: A plot of a density histogram function f,,(¢) with vertical lines
drawn at each £ is called a histogram. A histogram where each bin width
hj+1 — h; =1 is called a relative frequency plot.

%o ~

4 LTS
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Histograms: An Example

@ Here's a histogram (n = 100) overlaid with three hypothesized pdfs; which is
more likely to have generated the data?

50.0% -

4 /\\

20.0% - / \

W wos this M/

10.0% = /

0.0%~

259 260 261 262 263
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Poll Time!

On Quercus: Module 4 - Poll 4
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Empirical CDFs

@ We might prefer to deal with the cdf Fy instead

@ If we fix any t € R, then the law of large numbers says that

1 mn
=) Ix,<t Py (X <t)
- <

_ Lyt

@ So if n is large and we're correct about Fy, then

K—‘“\‘S __“_ owfonm He twe A‘b—M

k
@ Definition 4.7: Given a random variables Xl,@"*"‘?n“,“ﬁ'é’e%ﬁ'ica ‘

distribution function (ecdf) is defined as

= % ; Ix,<¢
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Empirical CDFs Are Nice

@ If we believe that our observed data z1, ..., x,, are realizations of

X1, Xo, ..., X, " Fy, then F,(¢) should look like Fp(¢)

@ In fact, a famous result called the Glivenko-Cantelli theorem says that if Fy
really is the true cdf, then F),(t) — Fy(t) as n — oo in a much stronger
sense than convergence in probability " il dmdm(mm'; (FYI)

\v(im» tin, 48, Blb)-G(d]>e})=0
o Theorem 4.2: For any fixed t € R, the ecdf £, ( is an unbiased estimator of
Fy(t), and it has a lower variance than 1x,<;.

Proof. 4Lx;¢(; ~ Ee_moo\\}( &( o =j§
= Renvoli( £ (1 )

=Remoali ( BW)
Tooat, {210 = 43 El) o
iso, \lop ( ) = & Nop{Hyeed)™ &G (1- BO) £ G- (1- 6 = Voo Leed. ©
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Empirical CDFs: An Example

@ Here's an ecdf (n = 50) overlaid with two hypothesized cdfs; which is more
likely to have generated the data?

(& vias s one

1.00-
0.75-
> 0.50~

0.25-

0.00

259 260 261 262 263
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Poll Time!

K, .., Yo BNl
Elto): %

On Quercus: Module 4 - Poll 5
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Bringing Back Ancillarity and Sufficiency

@ We know from Module 1 that if X1, Xo,..., X, g fo, the distribution of an

ancillary statistic S(X) is free of 6

e But if we've gotten the model {fy : 6 € ©} wrong, S(X) could very well
depend on 6! (Otcahaa%rm\m POty T A\ i 13

@ So some ancillary statistics provide a model check: if our realization S(x) is
“surprising’, we have evidence against the model being true

o Similarly, if T'(X) is sufficient for 6, then X | T'(X) = t shouldn’t depend on ¢
@ This leads to the idea of residual analysis

@ Loosely speaking, residuals are based on the information in the data that is
left over after we have fit the model

(\‘L‘m.g W fareal dfinbind “vesidval )
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Residual Plots

@ Example 4.19: Let X4,...,X,, be a random sample from a suspected
N (p, 0?) distribution, where € R and o2 is known. If we're correct, then

R(X) = (X1 — X,,..., X, — X,,) is ancillary for u, because

_ —1
Xi—Xn~N<O,n 02), i=1,....n

n
and therefore standardized residuals

X; — X,
R} (X) :=

~ N(0,1).
n=1_2
n 7 e (F s vl e (o Guck ceplace
qt by Si. whonce ZT ~ Y-y
So if we're right about N/ (,u, 02), then a scatterplot of the residuals shouldn't

exhibit any discernable pattern, and should mostly stay within (-3, 3)
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Residual Plots

@ Example 4.20: Here are two standardized residual plots constructed from two
samples (n = 100) with equal variances o?; which looks more like it came
2 . . .
from a A (u, 0?) distribution? " sas e e

2-
E . ® ® o pu
o | o e o e ) °
LI ® s °* *
‘ K o.. I o * =k ¢ " e " -
0- LY pe o B % e ®
. ® ® o, 0 o’ 5 e * o o o*
n o ® e bl °
a ot g “
IS e o *
o ® .
B ®e ¢
2 o a ©
o ® 9
a
™
‘ . f=3 on
2 = -~ a
o .. PO ® o L
@
. ° ®e : . o © ° N
0 o ® o o o « a
a ° e * e N ° s ® e % * o
a a L * ] o
» o B Py - @ == a ® o
°, o® ®e o oo e ® o o
ee e % e -~ \ ° e
2=
0 25 50 75 100
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Probability Plots

@ Probability plots extend this idea
@ We need a fundamental result of probability theory first

@ Theorem 4.3 (Probability integral transform): Let X be a continuous
random variable with cdf Fy(x), and let U = Fyp(X). Then U ~ Unif (0, 1).

Prof, EXeROCE
@ The order statistics of Uy,...,U, “s Unif (0, ) follow a Beta distribution:

Uiy ~ Beta(j,n—j+1), and so E [U(j) = 5 QR«W@

@ This suggests a recipe: & e Inpotiecise K.,...,Kn.'}é"\:e Ken e con ok

( ( b N4\ IQ'\/ .M. (€ & doewnt (ade (ke e ok \\e_o\n«d o-c'\vo.«i.{-\,,,e
r(\kv We drodd &u&m&\mwwv\mé Yo. "\
oL )

[%663(,\ W csp‘ O m'g Uz . '6:(V\+b' @( Fe(xc:)\% o
= Ut)) ¢ weee (avect domuk Te ond m‘a",'\'o Y=

Rob Zimmerman (University of Toronto) July 23-25, 2024 41 /55



Probability Plots P

@ Example 4.21: Here are two progability plots constructed from the
standardized residuals as before, using Fy(x) = ®(x). Which looks more like
it came from a NV (u, 0?) distribution?

1.00 -
T 0.75-
0.50 -
0.25-

0.00 -
100
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Q-Q Plots " (anble - Quonie”

@ We could also go in the other direction by looking at the quantiles

@ Definition 4.8: Let X be a random variable with cdf Fy. The inverse cdf (or
the quantile function) is defined by F, '(t) = inf{x : Fy(x) > t}.

L "bwd""é ivese of To "

@ When X is continuous, the inverse cdf is simply the functional inverse of Fj

@ There are plenty of software algorithms that can estimate the quantiles from
a sample x1,...,x,

@ If we hypothesize X1,...,X,, ~ Fp and we can compute Fe_l, then we have
another recipe for model checking:

Ylot fre obsaved qy&n&i(eg verruc Ko oo mes ' | ik dont \oske
(o e ) e o Mo e 4=, v duld guasion e omugiion € T,
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i Ry for, the Most commen tse. s whan To = 2.
Q Q PlOtS — e use. fic whan we wond €0 dredz it Yre N(OD dichibidien Aces apé‘@bé mvhwg’d»e
EXTRENE dservating (i.2., inthetuils)
@ Example 4.22: Here are two Q-Q plots constructed from the standardized
residuals as before, using F, '(z) = ®~1(x). Which looks more like it came

from a N (p, o?) distribution?

esfvated q,w\\\o baced r
- on Some Quale axtivdion wwz‘/

(( TED, M‘/‘(% @)

o ™
Lk
b@\",@
R ) dickibutiad oy
P\c\vd\‘akﬂ"WN(ﬂ’\" i o\

Rob Zimmerman (University of Toronto) July 23-25, 2024 44 /55



Q-Q Plots

@ Q-Q plots are most frequently used as a test for normality

@ But technically there's no reason why we can't use them to compare any two
distributions, observed or hypothesized

@ ...provided we can actually compute (or estimate) their quantiles, of course

@ Q-Q plots are particularly useful when we want to see how the “outliers” in
our data compare to the extreme values predicted by the tails of a
hypothesized distribution

Chedk ovt “Chemokt fager” in e ogstirel readivgs!
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Goodness of Fit Tests

@ Instead of using visual diagnostics, we can use hypothesis tests as model
checks

@ Definition 4.9: A goodness of fit test for a statistical model {fy : 0 € O} is
a hypothesis test that determines how well the model suits a given set of
observations x1,...,T,.

@ This time, the null hypothesis Hy is that the model {fy : 6 € ©} for our data
is “correct” H.: {Le JU‘& %M J‘.(M.. \A. : 't‘““ i bione Haceher oo o
“a'..:\&e Yor sonfles 0 ulependak ™ iod gordat

@ As usual, we have a test statistic 7'(X) that follows some known distribution
under Hy

@ An observed value T'(x) which is very unlikely under Hy (as quantified by a
p-value, for example) provides evidence that the model is wrong
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Towards a Foundational Test

Suppose we observe iid random variables W7, W5, ..., W,, taking values in
sample space X = {1,2,...,k}, which we think of as /abels or categories

We want to test whether the W;'s are distributed according to some
hypothesized probability measure Py on X

Let X Z' 1 Lw; — . and let pj = Po( {)} so that under Hy, '1
(X1, Xo, ..., Xk) ~ Multinomial(n;p1,...,px) K7 2‘\' ~Binlr, p))

Now define WY-,.-,Y:«"&’"““‘(?Q

Rj X K [X ] Ho X;; — NP
\/VaIr (X5) V(1 = pj)
\ N
oY w“:‘“"‘ 2
Since R, 4, N (0,1) under Hy, it's tempting to think Z .y R N x(k)
but that s not true becode the ¥K;'s (nd Hhos Yre P,sB oent \u\e?mdmi-l
[f K Mkororicd (21,20, than 2,1
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Pearson’s Chi-Squared Test

@ Instead, we have the following result

@ Theorem 4.4: If (X1, X5,..., X) ~ Multinomial(n;p1, ..., px), then

k W 2
2 v (X:; — np(,-) d 2
Z(l - pj)Rj = s 7 X(k—1)
f=1 f=1 J (e
fe "osymotetic distabotion” (ms&)
Wore

o The statistic x*(X) = Y5, (=" is called a chi- tatistic, and
X p— — np; IS Called a cni-square statistic, an

it's almost always written as . ..
Oi =& gbse;vd, 'S

E',‘ #& “gq;ed-eé" is

X2 _ Z (O.i B Ej)z

@ The chi-squared test is an approximate test, because the test statistic only
has the X%k—l) distribution in the limit (more on this in Module 5)
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A Famous Example: Fisher and Mendel's Pea Data

@ Mendelian laws of inheritance establish relative frequencies of dominant and
recessive phenotypes across new generations

@ Gregor Mendel was known for his pioneering experiments with pea plants in
the mid-1800s

@ If you cross smooth, yellow male peas with wrinkled, green female peas,
Mendelian inheritance predicts these relative frequencies of traits in the

progeny:
Yell G ‘ZQMM | .
ellow reen | oo \
Smooth 1% % L= el + Wrined
| 5 ) 3“%«&%
Wrinkled 16 16 4 < Gpoan+ Wrinitled

"0 Blm=Ye BRIV
\ é’,(szb-"/.o B eD=%,
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A Famous Example: Fisher and Mendel's Pea Data

@ Mendel crossed 556 such pairs of peas together and recorded the following

counts: ORSERVED (oS EYCECTED (TON'S
Yellow  Green Yellow (reen
Smooth 315 108 Smoot | 12,39 0425
Wrinkled | 102 31 (Arinkled| (04.25 3435

@ Example 4.23: Do these results support the predicted frequencies?

2 (215-31298% (108-104.28% (\02-\04.283 (31-2495%
AR =Fpm = oae =+ Sopzs), B ~ 0. 6043

Oue prvae e Y(ﬁ) ‘—'?( %(:3 = 7[?-@
= |- E‘: )(0.00435

¥ 0.845. Sova ) il o cge Hook e 008 cipicoce
eval
(hedi- ot 4he “Menddion poedox. |
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Extending the Chi-Squared Test

@ What if our hypothesized distribution is not categorigal, but_quantitative?

@ We can still use a chi-squared test — but how?

H
t

—

;;
—%X— %X

%3 | %y

@ The trick is to partition the sample space X" into k disjoint subsets
X1y, Xy, and let X; =37, lw,cx; and p; = IP’M?Q)?—R(\»%‘%)

Co: Y= Mopo X,2(w-3), %=(3,2] Wo:(2,3) A= (3,9,

—%—

@ The finer our partition, the better we can distinguish between distributions

@ But of course, we need to increase our sample size accordingly so that each

category gets sufficiently “filled” with data

(quiddive. eoch % duukd o O tenst § abraneiios bakre. iy A

\{M have O obsevehons inSide Some, 'X\'), Hon we COI:‘\'MML% h‘APO'HﬂeC.Iw Ohn'u\ﬁg_e_mq{ P=O
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A Famous Example: Testing for Uniformity

@ There are many reasons why we might want to test whether some data
Ui,...,U, arises from a Unif (0, 1) distribution

* Reboboliy pots: e, vse e pok=bity el forclomm 1o ke B, ., T 06y Wk,
Urder U,: T ganarrel the, Yis The dhivaganed fest s egsanfialy o- gponditobve. verslan

x W Nuwber =N - wLen g'\mkoﬁ% i, trom sare distibuhion v} w,'l'gpimll#
nefA to start with (L., U = (6%(0) rdom waidiies, and Yhan +onsfom tram leg,
Fo(0N-T, ) Lo, (ot gpneiste. iUk ondom munbers,” b e Gon Conshoct @ debamirt

Sefuer® Wyta,Us,... Hat (oo " rowkn enacgh.

@ We can use a chi-squared test for this by binning [0, 1] into k£ equal-sized
sub-intervals of length 1/k, and letting X; = Z?Zl Ly eqiz2, 2 and p; = 1/k

kE 'k

" Bxcegion nbes yoratel by abioactie deray (" Horbiss™)
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A Famous Example: Testing for Uniformity

@ Example 4.24: How can we test whether an iid sequence U;,...,U,, arises
from a Unif (0, 1) distribution using 10 categories?

'-\)Mirﬁm (0(\3 Mo(. /'\%—.\,(—tl&%], e ((36, ‘] .+ et \ ,_\'\()-u,] <o thot

ord ‘di, »LQ N ‘\Zl /&\—(k.e “%‘3,%] ; \‘)-'\/"’I 0. Vll.../\lny W‘E(?(,..,\ODN(%
owd let Xy 'fq Losey

Then auggodker 83-c30nd. oot it +ost by colelding A [0:== ‘g (%f,:@za

C‘VA Covpare rot to o 75243 A’K‘lﬁhnﬁm; P()'C’}"' M%;,) 7%7&
RGO}
kL. %'S'(SOCWAV%W test. o

There ace much belfer cardemnacs fexts oot thar. The “Didhucd 4ests " ae. stondard Hoce. days.
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Other Goodness of Fit Tests

@ Pearson’s chi-squared isn't the only goodness of fit test out there; there are
countless others

@ Many apply to one particular parametric family specifically

B fr esting romalty thr re he- Shopro-Wi e, e, Ao Dt o, He Tarpe.

@ Others are completely generic and test for equality between any two Rem tert...

distributions

—ﬂ\e, ) KD\!VRB)M- Sm'mw {'a\‘f ond M“UZIM -\on Wlises ‘\'G%f de 'l'l\zw\oe.'t Po?u,\or

@ These latter tests allow us to compare an ecdf F, to a hypothesized cdf Fjy

Md'rc\fﬂ‘a e \ w% (We MW“Md Ho F:'v;-\:; vienal Jiognests
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Other Goodness of Fit Tests

@ In most cases, the distribution of the test statistic under Hy is only known in
the limit as n — o

@ Even then, cutoffs often can't be calculated exactly and require simulations
to approximate

@ When there's more than one test out there for the same thing, it's always a

good idea to read up on the benefits/drawbacks of each one before deciding
which to use

@ One might have a lower probability of type | error, another might higher
power for lower sample sizes, another might be more robust to outliers, and
SO on

i r\o} oLtive osea & rcscarclf\.\_
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