STA261 - Module 4 Intervals and Model Checking

Rob Zimmerman

University of Toronto

July 23-25, 2024

E

5900

★ @ ▶ ★ ミ ▶ ★ ミ ▶

Uncertainty in Point Estimates

- In Module 2, we learned how to produce the "best" point estimates of θ possible using statistics of our data
- The "best" unbiased estimator $\hat{\theta}(\mathbf{X})$ is the one that has the lowest possible variance among all unbiased estimators of θ
- But even so, suppose we observe $\mathbf{X} = \mathbf{x}$ and calculate $\hat{\theta}(\mathbf{x})$; how do we know this is close to the true θ ? We don't !
- We can't know for sure
- But we can use the data to get a range of *plausible* values of θ Eq: Uf T heights ~ N(v, 1), ve R. Suppose we calculate $\hat{v}_{me}(\vec{x}) = \vec{X}_n = 5'6''$ It's probably more plausible that the true ν (in feet) is in (5,6) then (2,4)

3

 $\nabla Q \cap$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Random Sets

- Suppose for now that Θ ⊆ ℝ

 a cet which is a function of the random sample X (eq. (x̄=1, x̄=+))

 If θ(X) is a continuous random variable, then P_θ (θ = θ(X)) = 0

 Useless...

 But we can try to find a random set C(X) ⊆ ℝ based on X such that
- \mathbb{P}_{θ} ($\theta \in C(\mathbf{X})$) = 0.95, for example
- Example 4.1: Let $X \sim \mathcal{N}(\mu, 1)$ where $\mu \in \mathbb{R}$. Show that the region $C(X) = (X + z_{0.975}, X + z_{0.025})$ satisfies $\mathbb{P}_{\mu}(\mu \in C(X)) = 0.95 \pm 1 - \alpha \ (\alpha = 0.05)$ $\mathbb{P}_{\nu}(\mu \in C(X))$ = $\mathbb{P}_{\nu}(X + z_{1-s_{12}} < \mu < X + z_{os_{12}})$ = $\mathbb{P}_{\nu}(X + z_{1-s_{12}} < \mu < X + z_{os_{12}})$ = $\mathbb{P}_{\nu}(Z_{1-s_{12}} < \mu - X < z_{s_{12}})$ = $\mathbb{P}(Z_{1-s_{12}} < Z < z_{s_{12}})$ where $Z \sim \mathbb{N}(Q_1)$

Interval Estimators and Confidence Intervals

- Definition 4.1: An interval estimate of a parameter $\theta \in \Theta \subseteq \mathbb{R}$ is any pair of statistics $L, U : \mathcal{X}^n \to \mathbb{R}$ such that $L(\mathbf{x}) \leq U(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}^n$. The random interval $(L(\mathbf{X}), U(\mathbf{X}))$ is called an interval estimator.
- Example 4.2: $N(y,i): (\chi_{co}, \chi_{oo}+5)$ Benoulli(p): $(-\bar{\chi}_{u}-4, \bar{\chi}_{u}+5)$ Depends on your toterance!
- Definition 4.2: Suppose α ∈ [0,1]. An interval estimator (L(X), U(X)) is a (1 α)-confidence interval for θ if P_θ (L(X) < θ < U(X)) ≥ 1 α for all θ ∈ Θ. We refer to 1 α as the confidence level of the interval. More generally, we can have a (1-α)-confidence region C(X) ⊆ W, which satisfies P_θ(Θε C(X))≥1-∞ θΘε.
 Example 4.3:

$$X \sim N(\mu, 1) \implies We just showed in Ex 4.1 Hot$$

 $(X + Z_{1-sy_2}, X + Z_{sy_2})$ is a $(1 - \mu)$ - confidence interval for μ

 $\nabla Q \cap$

<ロト < 団ト < 団ト < 団ト = 三目

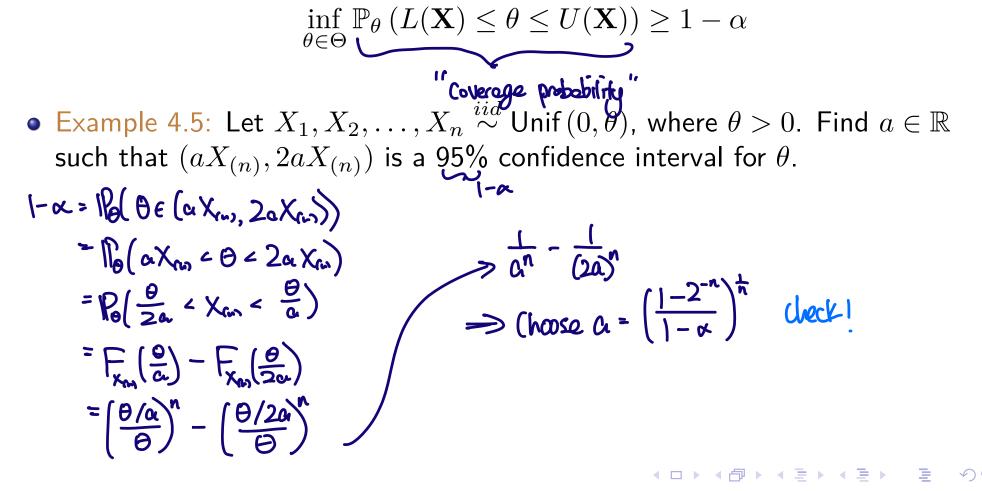
One-Sided Intervals

- Definition 4.3: A lower one-sided confidence interval is a confidence interval of the form (L(X),∞). An upper one-sided confidence interval is a confidence interval of the form (-∞, U(X)).
- Example 4.4: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1)$. Find a lower one-sided 0.5-confidence interval for μ . 0.5 = IP(Z<0) where Z~N(0,1) $= \operatorname{IP}\left(\frac{\overline{X}_{n-1}}{1} \neq 0\right)$ -But (X;, a) is concriber one! $= \mathbb{P}(\overline{X}_{n} \land \mathcal{P})$ So (1-a)-CIs are not unique ! = Pu(ue(Xu, os)) So (Xn, oo) is a lower one-sided ر D.S-CI for ر.

SQ Q

Confidence Intervals: Warmups

- The reason for the " $\geq 1 \alpha$ " in the definition is that $\mathbb{P}_{\theta} (L(\mathbf{X}) \leq \theta \leq U(\mathbf{X}))$ may not be free of θ , depending on the choices of $L(\mathbf{X})$ and $U(\mathbf{X})$
- The lower bound means we want $1-\alpha$ confidence even in the "worst case"; equivalently,



Poll Time!

On Quercus: Module 4 - Poll 1

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Some Confidence Intervals Are Better Than Others

- A confidence interval is only useful when it tells us something we didn't know before collecting the data
- Example 4.6: Suppose $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Bernoulli (θ) , where $\theta \in (0, 1)$. Find a 100%-confidence interval for θ .

$$(O_1 1) \dots$$
 not helpful at all!
 $(X_1 - 1, X_2 + 1) \dots$ also not helpful (becase $(X_1 - 1, X_2 + 1) \subseteq (O_1)$)
 $(X_1 - 200, \infty) \dots$ extremely not helpful! A 100% - CI contains (A) , and
therefore tells as nothing! We already

A good confidence interval shouldn't be any longer than necessary know that
 De D

 \bullet We interpret the length of the interval as a measure of how accurately the data allow us to know the true value of θ

 $\nabla Q \cap$

Bringing Back Hypothesis Tests

- In Module 3, we learned about test statistics and rejection regions for hypothesis tests
- Pick some arbitrary $\theta_0 \in \Theta$, and suppose we want a level- α test of $H_0: \theta = \theta_0$ versus $H_A: \theta \neq \theta_0$ using a test statistic $T(\mathbf{X})$
- This means finding a rejection region R_{θ_0} such that

$$\mathbb{P}_{\theta_0}(T(\mathbf{X}) \in R_{\theta_0}) \le \alpha$$

• This is equivalent to finding an acceptance region $A_{\theta_0} = R_{\theta_0}^c$ such that

Confidence Intervals Via Test Statistics

• If the statement $T(\mathbf{X}) \in A_{\theta_0}$ can be manipulated into an equivalent statement of the form $L(\mathbf{X}) < \theta_0 < U(\mathbf{X})$, then

 $\mathbb{P}_{\theta_0}(L(\mathbf{X}) < \theta_0 < U(\mathbf{X})) \ge 1 - \alpha$

- But $\theta_0 \in \Theta$ was arbitrary!
- So if we did this right, we must have

$$\mathbb{P}_{\theta}\left(L(\mathbf{X}) \leq \theta \leq U(\mathbf{X})\right) \geq 1 - \alpha \quad \text{for all } \theta \in \Theta$$

- This method of finding confidence intervals is called *inverting a hypothesis* test
- We can also go the other way! i.e., stort with a (1-α). CI (L(X), μ(X)) and "invert" if to form a level a test & Ho: θ=θo vs Ha: θ≠θo. (Assignment 4).

Famous Examples: Z-Intervals

• Example 4.7: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ where $\mu \in \mathbb{R}$ and σ^2 is known. Find a $(1 - \alpha)$ -confidence interval for μ by inverting the two-sided Z-test.

Let
$$\mu \in \mathbb{R}$$
. We need a ladel-a test & $H_0: \mu = \mu_0$ us $H_{A;\mu} \neq \mu_0$.
From Example 3.15, $R_{\mu 0} = \{ \vec{x} \in \mathcal{X}^n : | \frac{\vec{x} - \mu_0}{\int \vec{x} / n} | \ge 2\pi/2 \}$
 $\implies A_{\mu 0} = \{ \vec{x} \in \mathcal{X}^n : | \frac{\vec{x} - \mu_0}{\int \vec{x} / n} | \le 2\pi/2 \}$
Thacebase, $[-\infty] = \prod_{\mu} (\vec{X} \in A_{\mu})$
 $= \prod_{\nu} (-2\pi \sqrt{2\pi} - \frac{\vec{X} - \mu}{\int \vec{x} / n} \ge 2\pi/2)$
 $= \prod_{\nu} (-2\pi \sqrt{2\pi} - \frac{\vec{X} - \mu}{\int \vec{x} / n} \ge 2\pi/2)$
 $= \prod_{\nu} (\vec{X} - 2\pi \sqrt{2\pi} / n) \le 2\pi/2$
So a $(1-\alpha)$ - $(I = for \mu is) (\vec{X} - 2\pi/2) \sqrt{2\pi} / n, \vec{X} + 2\pi/2) \sqrt{2\pi} / n$ "2-interval"

Famous Examples: One-Sided Z-Intervals

• Example 4.8: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ where $\mu \in \mathbb{R}$ and σ^2 is known. Find a lower one-sided $(1 - \alpha)$ -confidence interval for μ by inverting an appropriate one-sided Z-test.

Ex 3.16:
$$P_{y_0} = \{ \vec{x} \in X^n : \frac{\vec{x} - \mu}{\sqrt{n}} > 2_n \} \Rightarrow A_{y_0} = \{ \vec{x} \in X^n : \frac{\vec{x} - \mu}{\sqrt{n}} < 2_n \}.$$

So $1 - \alpha = \left[P_i \left(\frac{\vec{X}_n - \rho}{\sqrt{n}} < 2_n \right) \right]$
 $= \left[P_i \left(-\rho < 2_n \cdot \sqrt{n} - \vec{X}_n \right) \right]$
 $= \left[P_i \left(\rho > \vec{X}_n - 2_n \cdot \sqrt{n} \right) \right]$
 $= \left[P_i \left(\rho > \vec{X}_n - 2_n \cdot \sqrt{n} \right) \right]$
 $= \left[P_i \left(\rho > \vec{X}_n - 2_n \cdot \sqrt{n} \right) \right]$
 $= \left[P_i \left(\rho > \vec{X}_n - 2_n \cdot \sqrt{n} \right) \right]$

Famous Examples: *t*-Intervals

• Example 4.9: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Find a $(1 - \alpha)$ -confidence interval for μ by inverting the two-sided *t*-test.

$$f_{X} 3.17: R_{\mu_{0}} = \{ \vec{x} \in \mathcal{T} : \left| \frac{\vec{x}_{n} \cdot \mu_{0}}{\vec{y}_{n}} \right| = t_{n-1,0Y_{2}} \}$$

$$\Rightarrow A_{\mu_{0}} = R_{\mu_{0}}^{c} = \{ \vec{x} \in \mathcal{T}^{n} : \left| \frac{\vec{x}_{n} \cdot \mu_{0}}{\vec{y}_{n}} \right| \leq t_{n-1,0Y_{2}} \}$$

So
$$1 - \alpha = \iint_{n} \left(-t_{n-1,\alpha} < \frac{X_n - \nu}{\int_{n-1}^{\infty} S_n^2 / n} < t_{n-1,\alpha/2} \right)$$

$$= \iint_{n} \left(\frac{X_n - t_{n-1,\alpha/2}}{N} < \frac{S_n^2}{N} < \nu < X_n + t_{n-1,\alpha/2} \sqrt{\frac{S_n^2}{N}} \right)$$

$$\implies (hoose \left(\frac{X_n - t_{n-1,\alpha/2}}{N} < \frac{S_n^2}{N} , \frac{X_n + t_{n-1,\alpha/2}}{N} < \frac{S_n^2}{N} \right)$$
"t-interval"

Famous Examples: One-Sided *t*-Intervals

• Example 4.10: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Find an upper one-sided $(1 - \alpha)$ -confidence interval for μ by inverting an appropriate one-sided *t*-test.

EXERCISE!

Shaild the corresponding Ho be Ho: N ≤ No or Ho: N ≥ No? Figure it out!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An LRT-Based Interval $(1 - e^{-(x-\theta)}) \cdot 1_{x=0}$

• Example 4.11: Let X_1, X_2, \dots, X_n be a random sample from a distribution with pdf $f_{\theta}(x) = e^{-(x-\theta)} / \mathbb{1}_{x \ge \theta}$, where $\theta \in \mathbb{R}$. Find a $(1-\alpha)$ -confidence interval for θ by inverting an LRT. From Ex. 3.21, the LRT & Ho: 0=00 vs Ha: 0=00 had a rejection region of the form Po= {x = x": x = > 00 - 100(c) OR x= 200} $\rightarrow A_{\Theta_0} = \left\{ \vec{x} \in \mathcal{T}^n : x_{c_0} < \Theta_0 - \frac{l_{QQ}(c)}{\lambda} \text{ AND } x_{c_0} = \Theta_0 \right\} = \left\{ \vec{x} \in \mathcal{T}^n : x_{c_0} + \frac{l_{QQ}(c)}{\lambda} < \Theta_0 < x_{c_0} \right\}$ So it we choose c to make that Roo a size-ox test, then (Xrin + log(c) Xrin) will be alwagentrue! a (1-a)-CI for O. Haw? $|-\alpha = R_0(X_{c_1} \le \Theta - \log(c)) \land X_{c_1} \ge \Theta)$ = $\mathbb{P}\left(\chi_{c} \in \Theta - \frac{\log(c)}{2}\right)$ $= \left(- \left(1 - F_{\theta}(\theta - \delta \theta \omega) \right)^{n} \right)$ $= |-(|-|+exp(-(\Theta - exp(-(\Theta))))))$ \Rightarrow Charge $c = \infty \rightarrow (X_{cn} + H_{r}) X_{cn})$ is a (I - A) - CI for Θ . = 1-0 ▲□▶ ▲□▶ ▲□▶ ▲□▶ $\mathcal{A} \mathcal{A} \mathcal{A}$

Functions of the Data *and* the Parameter

 In constructing our confidence intervals, we've often encountered statements that look like

$$\mathbb{P}_{\theta} \left(a < Q(\mathbf{X}, \theta) < b \right) \ge 1 - \alpha,$$

where $Q: \mathcal{X}^n \times \Theta \to \mathbb{R}$ is a function of the data **X** and the parameter θ , and a, b are constants

- We were able to choose those constants *a* and *b* because we knew exactly what the distribution of $Q(\mathbf{X}, \theta)$ was
- We could then "invert" the statement $a < Q(\mathbf{X}, \theta) < b$ to produce a confidence interval for θ Q(x,y)~N(0,1)

• Example 4.12: $N(\mu, \sigma^2), \sigma^2$ known: $P_{\mu}(-2\pi \alpha \frac{X_n - \mu}{J\sigma^2 n} + 2\pi) = 1 - \alpha$ • Example 4.13: $V_{nif}(\sigma, \sigma): P_{\sigma}(\frac{1}{2\alpha} \in \frac{X_{n}}{\Theta} = \frac{1}{\alpha}) = (-\alpha, \text{ where } \alpha \text{ were chosen as before}$

 $Q(\vec{x}_1 \theta)$ distribution was free $d \theta$

 $\nabla a \cap$

Pivotal Quantities

- The key in these examples was that the *distribution* of $Q(\mathbf{X}, \theta)$ is free of θ
- Definition 4.4: A random variable $Q(\mathbf{X}, \theta)$ is a **pivotal quantity** (or **pivot**) for θ if its distribution is free of θ .
- So if $\mathbf{X} \sim f_{\theta_1}$ and $\mathbf{Y} \sim f_{\theta_2}$, then $Q(\mathbf{X}, \theta_1) \stackrel{d}{=} Q(\mathbf{Y}, \theta_2)$ • Every ancillary statistic is a pivotal quantity • Example 4.14: $N(\mu, \sigma^{\lambda}), \sigma^{2}$ theorem: $\int_{\mathcal{V}} \left(-2\alpha + \frac{\chi_{n-\mu}}{\sqrt{\sigma_{n}}}\right) = 1 - \alpha$ • Example 4.15: $Exp(\lambda)$: $Q(\vec{X}, \lambda) = \frac{\chi_1}{\lambda} \sim Exp(1) \leftarrow free \ \alpha \ \lambda \Rightarrow \frac{\chi_1}{\lambda}$ is pivotal for λ

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Poll Time!

We can calculate $Q(x, \Theta')$ for any $x \in \mathcal{X}$ and $\Theta' \in \widehat{\Theta}$. But if $\tilde{X} \sim f_{\sigma}$, we may not know the distribution of $Q(X, \Theta')$ if $\Theta' \neq \Theta$...

On Quercus: Module 4 - Poll 2

<ロト < 団ト < 団ト < 団ト = 三目

Confidence Intervals from Pivotal Quantities

• Example 4.16: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Exp}(\lambda)$, $\lambda > 0$. Show that $Q(\mathbf{X},\lambda) = 2\lambda \sum_{i=1}^{n} X_i$ is a pivotal quantity, and use it to find a $1-\alpha$ confidence interval for λ . Use mgfs! $M_{\xi\chi_i}(t) = \left(\frac{\lambda}{\lambda-t}\right)^n$, $t < \lambda \implies M_{2\lambda\xi\chi_i}(t) = \left(\frac{\lambda}{\lambda-2\lambda t}\right)^n = \left(\frac{1}{1-2t}\right)^n$ The mgf is free $f \lambda$, so the distribution $f 2\lambda \Sigma X$; is too $\Rightarrow 2\lambda \Sigma X$; is pivotal 1 In fact, the mgf tells us that 222X; ~ X(20). (FYI) So set 1-a = P, (a c 2 2 × ; < b) for some a, b e R with acb. They must solvisfy $|-\alpha = F_{x_1}(b) - F_{x_2}(a)$. Many choices! For example: if we choose a = 0, then $1 - a = F_{\chi^2_{cus}}(b) \implies b = F_{\chi^2_{cus}}(1 - a) =: \chi^2_{cus}, a$ So $1-\alpha = P_1(0 < 2\lambda \leq X; < \chi_{(2n),\alpha})$ \Rightarrow (hoose (0, $\frac{\chi_{(m),n}}{25\chi}$)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Finding Pivotal Quantities

- There's no all-purpose strategy to finding pivotal quantities, but there's a neat trick that sometimes lets us pull one out of the pdf of a statistic $T(\mathbf{X})$
- Theorem 4.1: Suppose that $T(\mathbf{X}) \sim f_{\theta}$ is univariate and continuous, such that the pdf can be expressed as

$$f_{\theta}(t) = g(Q(t,\theta)) \cdot \left| \frac{\partial}{\partial t} Q(t,\theta) \right|$$

for some function $g(\cdot)$ which is free of θ and some function $Q(t, \theta)$ which is continuously differentiable and one-to-one as a function of t (i.e., with θ fixed). Then $Q(T(\mathbf{X}), \theta)$ is a pivot.

Proof.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Fix $\theta \in (H)$ and let $h_{\theta}(q)$ be the pdP of $Q(T(\vec{X}), \theta) =: Q_{\theta}(T(\vec{X})).$ Let Qo(q) be the functional inverse of Qo(t). Thon... $h_{\theta}(q) = f_{\theta}(Q_{\theta}(q)) \cdot \left| \begin{array}{c} \frac{d}{dq} (Q_{\theta}(q)) \\ \frac{d}{dq} (Q_{\theta}(q)) \end{array} \right|$ by the usual transformation of variables formula $= f_{\Theta}(Q_{\Theta}^{-1}(g)) \cdot \left| \frac{d}{dt} Q_{\Theta}(t) \right|_{t=Q_{\Theta}^{-1}(g)} \right|^{t}$ $= g(Q_{\Theta}(Q_{\Theta}^{-1}(g))) \cdot \left| \frac{d}{dt} Q_{\Theta}(t) \right|_{t=Q_{\Theta}^{-1}(g)} \left| \cdot \left| \frac{d}{dt} Q_{\Theta}(t) \right|_{t=Q_{\Theta}^{-1}(g)} \right|^{-1}$ by assumption = g(g), which is free of Θ . So the distribution of $Q(T(\vec{x}), \theta)$ is free $d \theta$. \Box ◆□▶ ◆□▶ ◆ □▶ ◆ □▶ $\mathcal{O} \mathcal{Q} \mathcal{O}$

Finding Pivotal Quantities: Examples

• Example 4.17: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Unif $(0, \theta)$ where $\theta > 0$. Find a pivotal quantity based on $T(\mathbf{X}) = X_{(n)}$, and use it to construct a $1 - \alpha$ confidence
interval for θ . The pulf of T(\overline{x}) is $n \cdot f_{\theta}(t) \cdot F_{\theta}(t)^{n-1} = n \cdot \frac{t}{\theta} \cdot (\frac{t}{\theta})^{n-1} = \frac{nt^{n-1}}{\theta^n} = 1 \cdot \left \frac{\partial}{\partial t} \left(\frac{t}{\theta} \right)^{n-1} \right $
By Theorem 4.1, $Q(X_{cm}, \theta) = \frac{X_{cm}}{\theta^n}$ is a pivotal punitity.
What's its distribution? For xe(0,1),
$P_{\Theta}\left(\frac{X_{in}}{\Theta^{n}} \le x\right) = P(acleb),$ $I = P_{\Theta}\left(a \le \frac{X_{in}}{\Theta^{n}} \le b\right) = P(acleb),$ $I = P_{\Theta}\left(a \le \frac{X_{in}}{\Theta^{n}} \le b\right) = P(acleb),$ $I = P_{\Theta}\left(a \le \frac{X_{in}}{\Theta^{n}} \le b\right) = P(acleb),$ $I = P_{\Theta}\left(a \le \frac{X_{in}}{\Theta^{n}} \le b\right) = P(acleb),$ $I = P_{\Theta}\left(a \le \frac{X_{in}}{\Theta^{n}} \le b\right) = P(acleb),$ $I = P_{\Theta}\left(a \le \frac{X_{in}}{\Theta^{n}} \le b\right) = P(acleb),$
$= P_{\Theta}(X_{cn} \in \Theta \times^{\frac{1}{n}}) $ ($\Lambda \sim U_{ui}(0,1)$).
$= \overline{f_{\theta}(\theta x^{t_{\theta}})^{n}}$ $= (\theta x^{t_{\theta}})^{n}$
$= \left(\Theta \chi^{\dagger} \right)^{n} \qquad \qquad$
$= \left(\frac{\Theta \times \pi}{\Theta}\right)^{n} = \Pr\left(\frac{\chi_{i_{1}}}{1 - \sigma_{i_{2}}} \ge \Theta^{n} \le \frac{\chi_{i_{1}}}{\sigma_{i_{2}}}\right)$
$= x \implies Q(X_{cn}, \Theta) \sim (\text{lnif}(O_1)) \qquad \implies (\text{loose}\left(\frac{X_{cn}}{(1-\sigma_{12})^{t_{n}}}, \frac{X_{cn}}{(\sigma_{12})^{t_{n}}}\right) \qquad \qquad$

 $f_{\theta}(t) = g(Q(t,\theta)) \cdot \left| \frac{\partial}{\partial t} Q(t,\theta) \right|$

Finding Pivotal Quantities: Examples

• Example 4.18: Let $X \sim f_{\theta}(x) = \frac{2(\theta - x)}{\theta^2} \cdot \mathbb{1}_{0 \le x \le \theta}$, where $\theta > 0$. Find a pivotal quantity based on X, and use it to construct a $1-\alpha$ confidence interval for θ . Observe flot if $Q(x, \theta) = \frac{\theta - x}{\theta}$, then $f_{\theta}(x) = 2 \cdot Q(x, \theta) \cdot \begin{vmatrix} \frac{\partial}{\partial x} Q(x, \theta) \\ \frac{\partial}{\partial x} Q(x, \theta) \end{vmatrix}$. = $g(Q(x, \theta))$, where g(x) = 2xBy Theorem 1.4, $Q(\chi, \Theta) = \frac{\Theta - \chi}{\Theta}$ is a pivotal quantity. What's it's distribution? For xe (0,1) Phonty of choices to make $1 - \alpha = B(\alpha < \frac{\Theta - \chi}{\Theta} < b)$ $\mathbb{P}\left(\frac{\Theta-X}{\Theta} \in X\right)$ $= b^2 - a^2$ For example, if a = 0, then $b = JI - \alpha$. Then $I - \alpha = P_0(0 = \frac{\Theta - X}{\Theta} = JI - \alpha)$ $= \mathbb{R}(X \ge (1-x)\cdot\theta)$ $= \int_{(1-x)\cdot\theta}^{\theta} \frac{2(\theta-t)}{\theta^{2}} dt$ $= \mathbb{P}\left(X \subset \Theta \subset \frac{X}{1-\sqrt{1-x}}\right)$ \rightarrow Choose $\left(\chi, \frac{\chi}{1-\sqrt{1-\sqrt{1-\alpha}}}\right)$. = x²

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Confidence Intervals: Interpretations

- Confidence intervals are almost as widely misinterpreted as *p*-values
- Suppose that in a published scientific study, you see a stated 95% confidence interval such as (0.932, 1.452)
- How do you interpret this correctly?
 - (0.937, 1.452) is <u>an</u> "observed" value of the 95%-CI (L(x), U(x)). (L(x), U(x)) is random! (L(x), U(x)) is observed! I random variables
- Should we be surprised if we try and reproduce the study and calculate a 95% confidence interval of (0.824, 1.734)?
- What about (-0.232, 1.440)?

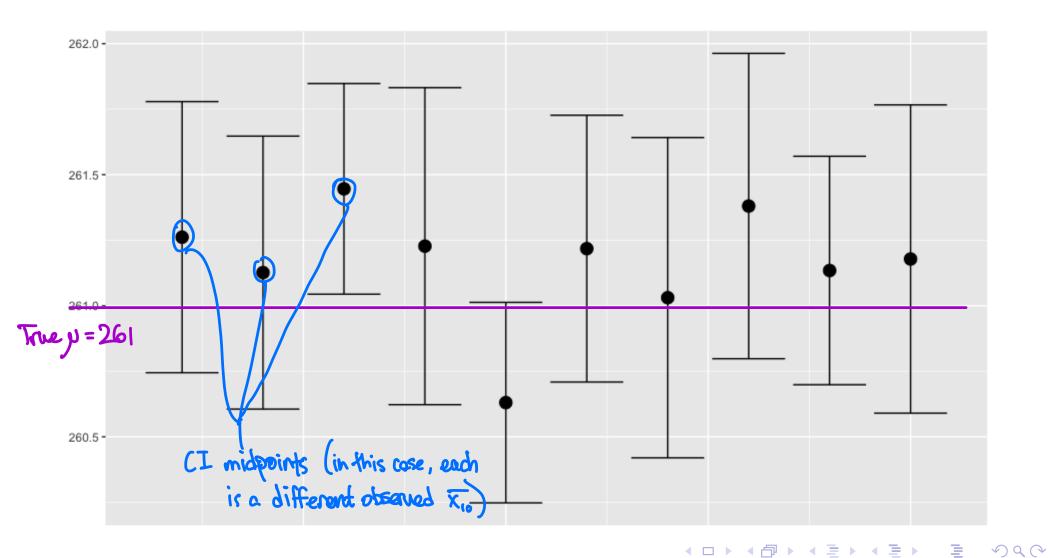
◆□▶ ◆□▶ ◆□▶ ◆□▶

Poll Time! If $X_{1,...,} X_{10} \stackrel{\text{id}}{\rightarrow} f_{\Theta}$, By definition, $O.95 \le P(L(X_{i}) < \Theta < U(X_{i}))$ IE[# of O coverges] = E[2 1 L(x;) < 0 < U(x;)] $= \sum_{i=1}^{\infty} P(L(x_i) < \Theta < U(x_i))$ ² ² ^{0.45} On Quercus: Module 4 - Poll 3 = 95

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Confidence Intervals: Interpretations

• Here are ten observed 95% Z-intervals for μ calculated from ten random samples of size n = 15 from a $\mathcal{N}(\mu, 1)$ distribution:



Questioning Our Assumptions...

- All of the theory we've done up to this point has depended on the assumption of an underlying statistical model
- When we say "Suppose $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} f_{\theta} \ldots$ ", we're assuming the data follows one of the distributions in the parametric family $\{f_{\theta} : \theta \in \Theta\}$ and only the parameter θ is unknown
- If we get the statistical model wrong, then any inferences we make about θ are likely to be completely invalid
- So it's extremely important to be able to check that statistical model assumption

SQ Q

<ロト < 同ト < 三ト < 三ト 三 三

Nothing Is Certain

- Of course, we can't *know* for sure that a model is correct
- Unless we generate the data ourselvar... but then there would be no point in doiry inference!
- But we can perform checks that give us confidence in our assumptions
- This is called *model checking*
- We will study two kinds of model checks: visual diagnostics and goodness-of-fit tests

SQ Q

Histograms: Preliminaries

- Suppose we have iid data X_1, X_2, \ldots, X_n , which we hypothesize are distributed according to a cdf F_{θ}
- Let's group the range of the data into bins $[h_1, h_2], (h_2, h_3], \ldots, (h_{m-1}, h_m]$
- By the law of large numbers,

rge numbers,

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_i \in (h_j, h_{j+1}]} \xrightarrow{p} \widetilde{\mathbb{P}_{\theta}(X_1 \in (h_j, h_{j+1}])} = F_{\theta}(h_j \in X_i \in h_{j*}) = F_{\theta}(h_j \in X_i \in h_{j*})$$

• So if n is large and we're correct about F_{θ} , then

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_i \in (h_j, h_{j+1}]} \approx F_{\theta}(h_{j+1}) - F_{\theta}(h_j)$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

The Histogram Density Function

• If, in addition, we believe the X_i 's are continuous with pdf f_{θ} , then there exists $h^* \in (h_j, h_{j+1})$ such that

$$\frac{1}{n(h_{j+1}-h_j)} \sum_{i=1}^n \mathbbm{1}_{X_i \in (h_j,h_{j+1}]} \approx \frac{F_\theta(h_{j+1}) - F_\theta(h_j)}{h_{j+1} - h_j} = f_\theta(h^*)$$
by the mean value theorem.

• Definition 4.5: Given data X_1, \ldots, X_n and a partition $h_1 < h_2 < \cdots < h_m$, the **density histogram function** is defined as

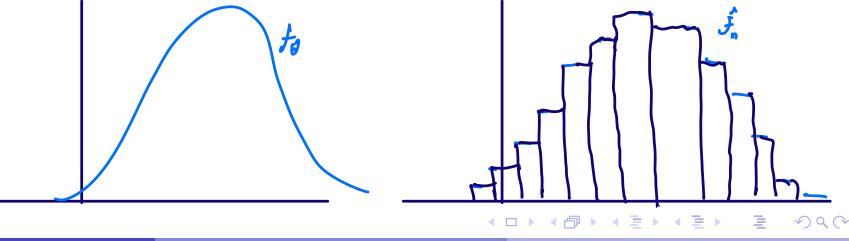
$$\hat{f}_{n}(t) = \begin{cases} \frac{1}{n(h_{j+1}-h_{j})} \sum_{i=1}^{n} \mathbb{1}_{X_{i} \in (h_{j}, h_{j+1}]}, & t \in (h_{j}, h_{j+1}] \\ 0, & \text{otherwise} \end{cases}$$

$$\bigwedge_{\text{A random function (since its implicitly a function of the r.v.'s X_{1,...,X_{n}})}$$

- Fa()

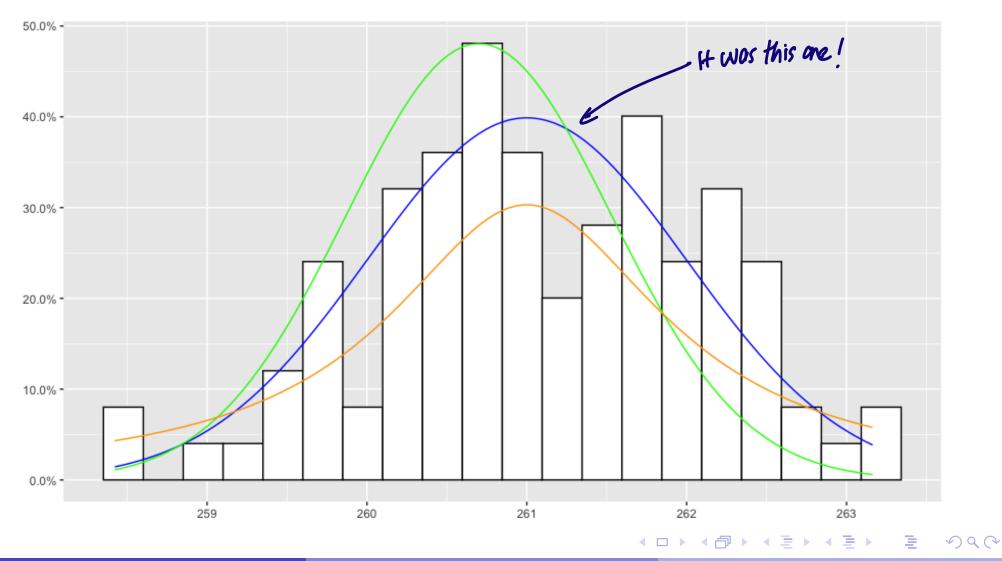
Histograms

- If we believe that our observed data x_1, \ldots, x_n are realizations of $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} f_{\theta}$, then the observed $\hat{f}_n(t)$ should look like a "discretized" version of $f_{\theta}(t)$
- ...and the resemblance should improve as n gets larger and each bin size $h_{j+1}-h_j$ gets smaller
- Definition 4.6: A plot of a density histogram function $\hat{f}_n(t)$ with vertical lines drawn at each h_j is called a **histogram**. A histogram where each bin width $h_{j+1} h_j = 1$ is called a **relative frequency plot**.



Histograms: An Example

• Here's a histogram (n = 100) overlaid with three hypothesized pdfs; which is more likely to have generated the data?



Poll Time!

On Quercus: Module 4 - Poll 4

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Empirical CDFs

- We might prefer to deal with the cdf F_{θ} instead
- If we fix any $t \in \mathbb{R}$, then the law of large numbers says that

• So if n is large and we're correct about F_{θ} , then • Definition 4.7: Given a random variables X_1, \ldots, X_n , the empirical distribution function (ecdf) is defined as

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i \le t}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

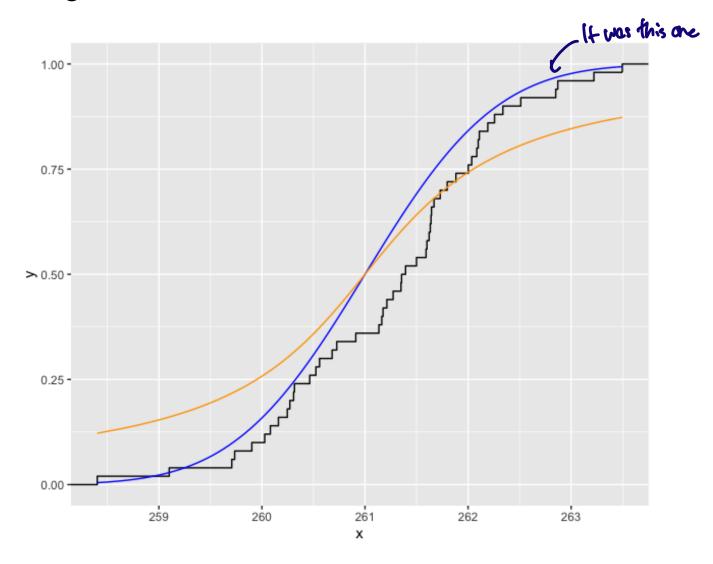
Empirical CDFs Are Nice

- If we believe that our observed data x_1, \ldots, x_n are realizations of $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} F_{\theta}$, then $\hat{F}_n(t)$ should look like $F_{\theta}(t)$
- In fact, a famous result called the **Glivenko-Cantelli theorem** says that if F_{θ} really is the true cdf, then $\hat{F}_n(t) \longrightarrow F_{\theta}(t)$ as $n \to \infty$ in a much stronger sense than convergence in probability "with almost size conspare": (FYI)
- Theorem 4.2: For any fixed $t \in \mathbb{R}$, the ecdf $\hat{F}_n(t)$ is an unbiased estimator of $F_{\theta}(t)$, and it has a lower variance than $\mathbb{1}_{X_i \leq t}$.

Thorefore,
$$\mathbb{E}_{0}[\hat{F}_{n}(t)] = \hat{n} \hat{Z}_{n} \mathbb{E}[\mathbf{1}_{X_{i}(t)}] = \mathbb{E}[t]$$
.
Also, $\log(\hat{F}_{n}(t)) = \hat{n} \log(\mathbf{1}_{X_{i}(t)}) = \hat{n} \cdot \mathbb{E}[t] \cdot (1 - \mathbb{E}[t]) = \mathbb{E}[t] \cdot (1 - \mathbb{E}[t]) = \mathbb{V} \log(\mathbf{1}_{X_{i}(t)})$.

Empirical CDFs: An Example

• Here's an ecdf (n = 50) overlaid with two hypothesized cdfs; which is more likely to have generated the data?



臣

5900

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Poll Time!

 $X_1, X_n \cong N(0,1)$ $\mathbb{E}[\hat{F}_{n}(0)] = \mathbb{E}[0] = \frac{1}{2}.$

On Quercus: Module 4 - Poll 5

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bringing Back Ancillarity and Sufficiency

- We know from Module 1 that if $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} f_{\theta}$, the distribution of an ancillary statistic $S(\mathbf{X})$ is free of θ
- But if we've gotten the model $\{f_{\theta} : \theta \in \Theta\}$ wrong, $S(\mathbf{X})$ could very well depend on θ ! (or some other influence parameter in the "intermodel)
- So some ancillary statistics provide a model check: if our realization $S(\mathbf{x})$ is "surprising", we have evidence against the model being true
- Similarly, if $T(\mathbf{X})$ is sufficient for θ , then $\mathbf{X} \mid T(\mathbf{X}) = t$ shouldn't depend on θ
- This leads to the idea of **residual analysis**
- Loosely speaking, residuals are based on the information in the data that is left over after we have fit the model

(there's no formal definition of "nacional")

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Residual Plots

• Example 4.19: Let X_1, \ldots, X_n be a random sample from a suspected $\mathcal{N}(\mu, \sigma^2)$ distribution, where $\mu \in \mathbb{R}$ and σ^2 is known. If we're correct, then $R(\mathbf{X}) = (X_1 - \bar{X}_n, \ldots, X_n - \bar{X}_n)$ is ancillary for μ , because

$$X_i - \bar{X}_n \sim \mathcal{N}\left(0, \frac{n-1}{n}\sigma^2\right), \quad i = 1, \dots, n$$

and therefore standardized residuals

$$R_i^*(\mathbf{X}) := \frac{X_i - \bar{X}_n}{\sqrt{\frac{n-1}{n}\sigma^2}} \sim \mathcal{N}(0, 1) \,.$$

$$T_i^* = \prod_{i=1}^{n} \sigma^{2i} \text{ is unknown we conjust replace}$$

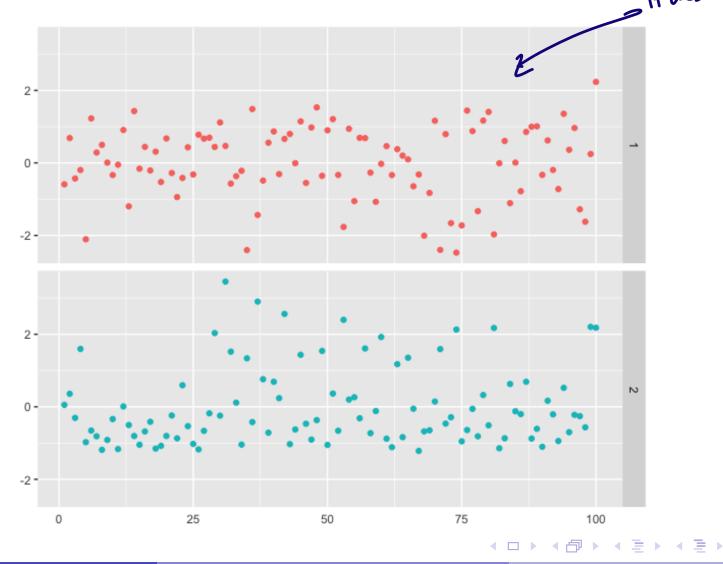
$$\sigma^2 \text{ by } S_n^2, \text{ whence } \mathbb{R}_i^* \sim t_{(n-1)}$$

So if we're right about $\mathcal{N}(\mu, \sigma^2)$, then a scatterplot of the residuals shouldn't exhibit any discernable pattern, and should mostly stay within (-3, 3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のQ@

Residual Plots

• Example 4.20: Here are two standardized residual plots constructed from two samples (n = 100) with equal variances σ^2 ; which looks more like it came from a $\mathcal{N}(\mu, \sigma^2)$ distribution?



Ŧ

SQ Q

Probability Plots

- Probability plots extend this idea
- We need a fundamental result of probability theory first
- Theorem 4.3 (**Probability integral transform**): Let X be a continuous random variable with cdf $F_{\theta}(x)$, and let $U = F_{\theta}(X)$. Then $U \sim \text{Unif}(0, 1)$.

Proof: EXERCISE!

- The order statistics of $U_1, \ldots, U_n \stackrel{iid}{\sim} \text{Unif}(0, 1)$ follow a Beta distribution: $U_{(j)} \sim \text{Beta}(j, n - j + 1)$, and so $\mathbb{E}\left[U_{(j)}\right] = \frac{j}{n+1}$ (Assignment O)
- This suggests a recipe: if we hypotherize X, Xn Hen we con glot

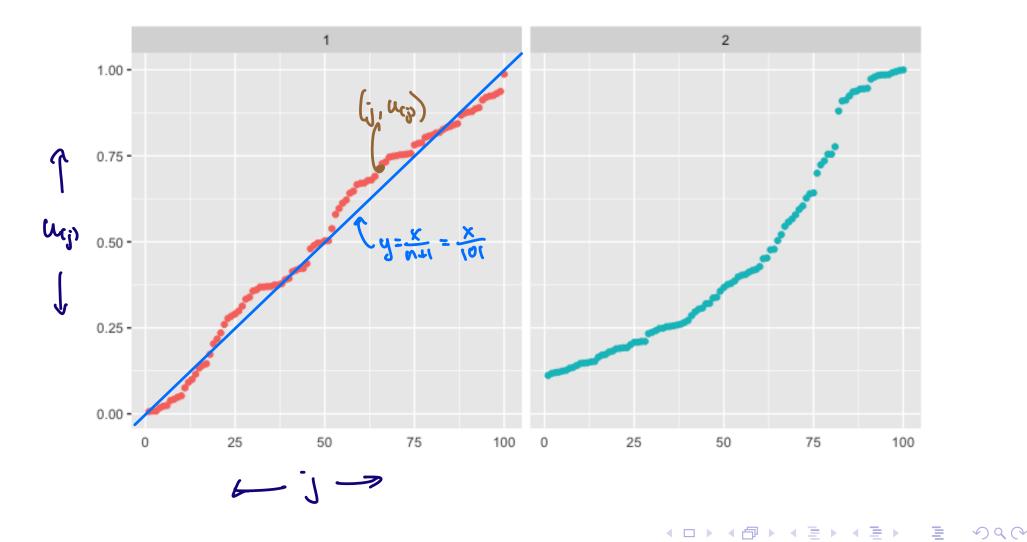
$$\left(\begin{array}{c} \overline{F_{\Theta}(x_{cji})}, & \overline{n+1} \end{array} \right)_{i} \overline{j} = \frac{1}{j} \dots n. \quad |f \text{ if Joesn't look like the points lie along a straight line,} \\ \text{We should guestion the accouption & Fo.} \qquad 1 \\ \overline{F_{\Theta}(x_{cji})} = \left[\overline{F_{\Theta}(x)} \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clifs are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clift are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clift are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clift are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clift are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clift are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clift are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clift are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clift are increasing} \\ \stackrel{i.e.}{=} \left[F_{\Theta}(x_{cji}) \right]_{(j)} \quad \text{because clift are increasing} \\ \stackrel{i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のQ@

Probability Plots

• Example 4.21: Here are two probability plots constructed from the standardized residuals as before, using $F_{\theta}(x) = \Phi(x)$. Which looks more like it came from a $\mathcal{N}(\mu, \sigma^2)$ distribution?

- N= 100



Q-Q Plots "Quantile-Quantile"

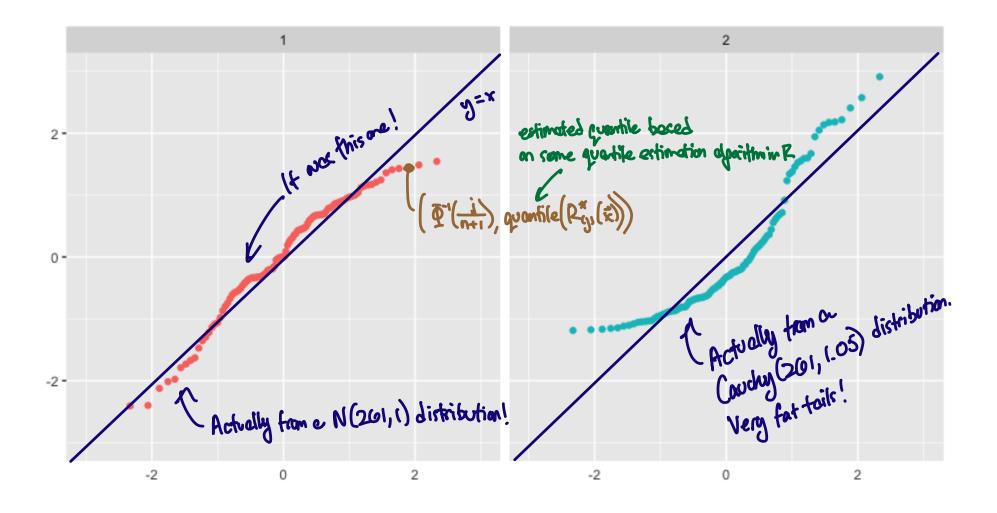
- We could also go in the other direction by looking at the quantiles
- Definition 4.8: Let X be a random variable with cdf F_{θ} . The inverse cdf (or the quantile function) is defined by $F_{\theta}^{-1}(t) = \inf\{x : F_{\theta}(x) \ge t\}$. **C** "generalized invest of Fo"
- When X is continuous, the inverse cdf is simply the functional inverse of F_{θ}
- There are plenty of software algorithms that can estimate the quantiles from a sample x_1, \ldots, x_n
- If we hypothesize $X_1, \ldots, X_n \sim F_{\theta}$ and we can compute F_{θ}^{-1} , then we have another recipe for model checking:

Plot the observed quantiles versus the theoretical ones! If it doesn't look (northly) like they lie on the line y=x, we should question the accumption of Fo.

 $\checkmark Q (\sim$

Q-Q Plots 2 By for, the most common use is when $F_0 = \overline{\Phi}$. We use this when we want to dreak if the N(0,1) distribution bases a good job of capturing the EXTREME absenvations (i.e., inthe tails) • Example 4.22: Here are two Q-Q plots constructed from the standardized

residuals as before, using $F_{\theta}^{-1}(x) = \Phi^{-1}(x)$. Which looks more like it came from a $\mathcal{N}(\mu, \sigma^2)$ distribution?



 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥ < □ > □ ≥ < □ > □ ≥ < □ ≥ > □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □

Q-Q Plots

- Q-Q plots are most frequently used as a test for normality
- But technically there's no reason why we can't use them to compare any two distributions, observed or hypothesized
- ...provided we can actually compute (or estimate) their quantiles, of course
- Q-Q plots are particularly useful when we want to see how the "outliers" in our data compare to the extreme values predicted by the tails of a hypothesized distribution

Check out "Chernoff taces" in the optional readings!

SQ Q

Goodness of Fit Tests

- Instead of using visual diagnostics, we can use hypothesis tests as model checks
- Definition 4.9: A goodness of fit test for a statistical model {f_θ : θ ∈ Θ} is a hypothesis test that determines how well the model suits a given set of observations x₁,...,x_n.
- This time, the null hypothesis H₀ is that the model {f_θ : θ ∈ Θ} for our data is "correct" H₀: "the data are namely dictibuted" U₀: "the absenctions therefore are as H₀: "the two samples or integrabet" integrated.
- As usual, we have a test statistic $T({\bf X})$ that follows some known distribution under H_0
- An observed value $T(\mathbf{x})$ which is very unlikely under H_0 (as quantified by a p-value, for example) provides evidence that the model is wrong

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Towards a Foundational Test

- Suppose we observe iid random variables W_1, W_2, \ldots, W_n taking values in sample space $\mathcal{X} = \{1, 2, \ldots, k\}$, which we think of as *labels* or *categories*
- We want to test whether the W_i 's are distributed according to some hypothesized probability measure \mathbb{P}_0 on \mathcal{X}

• Let
$$X_{j} = \sum_{i=1}^{n} \mathbb{1}_{W_{i}=j}$$
 and let $p_{j} = \mathbb{P}_{0}(\{j\})$ so that under H_{0}, \mathcal{I}_{j}
 $(X_{1}, X_{2}, \dots, X_{k}) \sim \text{Multinomial}(n; p_{1}, \dots, p_{k}) \quad X_{j} \stackrel{\text{s}}{=} \sum_{i=1}^{n} Y_{i} \sim \text{Biv}(\mathbf{x}_{i}, \mathbf{p}_{j})$

• Now define

$$R_{\mathbf{j}} = \frac{X_{\mathbf{j}} - \mathbb{E}\left[X_{\mathbf{j}}\right]}{\sqrt{\operatorname{Var}\left(X_{\mathbf{j}}\right)}} \stackrel{H_{0}}{=} \frac{X_{\mathbf{j}} - np_{\mathbf{j}}}{\sqrt{np_{\mathbf{j}}(1 - p_{\mathbf{j}})}}$$

• Since $R_{j} \xrightarrow{d} \mathcal{N}(0,1)$ under H_{0} , it's tempting to think $\sum_{j=1}^{k} R_{j}^{2} \xrightarrow{d} \chi_{(k)}^{2}$, but that's not true because the X_j's (and thus the P_j's) aren't independent! If $\tilde{\mathbf{x}} \sim Multimodel(n; P_{1} \dots P_{k})$, then $\tilde{\mathbf{x}}_{X_{i}} = n$.

where Y ..., Y "Bernoulli(pj

Pearson's Chi-Squared Test

- Instead, we have the following result
- Theorem 4.4: If $(X_1, X_2, \ldots, X_k) \sim \text{Multinomial}(n; p_1, \ldots, p_k)$, then

$$\sum_{j=1}^{k} (1-p_j) R_j^2 \stackrel{\text{vert}^{k}}{=} \sum_{j=1}^{k} \frac{(X_j - np_j)^2}{np_j} \stackrel{d}{\longrightarrow} \chi^2_{(k-1)}.$$

$$\text{He "asymptotic distribution" (Medde 5 for man)}$$
The statistic $\chi^2(\mathbf{X}) = \sum_{j=1}^{k} \frac{(X_j - np_j)^2}{np_j}$ is called a **chi-square statistic**, and it's almost always written as
$$\chi^2 = \sum_{j=1}^{k} \frac{(O_j - E_j)^2}{E_j} \stackrel{\text{C}_j}{\longrightarrow} \stackrel{\text{C}_j}{\longrightarrow}$$

• The chi-squared test is an *approximate test*, because the test statistic only has the $\chi^2_{(k-1)}$ distribution in the limit (more on this in Module 5)

it'

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

A Famous Example: Fisher and Mendel's Pea Data

- Mendelian laws of inheritance establish relative frequencies of dominant and recessive phenotypes across new generations
- Gregor Mendel was known for his pioneering experiments with pea plants in the mid-1800s
- If you cross smooth, yellow male peas with wrinkled, green female peas, Mendelian inheritance predicts these relative frequencies of traits in the progeny:

	Yellow	Green	Relabel: _ 1⇔yellow.	+ Smooth	
Smooth	$\frac{9}{16}$	$\frac{3}{16}$	2 => Yellow + Wrinkled		
Wrinkled	$\frac{3}{16}$	$\frac{1}{16}$	3 - Grean + Smooth A- Grean + Wrinkled		
		" Po":	Po({13) = %16 Po({21) = 3/16	B({33})=3/16 1B({42})=1/10	

 $\nabla Q \cap$

A Famous Example: Fisher and Mendel's Pea Data

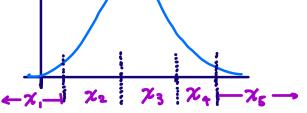
Mendel crossed 556 such pairs of peas together and recorded the following counts:
 OBSERVED COUNTS
 EXPECTED COUNTS

	Yellow	Green		Yellow	Green
Smooth	315	108	Smooth	312,75	(04.25
Wrinkled	102	31	Wrinkled	(04.25	34.75

• Example 4.23: Do these results support the predicted frequencies? $\chi^{2}_{(\vec{x})} = \frac{(315-312.75)^{2}}{312.75} + \frac{(108-104.25)^{2}}{104.25} + \frac{(102-104.25)^{2}}{104.25} + \frac{(31-34.75)^{2}}{34.75} = 0.6043$ Our p-value is $p(\vec{x}) = iP(\chi^{2}_{(5)} = \pi^{2}(\vec{x}))$ $= (-F_{\pi^{2}(5)}(0.0043))$ $\stackrel{\sim}{=} 0.895. \text{ So we (really) fuil to reject Ho at the 0.05 significance level.}$ (Jeck at the "Merddian paradox."!

Extending the Chi-Squared Test

- What if our hypothesized distribution is not categorical, but quantitative?
- We can still use a chi-squared test but how?



- The trick is to partition the sample space \mathcal{X} into k disjoint subsets $\mathcal{X}_1, \ldots, \mathcal{X}_k$, and let $X_j = \sum_{j=1}^n \mathbb{1}_{W_j \in \mathcal{X}_j}$ and $p_j = \mathbb{P}_0(\mathcal{X}_j) = \mathbb{P}_0(\mathcal{W}_i, \mathcal{X}_j)$ Eq: $\mathcal{X} = \mathbb{P}$. Maybe $\mathcal{N}_i = (-m_j - 3)$, $\mathcal{X}_2 = (-3, 2)$, $\mathcal{X}_3 = (2, 3)$, $\mathcal{X}_4 = (3, 3)$...
- The finer our partition, the better we can distinguish between distributions
- But of course, we need to increase our sample size accordingly so that each category gets sufficiently "filled" with data

<u>Guideline</u>: each χ_j should contain <u>Ot least</u> 5 abservations before boing that! If we have O observations inside some χ_j , then we can't reasonably hypothesize anything except $p_j = 0$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Famous Example: Testing for Uniformity

- There are many reasons why we might want to test whether some data U_1, \ldots, U_n arises from a Unif (0, 1) distribution
 - * Probability plots: we use the probability integral toonsform to make Fo(X,),...,Fo(X). Unif(O,i) under Ho? Fo generated the X;'s." The chi-squared test is essentially a quantitative version of the probability plots from before.
- * Random number generation: when simulating data tran some distribution Fe, we typically need to start with U1,..., Un ²² (wit(0,1)) random variables, and then transform them (e.g., Fö'(U1)) ~ Fo check!). We can't generate truly random numbers," but we can construct a deterministic sequence U1, U2, U2, ..., that "looks" random enough.
- We can use a chi-squared test for this by binning [0,1] into k equal-sized sub-intervals of length 1/k, and letting $X_i = \sum_{j=1}^n \mathbb{1}_{U_j \in (\frac{i-1}{k}, \frac{i}{k}]}$ and $p_i = 1/k$

"Exception: numbers ponerated by radioactive decay ("Hotbits")

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Famous Example: Testing for Uniformity

• Example 4.24: How can we test whether an iid sequence U_1, \ldots, U_n arises from a Unif (0, 1) distribution using 10 categories?

Partition
$$(0,1]$$
 into $(0,10]$, $(10,10]$, $(10,10]$, ..., $(\frac{9}{10},1]$
and let $X_{ij} = \sum_{i=1}^{n} 1 |u_{ie}|^{\frac{1}{10}}, \frac{1}{10}|$, $j = 1, ..., |0|$.
 $(0,1]$ into $(0,10]$, $(10,10]$, $(10,10]$, $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $(10,10]$
 $($

Then can gout a discrete goodness of fit test by calculating
$$\chi^{2}(\vec{x}) := \sum_{i=1}^{6} \frac{(\chi_{i} - \eta_{0})^{2}}{\eta_{(0)}}$$
,
and compare that to a $\chi^{2}_{(2)}$ distribution: $p(\vec{x}) = (P(\chi^{2}_{(2)} > \chi^{2}(\vec{x})))$
 $= [-F_{\chi^{2}(\chi^{2}(\vec{x}))]$.

FYI: this is actually a very underpowered test. " There are much better randomnass tests out there. The "Diehard tests" are standard those days.

E

<ロ > (同) (同) (三) (=) (三) (三) (三) (=)

.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Other Goodness of Fit Tests

- Pearson's chi-squared isn't the only goodness of fit test out there; there are countless others
- Many apply to one particular parametric family specifically

Eq: for testing normality, there are the Shopiro-Wilk test, the Anderson-Darling test, the Jarque-

 Others are completely generic and test for equality between any two distributions

• These latter tests allow us to compare an ecdf \hat{F}_n to a hypothesized cdf $F_{ heta}$

They're very hapful! They're like quantitative versions of the Fn-us-Fo visual diagnostic

 $\checkmark \land \land \land$

Other Goodness of Fit Tests

- In most cases, the distribution of the test statistic under H_0 is only known in the limit as $n \to \infty$
- Even then, cutoffs often can't be calculated exactly and require simulations to approximate
- When there's more than one test out there for the same thing, it's always a good idea to read up on the benefits/drawbacks of each one before deciding which to use
- One might have a lower probability of type I error, another might higher power for lower sample sizes, another might be more robust to outliers, and so on

tairly active area of research!

SQ Q