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Uncertainty in Point Estimates
In Module 2, we learned how to produce the “best” point estimates of ◊
possible using statistics of our data

The “best” unbiased estimator ◊̂(X) is the one that has the lowest possible
variance among all unbiased estimators of ◊

But even so, suppose we observe X = x and calculate ◊̂(x); how do we know
this is close to the true ◊?

We can’t know for sure

But we can use the data to get a range of plausible values of ◊
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Random Sets
Suppose for now that � ™ R

If ◊̂(X) is a continuous random variable, then P◊

1
◊ = ◊̂(X)

2
= 0

But we can try to find a random set C(X) ™ R based on X such that
P◊ (◊ œ C(X)) = 0.95, for example

Example 4.1: Let X ≥ N (µ, 1) where µ œ R. Show that the region
C(X) = (X + z0.975, X + z0.025) satisfies Pµ(µ œ C(X)) = 0.95.
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Interval Estimators and Confidence Intervals
Definition 4.1: An interval estimate of a parameter ◊ œ � ™ R is any pair
of statistics L, U : X n æ R such that L(x) Æ U(x) for all x œ X n. The
random interval (L(X), U(X)) is called an interval estimator.

Example 4.2:

Definition 4.2: Suppose – œ [0, 1]. An interval estimator (L(X), U(X)) is a
(1 ≠ –)-confidence interval for ◊ if P◊ (L(X) < ◊ < U(X)) Ø 1 ≠ – for all
◊ œ �. We refer to 1 ≠ – as the confidence level of the interval.

Example 4.3:

Rob Zimmerman (University of Toronto) STA261 - Module 4 July 23-25, 2024 4 / 55

IF anintervalwithrandomendpoints
ArethesegoodBad

NW1 XinXin 5 Bernoullip In 4 In 5 Dependsonyourtolerance

Moregenerallywecanhavea 1 2 confidenceregion x ̅ whichsatisfiesPoOe x ̅ 1 α e

NG 1 WejustshowedinEx4.1that

X Zim Xt Zn is a 1 confidenceintervalfor



One-Sided Intervals
Definition 4.3: A lower one-sided confidence interval is a confidence interval
of the form (L(X), Œ). An upper one-sided confidence interval is a
confidence interval of the form (≠Œ, U(X)).

Example 4.4: Let X1, X2, . . . , Xn

iid≥ N (µ, 1). Find a lower one-sided
0.5-confidence interval for µ.
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Confidence Intervals: Warmups
The reason for the “Ø 1 ≠ –” in the definition is that P◊ (L(X) Æ ◊ Æ U(X))
may not be free of ◊, depending on the choices of L(X) and U(X)

The lower bound means we want 1 ≠ – confidence even in the “worst case”;
equivalently,

inf
◊œ�

P◊ (L(X) Æ ◊ Æ U(X)) Ø 1 ≠ –

Example 4.5: Let X1, X2, . . . , Xn

iid≥ Unif (0, ◊), where ◊ > 0. Find a œ R
such that (aX(n), 2aX(n)) is a 95% confidence interval for ◊.
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Poll Time!

On Quercus: Module 4 - Poll 1
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Some Confidence Intervals Are Better Than Others
A confidence interval is only useful when it tells us something we didn’t know
before collecting the data

Example 4.6: Suppose X1, X2, . . . , Xn

iid≥ Bernoulli (◊), where ◊ œ (0, 1).
Find a 100% confidence interval for ◊.

A good confidence interval shouldn’t be any longer than necessary

We interpret the length of the interval as a measure of how accurately the
data allow us to know the true value of ◊
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Bringing Back Hypothesis Tests
In Module 3, we learned about test statistics and rejection regions for
hypothesis tests

Pick some arbitrary ◊0 œ �, and suppose we want a level-– test of
H0 : ◊ = ◊0 versus HA : ◊ ”= ◊0 using a test statistic T (X)

This means finding a rejection region R◊0 such that

P◊0(T (X) œ R◊0) Æ –

This is equivalent to finding an acceptance region A◊0 = Rc

◊0
such that

P◊0(T (X) œ A◊0) Ø 1 ≠ –
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Confidence Intervals Via Test Statistics
If the statement T (X) œ A◊0 can be manipulated into an equivalent
statement of the form L(X) < ◊0 < U(X), then

P◊0(L(X) < ◊0 < U(X)) Ø 1 ≠ –

But ◊0 œ � was arbitrary!

So if we did this right, we must have

P◊ (L(X) Æ ◊ Æ U(X)) Ø 1 ≠ – for all ◊ œ �

This method of finding confidence intervals is called inverting a hypothesis
test

We can also go the other way!
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Famous Examples: Z-Intervals
Example 4.7: Let X1, X2, . . . , Xn

iid≥ N
!
µ, ‡2"

where µ œ R and ‡2 is
known. Find a (1 ≠ –)-confidence interval for µ by inverting the two-sided
Z-test.
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Famous Examples: One-Sided Z-Intervals
Example 4.8: Let X1, X2, . . . , Xn

iid≥ N
!
µ, ‡2"

where µ œ R and ‡2 is
known. Find a lower one-sided (1 ≠ –)-confidence interval for µ by inverting
an appropriate one-sided Z-test.
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Famous Examples: t-Intervals
Example 4.9: Let X1, X2, . . . , Xn

iid≥ N
!
µ, ‡2"

where µ œ R and ‡2 > 0.
Find a (1 ≠ –)-confidence interval for µ by inverting the two-sided t-test.
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Famous Examples: One-Sided t-Intervals
Example 4.10: Let X1, X2, . . . , Xn

iid≥ N
!
µ, ‡2"

where µ œ R and ‡2 > 0.
Find an upper one-sided (1 ≠ –)-confidence interval for µ by inverting an
appropriate one-sided t-test.
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An LRT-Based Interval
Example 4.11: Let X1, X2, . . . , Xn be a random sample from a distribution
with pdf f◊(x) = e≠(x≠◊) · xØ◊, where ◊ œ R. Find a (1 ≠ –)-confidence
interval for ◊ by inverting an LRT.
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Functions of the Data and the Parameter
In constructing our confidence intervals, we’ve often encountered statements
that look like

P◊ (a < Q(X, ◊) < b) Ø 1 ≠ –,

where Q : X n ◊ � æ R is a function of the data X and the parameter ◊, and
a, b are constants

We were able to choose those constants a and b because we knew exactly
what the distribution of Q(X, ◊) was

We could then “invert” the statement a < Q(X, ◊) < b to produce a
confidence interval for ◊

Example 4.12:

Example 4.13:
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Pivotal Quantities
The key in these examples was that the distribution of Q(X, ◊) is free of ◊

Definition 4.4: A random variable Q(X, ◊) is a pivotal quantity (or pivot)
for ◊ if its distribution is free of ◊.

So if X ≥ f◊1 and Y ≥ f◊2 , then Q(X, ◊1) d= Q(Y, ◊2)

Every ancillary statistic is a pivotal quantity

Example 4.14:

Example 4.15:
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Poll Time!

On Quercus: Module 4 - Poll 2
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Confidence Intervals from Pivotal Quantities
Example 4.16: Let X1, X2, . . . , Xn

iid≥ Exp (⁄), ⁄ > 0. Show that
Q(X, ⁄) = 2⁄

q
n

i=1 Xi is a pivotal quantity, and use it to find a 1 ≠ –
confidence interval for ⁄.
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Finding Pivotal Quantities
There’s no all-purpose strategy to finding pivotal quantities, but there’s a
neat trick that sometimes lets us pull one out of the pdf of a statistic T (X)

Theorem 4.1: Suppose that T (X) ≥ f◊ is univariate and continuous, such
that the pdf can be expressed as

f◊(t) = g(Q(t, ◊)) ·
----

ˆ

ˆt
Q(t, ◊)

----

for some function g(·) which is free of ◊ and some function Q(t, ◊) which is
continuously di�erentiable and one-to-one as a function of t (i.e., with ◊
fixed). Then Q(T (X), ◊) is a pivot.

Proof.
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Finding Pivotal Quantities: Examples
Example 4.17: Let X1, X2, . . . , Xn

iid≥ Unif (0, ◊) where ◊ > 0. Find a pivotal
quantity based on T (X) = X(n), and use it to construct a 1 ≠ – confidence
interval for ◊.
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Finding Pivotal Quantities: Examples
Example 4.18: Let X ≥ f◊(x) = 2(◊≠x)

◊2 · 0ÆxÆ◊, where ◊ > 0. Find a
pivotal quantity based on X, and use it to construct a 1 ≠ – confidence
interval for ◊.
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Confidence Intervals: Interpretations
Confidence intervals are almost as widely misinterpreted as p-values

Suppose that in a published scientific study, you see a stated 95% confidence
interval such as (0.932, 1.452)

How do you interpret this correctly?

Should we be surprised if we try and reproduce the study and calculate a 95%
confidence interval of (0.824, 1.734)?

What about (≠0.232, 1.440)?
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Poll Time!

On Quercus: Module 4 - Poll 3
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Confidence Intervals: Interpretations
Here are ten observed 95% Z-intervals for µ calculated from ten random
samples of size n = 15 from a N (µ, 1) distribution:
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Questioning Our Assumptions...
All of the theory we’ve done up to this point has depended on the
assumption of an underlying statistical model

When we say “Suppose X1, X2, . . . , Xn

iid≥ f◊...”, we’re assuming the data
follows one of the distributions in the parametric family {f◊ : ◊ œ �} and
only the parameter ◊ is unknown

If we get the statistical model wrong, then any inferences we make about ◊
are likely to be completely invalid

So it’s extremely important to be able to check that statistical model
assumption
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Nothing Is Certain
Of course, we can’t know for sure that a model is correct

But we can perform checks that give us confidence in our assumptions

This is called model checking

We will study two kinds of model checks: visual diagnostics and
goodness-of-fit tests
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Histograms: Preliminaries
Suppose we have iid data X1, X2, . . . , Xn, which we hypothesize are
distributed according to a cdf F◊

Let’s group the range of the data into bins [h1, h2], (h2, h3], . . . , (hm≠1, hm]

By the law of large numbers,

1
n

nÿ

i=1
Xiœ(hj ,hj+1]

p≠æ P◊(X1 œ (hj , hj+1])

So if n is large and we’re correct about F◊, then

1
n

nÿ

i=1
Xiœ(hj ,hj+1] ¥ F◊(hj+1) ≠ F◊(hj)
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The Histogram Density Function
If, in addition, we believe the Xi’s are continuous with pdf f◊, then there
exists hú œ (hj , hj+1) such that

1
n(hj+1 ≠ hj)

nÿ

i=1
Xiœ(hj ,hj+1] ¥ F◊(hj+1) ≠ F◊(hj)

hj+1 ≠ hj

= f◊(hú)

Definition 4.5: Given data X1, . . . , Xn and a partition h1 < h2 < · · · < hm,
the density histogram function is defined as

f̂n(t) =
I

1
n(hj+1≠hj)

q
n

i=1 Xiœ(hj ,hj+1], t œ (hj , hj+1]
0, otherwise
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Histograms
If we believe that our observed data x1, . . . , xn are realizations of
X1, X2, . . . , Xn

iid≥ f◊, then the observed f̂n(t) should look like a
“discretized” version of f◊(t)

...and the resemblance should improve as n gets larger and each bin size
hj+1 ≠ hj gets smaller

Definition 4.6: A plot of a density histogram function f̂n(t) with vertical lines
drawn at each hj is called a histogram. A histogram where each bin width
hj+1 ≠ hj = 1 is called a relative frequency plot.
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Histograms: An Example
Here’s a histogram (n = 100) overlaid with three hypothesized pdfs; which is
more likely to have generated the data?
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Poll Time!

On Quercus: Module 4 - Poll 4
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Empirical CDFs
We might prefer to deal with the cdf F◊ instead

If we fix any t œ R, then the law of large numbers says that

1
n

nÿ

i=1
XiÆt

p≠æ P◊ (X Æ t)

So if n is large and we’re correct about F◊, then

1
n

nÿ

i=1
XiÆt ¥ F◊(t)

Definition 4.7: Given a random variables X1, . . . , Xn, the empirical
distribution function (ecdf) is defined as

F̂n(t) = 1
n

nÿ

i=1
XiÆt
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Empirical CDFs Are Nice
If we believe that our observed data x1, . . . , xn are realizations of
X1, X2, . . . , Xn

iid≥ F◊, then F̂n(t) should look like F◊(t)

In fact, a famous result called the Glivenko-Cantelli theorem says that if F◊

really is the true cdf, then F̂n(t) ≠æ F◊(t) as n æ Œ in a much stronger
sense than convergence in probability

Theorem 4.2: For any fixed t œ R, the ecdf F̂n(t) is an unbiased estimator of
F◊(t), and it has a lower variance than XiÆt.

Proof.
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Empirical CDFs: An Example
Here’s an ecdf (n = 50) overlaid with two hypothesized cdfs; which is more
likely to have generated the data?
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Poll Time!

On Quercus: Module 4 - Poll 5
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Bringing Back Ancillarity and Su�ciency
We know from Module 1 that if X1, X2, . . . , Xn

iid≥ f◊, the distribution of an
ancillary statistic S(X) is free of ◊

But if we’ve gotten the model {f◊ : ◊ œ �} wrong, S(X) could very well
depend on ◊!

So some ancillary statistics provide a model check: if our realization S(x) is
“surprising”, we have evidence against the model being true

Similarly, if T (X) is su�cient for ◊, then X | T (X) = t shouldn’t depend on ◊

This leads to the idea of residual analysis

Loosely speaking, residuals are based on the information in the data that is
left over after we have fit the model
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Residual Plots
Example 4.19: Let X1, . . . , Xn be a random sample from a suspected
N

!
µ, ‡2"

distribution, where µ œ R and ‡2 is known. If we’re correct, then
R(X) = (X1 ≠ X̄n, . . . , Xn ≠ X̄n) is ancillary for µ, because

Xi ≠ X̄n ≥ N
3

0,
n ≠ 1

n
‡2

4
, i = 1, . . . , n

and therefore standardized residuals

Rú
i
(X) := Xi ≠ X̄nÒ

n≠1
n

‡2
≥ N (0, 1) .

So if we’re right about N
!
µ, ‡2"

, then a scatterplot of the residuals shouldn’t
exhibit any discernable pattern, and should mostly stay within (≠3, 3)
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Residual Plots
Example 4.20: Here are two standardized residual plots constructed from two
samples (n = 100) with equal variances ‡2; which looks more like it came
from a N

!
µ, ‡2"

distribution?
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Probability Plots
Probability plots extend this idea

We need a fundamental result of probability theory first

Theorem 4.3 (Probability integral transform): Let X be a continuous
random variable with cdf F◊(x), and let U = F◊(X). Then U ≥ Unif (0, 1).

The order statistics of U1, . . . , Un

iid≥ Unif (0, 1) follow a Beta distribution:
U(j) ≥ Beta (j, n ≠ j + 1), and so E

#
U(j)

$
= j

n+1

This suggests a recipe:
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Probability Plots
Example 4.21: Here are two probability plots constructed from the
standardized residuals as before, using F◊(x) = �(x). Which looks more like
it came from a N

!
µ, ‡2"

distribution?
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Q-Q Plots
We could also go in the other direction by looking at the quantiles

Definition 4.8: Let X be a random variable with cdf F◊. The inverse cdf (or
the quantile function) is defined by F ≠1

◊
(t) = inf{x : F◊(x) Ø t}.

When X is continuous, the inverse cdf is simply the functional inverse of F◊

There are plenty of software algorithms that can estimate the quantiles from
a sample x1, . . . , xn

If we hypothesize X1, . . . , Xn ≥ F◊ and we can compute F ≠1
◊

, then we have
another recipe for model checking:
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Q-Q Plots
Example 4.22: Here are two Q-Q plots constructed from the standardized
residuals as before, using F ≠1

◊
(x) = �≠1(x). Which looks more like it came

from a N
!
µ, ‡2"

distribution?
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Q-Q Plots
Q-Q plots are most frequently used as a test for normality

But technically there’s no reason why we can’t use them to compare any two
distributions, observed or hypothesized

...provided we can actually compute (or estimate) their quantiles, of course

Q-Q plots are particularly useful when we want to see how the “outliers” in
our data compare to the extreme values predicted by the tails of a
hypothesized distribution
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Checkout Chernofffaces intheoptionalreadings



Goodness of Fit Tests
Instead of using visual diagnostics, we can use hypothesis tests as model
checks

Definition 4.9: A goodness of fit test for a statistical model {f◊ : ◊ œ �} is
a hypothesis test that determines how well the model suits a given set of
observations x1, . . . , xn.

This time, the null hypothesis H0 is that the model {f◊ : ◊ œ �} for our data
is “correct”

As usual, we have a test statistic T (X) that follows some known distribution
under H0

An observed value T (x) which is very unlikely under H0 (as quantified by a
p-value, for example) provides evidence that the model is wrong
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Ho thedataarenormallydistributed Ho theobservationsthemselvesareall
Hothetwosamplesareindependent independent



Towards a Foundational Test
Suppose we observe iid random variables W1, W2, . . . , Wn taking values in
sample space X = {1, 2, . . . , k}, which we think of as labels or categories

We want to test whether the Wi’s are distributed according to some
hypothesized probability measure P0 on X

Let Xi =
q

n

j=1 Wj=i and let pi = P0({i}) so that under H0,

(X1, X2, . . . , Xk) ≥ Multinomial(n, p1, . . . , pk)

Now define
Ri = Xi ≠ E [Xi]

Var (Xi)
H0= Xi ≠ npi

npi(1 ≠ pi)

Since Ri

d≠æ N (0, 1) under H0, it’s tempting to think
q

k

i=1 R2
i

d≠æ ‰2
(k),

but that’s not true
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Pearson’s Chi-Squared Test
Instead, we have the following result

Theorem 4.4: If (X1, X2, . . . , Xk) ≥ Multinomial(n, p1, . . . , pk), then

kÿ

i=1
(1 ≠ pi)R2

i
=

kÿ

i=1

(Xi ≠ npi)2

npi

d≠æ ‰2
(k≠1).

The statistic ‰2(X) =
q

k

i=1
(Xi≠npi)2

npi
is called a chi-square statistic, and

it’s almost always written as

‰2 =
kÿ

i=1

(Oi ≠ Ei)2

Ei

The chi-squared test is an approximate test, because the test statistic only
has the ‰2

(k≠1) distribution in the limit (more on this in Module 5)
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A Famous Example: Fisher and Mendel’s Pea Data
Mendelian laws of inheritance establish relative frequencies of dominant and
recessive phenotypes across new generations

Gregor Mendel was known for his pioneering experiments with pea plants in
the mid-1800s

If you cross smooth, yellow male peas with wrinkled, green female peas,
Mendelian inheritance predicts these relative frequencies of traits in the
progeny:

Yellow Green

Smooth 9
16

3
16

Wrinkled 3
16

1
16
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Relabel

1 YellowSmooth

2 Yellow Wrinkled

3 Green Smooth

GreenWrinkled

Po Po 13 946
1181133

Po 23 18443



A Famous Example: Fisher and Mendel’s Pea Data
Mendel crossed 556 such pairs of peas together and recorded the following
counts:

Yellow Green

Smooth 315 108

Wrinkled 102 31

Example 4.23: Do these results support the predicted frequencies?
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OBSERVEDCOUNTS EXPECTEDCOUNTS

Yellow Green

Smooth 312.75 104.25

Wrinkled 104.25 34.75

E 3155 408,29357 402,2935 1315 0.6043

Ourpvalueis plx ̅ P X x ̅

1 5 06043

0.895 Sowe reallyfailtorejectHoatthe0.05significance
level

CheckouttheMendelianparadox



Extending the Chi-Squared Test
What if our hypothesized distribution is not categorical, but quantitative?

We can still use a chi-squared test – but how?

The trick is to partition the sample space X into k disjoint subsets
X1, . . . , Xk, and let Xi =

q
n

j=1 WjœXi and pi = P0(Xi)

The finer our partition, the better we can distinguish between distributions

But of course, we need to increase our sample size accordingly so that each
category gets su�ciently “filled” with data
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ii.fi
iiixiiia.jPoWitXj

Eg X IR MaybeX_In37 x L3 2 X 2 Xp 3,8

GuidelineeachXjshouldcontainatleast5 observationsbeforedoingthis
Ifwehave0observationsinsidesomeXj thenwecan'treasonablyhypothesizeanythingexceptp 0



A Famous Example: Testing for Uniformity
There are many reasons why we might want to test whether some data
U1, . . . , Un arises from a Unif (0, 1) distribution

We can use a chi-squared test for this by binning [0, 1] into k equal-sized
sub-intervals of length 1/k, and letting Xi =

q
n

j=1 Ujœ( i≠1
k ,

i
k ] and pi = 1/k
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Probabilityplots weusetheprobabilityintegraltransformtomakeFolx Folk Unifco1
underHoFogeneratedtheXi'sThechisquaredtestis essentially a quantitativeversion
oftheprobabilityplotsfrombefore

RandomnumbergenerationwhensimulatingdatafromsomedistributionFo wetypically
needtostartwithUi UniiUnit01 randomvariablesandthentransformtheme.gFfUi Focheck Wecan'tgeneratetrulyrandomnumbers butwecanconstructa deterministic
sequenceUiUsUs that looksrandomenough

Exceptionnumbersgeneratedbyradioactivedecay Hotbits



A Famous Example: Testing for Uniformity
Example 4.24: How can we test whether an iid sequence U1, . . . , Un arises
from a Unif (0, 1) distribution using 10 categories?
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Partition 0,1 into10to Cto 11 OR letV 710Uilsothat
andletXj Huie I j 1 10 Y Vn'tUnif 1 103underHo

andletXj Hu j

Thencarryoutachisquaredgoodnessoffittestbycalculating X4x ̅
andcomparethat to a a distribution p x ̅ PX

1 Fx Xia
FYI thisisactuallyaveryunderpoweredtest
TherearemuchbetterrandomnesstestsoutthereThe Diehardtestsarestandardthesedays



Other Goodness of Fit Tests
Pearson’s chi-squared isn’t the only goodness of fit test out there; there are
countless others

Many apply to one particular parametric family specifically

Others are completely generic and test for equality between any two
distributions

These latter tests allow us to compare an ecdf F̂n to a hypothesized cdf F◊
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EffortestingnormalitytherearetheShapiroWilktesttheAndersonDarlingtesttheJarque
Beratest

The Kolmogorov SmirnovtestandtheCramervonMisestest arethemostpopular

They'reveryhelpful They'relikequantitativeversionsoftheFi vs Fovisualdiagnostic



Other Goodness of Fit Tests
In most cases, the distribution of the test statistic under H0 is only known in
the limit as n æ Œ

Even then, cuto�s often can’t be calculated exactly and require simulations
to approximate

When there’s more than one test out there for the same thing, it’s always a
good idea to read up on the benefits/drawbacks of each one before deciding
which to use

One might have a lower probability of type I error, another might higher
power for lower sample sizes, another might be more robust to outliers, and
so on
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Fairlyactiveareaofresearch


