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Initial Hypotheses

: iid
@ Consider our usual setup: we collect X1, Xo,...,X,, ~ fg for some unknown
0eO

@ In Module 2, we learned how to produce the “best” point estimators of 7(6)
@ Now, we turn things around (sort of)

@ Before observing X = x, we already have some conjecture/hypothesis about
which specific value (or values) of 6 € © generate X

@ Example 3.1: "\’(QWCF (LHC'\W‘Q’*Q N/oq%wkdtj)e,@. \9W\\<:~0wt\

- D\la&& \joh fr Corlidate, A in the Slechen ~Bemaslics) whare O (0 s
% condidate, unm\d? (ie, s pcOS 2)
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Questions About Plausibility

@ Suppose, for example, we initially suspect that 8 = 6,

o We find a good point estimator (X) for 0, observe X = x, and produce the
estimate 6(x), which turns out to equal, say, 6y + 3

@ Is this evidence in favor of our initial suspicion, or against it? |+ AQPQ(\AS\
@ Is the difference of 3 “significant”? Do.?enéson whok we mmb» “s’gn’\{’icm&"

@ Hypothesis testing allows us to formulate this question rigorously (and answer

it)
! sigwiﬁcmké dfferert
"S‘\g\‘&iwﬂ\-\% lower ™

efe.
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The Hypotheses in Hypothesis Testing

@ Null hypothesis significance testing (NHST) (or null hypothesis testing
or statistical hypothesis testing) is a framework for testing the plausibility
of a statistical model based on observed data

@ For better or worse, it has become a major component of statistical inference

@ Very roughly speaking, NHST consists of three basic steps:

O RAssome some '&e‘wl; wodel (o et medel®d fr X gnd set o Aweshold e for)

‘Fbr ?\ws'ubﬂ?y,

Q@ Observe X ¥ and colulate tha ligelinood obsefing sucdn data
indar the, :ln.(:wl:[' modal (<)

Q \§ Pt [ikedihond fulls belew «, (e‘Qedr He default model in Saor & abemotives
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The "Hypothesis” in Hypothesis Testing

@ Definition 3.1: A hypothesis is a statement about the statistical model that
generates the data, which is either true or false.

@ The negation of any hypothesis is another hypothesis, so they come in pairs

@ Usually, we already have a parametric model {fy : # € ©} in mind, and our
hypotheses relate to the possible value (or values) of the parameter 6 itself

(et aluoss 4he cose, 05 well see in Medule. )
@ The two hypotheses in this setup can be written generically as Hy : 6 € O
versus H, : 0 € OF, where ©g C O is some “default” set of parameters

®=2 ,‘:i' Wo:0=a
@ Example 3.2: , P ,3 * Ha: ©=b

Tor the U T heights: Ho: p= 568 (= ®.={5'05"
HA:f)* S'b.Sl (6 @, = R\is (711 }> @7—‘2’“026622'4'(&0['0,,3;

H:0e (-, 19\ 724,63

: . , . @=05 @5 ®0=iasb
Evord u@vahra Sir (owdidate A \\::. O <05 (ev ®°‘=C°,0-53)
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Kinds of Hypotheses

@ We designate one hypothesis the null hypothesis (written Hy) and its
negation the alternative hypothesis (written H4 or Hy)

@ Mathematically speaking, any subjective meanings of the null and alternative
hypotheses are irrelevant Onl% Yee. modherodice) stotemants e televant ’mrh—“ma)

@ But in a scientific study, the null hypothesis typically represents the “status
quo” or the “default” assumption

@ The study is being conducted in the first place because we suspect the
alternative hypothesis may be true instead

- Tgficabaa, sCientific ghb\;lcok&-?.: avdnez of on “effost” (5’-&, e effect &6 ney
A(\ﬁa\a divase ) He efect & (O, emgsiac m cimgle, e effet & m shot in Hhe.
o0 on 0. pesiderticl condidetet fovouabiity)

- The " defuht” ssangion s ok ek no effact
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Simple and Composite Hypotheses

@ Example 3.3: W&?ca"vmmcoia whidh oy be bosad | we wont 40 pssecs whether
s o nobt. T€ e flip e oin ind made) Re. yac- & K as %arrm\\i(é‘), Belon), thon
\40-.?= '/2 - ®0=?"/2"
HA'??‘/Q_ = ®oc = (DoV?DU G’z,b
@ Example 3.4:
m%b;TW&MihGMCPWk ?I'OJMA \)5 Some. (o s Yowsa( 3
N wld be. o (et bod Conpay : Hhe vovionce in dhe % & aces in o deck:
e 2l (vid e o gty od corger e 4 & oces woull alo ke 3..7)

@ Definition 3.2: Suppose a hypothesis H can be written in the form
H : 0 € ©¢ for some non-empty ©g C O. If |©p| =1, then H is a simple
hypothesis. Otherwise, H is a composite hypothesis———'.e, ©,716.5 fu&me
o &

A Simple. hypobeds angletely specfies Hhe dotn- yeraraing distibusion
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The Courtroom Analogy

@ Consider a prosecution: the defendent is innocent until proven guilty

@ But the whole point of the case is that the prosecutor suspects the defendent
is guilty, and the purpose of the trial is to determine whether the evidence
supports that guilt

@ The jurors ask themselves: if the defendent really was innocent, how unlikely
would this evidence be?

@ If the evidence is overwhelmingly unlikely, the defendent is found guilty

@ But if there's a lack of unlikely evidence, they find the defendent not guilty
NOT TH SANE RS [NNOCENCE 'L (4 doesnt Meon Hhe defendon® is Hrubt innocend, juct-that

‘reres not enoodl'\ dode. 1o “‘an: (B%ONLG— feosonddle decbt) l?uih‘:

® |n NHST, we never aszapt K, - citber v et Wy @ we foil 1 egject K,
"hed ity " “find not guiviy ™
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A Motivating Example

@ Example 3.5: Let Xq,..., X100 iifl/\/(@, 1), where 8 € R. Assess the

plausibility that 6 = 5 if we observe X = —10.

Seans iy | ientstics: +lage sogie oz e brsnfiun sage 3o S wrdee Hy:05
o our otserved Yo s (ons, standard deviations oucg.(m-“a mean mder H,-0-5
o cte...

t 65, %o B(F,=-1>=0. Dossat hep!
[nstead & st ~10, hois akask ol values ¢ ~\O'¢
Uwh( HDJ ﬁ(y\w : —\6>

= (&(y—‘ -S -l10-S

Vo %
T P(2e-150)  uhae 2NED
Lowes or 0 resonckla. Hvediald & glancibilig |

i @(;\50} /égohm dote. proides idence. gaivat H,
~ D.0Ca0oD0...-
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Hypothesis Tests and Rejection Regions

Definition 3.3: A hypothesis test is a rule that specifies for which sample
values the decision is made to reject Hy in favour of H 4.

Payeet 1§ =<2 "Repet § B2 1s
Example 3.0 eectif 122 o %om4 ot o hgpotieste test )

Reject if %eax\2
Definition [B/4: In a hypothesis test, the subset of the sample space for which
Hy will bg|rejected is called the rejection region (or critical region), and its

complemept is called the acceptance region.

eting hypotheses Hy and H 4, a hypothesis test is characterized
jon region R C A"

Given co
by its reje

Py (Reject HO) = Py (X < R)

RES R ™ 2y = Rl WO R{ReD = B (R a
Rafen xm2 o 5043 = Rigr 7 RIxe2 0 e D T
R {2 %z 2y =2 pmipeet K= Ry (X2 ®

In other war

Example 3.7:
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Poll Timel

ToC fail o rqet. W) =4~ Rmpeck W0)
- 1 i \P'e(. SZG_ R}

On Quercus: Module 3 - Poll 1

Rob Zimmerman (University of Toronto) July 16-18, 2024 11/59



One-Tailed and Two-Tailed Tests
(\40-.6=9.
o If © C R and Hj is simple, then the rejection region is usually in both tails of
the distribution:

%’; ?e-i‘ie%", l'i"&? {‘N some .= 0
= fep % >0 3V 12X X4}
Vv )

Jo. (%) = pdf & Xnwder S,

=R, 7"'22_
&(ie@ = Pg_(')_(..é-cr')-(-.,\>)= Qrec € ?-, +oead R, -c c
e But if Hy: 6 < 0y, then the rejection region is only in one tail:
%‘. 2=$§6 X"-, T>c¥ 5o (3 = ot Z wde©,

R [Xe®) = QK> =0 & R,

c

@ Definition 3.5: Suppose © C R. A two-sided test (or two-tailed test) has
Hy : 0 = 0, for some 6y € ©. A one-sided test (or one-tailed test) has
Hy:0<6yor Hy:0 > 6y for some 0y € O.
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| and T Il Error , ..
Type | and Type ) e, 0 felea portie
@ Definition 3.6: A type | error is the rejection of Hy when it is actually true.
A type Il error is the failure to reject Hy when it is actually false.

12, 0. “folse ne adive "

E le 3.8: . ~Cs " <
i o g .0 s o B

&wmmm%’-—g GMAI’\QI\CQ. D?t)QC'\‘ Ho.
F be. da. acksahy came Sran N(O, 7, v, mode 0 gpe T

(L wder Yo e sckep, sapoe. we ebane %, -0.S e
have foil o et 4, 1F e dafn actudlly Came From
NG, 62 | waue ode o Aoipe T etmr

@ Of course, we can never know if we are committing either of these errors

---bem“e’\’“’;‘l@“’ém et de '\m@/) 1S, which well never ¥row !
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The Probability of Rejection

@ Suppose the rejection region looks like R = {x € X" : & > ¢}, for some
ceR
(M— W ﬁ()?C*\' Y, whon X,,\ 3 \aqe,qv\og‘b

@ If we demand very strong evidence against H( before we would reject it, we

might set ¢ very high, which would make Py (X € = Py (X' > c) very
B Jo, ‘ .
small under H y \nefe Mo dearding
with ¢ Yran with ¢,

@ In the standard framework, we choose the (low) probability first, and then
calculate ¢ based on that

@ Example 3.9: X]/---,X(,,B N&).D \‘07)&0 NS \’\A:j»O, %w"—\’nred\o\c\"'\s «=0.05.
Whet ¢ do ne heed? =4 - 30D
0057 ‘%b(\;w == P (08

= 0.\b4S
:(PD(Xb-O > c-O \O \
Vie %o

\f instead 0=10, wed jet c=20520lI.
'boa:\"-\ec&s' e smoller n Mant we davand. MR @xtreme.
Volpes to n%edk(o

P2 2100) wae 2N

Rob Zimmerman (University of Toronto) July 16-18, 2024 14 /59



The Power Function

@ Definition 3.7: The power function of a test with rejection region R is the
function 5 : © — [0, 1] given by 3(0) =Py (X € R).

@ Observe that

B(9) = Py (Type | error), 0 € O
|1 =Py (Type ll error), 6 € O

@ Definition 3.8: Let § € ©F. The power of a test at 6 is defined as 3(0).

e — [h\?or-hmo:\-a\‘:),fﬂ-e pouer €o fert: s dhten

wriffen as "\~ B That A s et de same as o3 R(B) 1
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The Power Function: Examples
@ Example 3.11: Let X1, Xo,..., X, N (,u, 02) with o2 known. Suppose a
test of has a rejection region of the form R = {x € X" : & > ¢}. Calculate
the power function of this test.

£ ~B(Re®
=%

Note: (e didnk need Yo g!eec‘?g R o Hp here, But 1&9') (3 Ch\g useful
whain We Yo wkuc\n/)e_®,, ond N\!\'\c\!\fe@f.
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Poll Time!

R.(Xe®)

= (R (et Ho)
= ProEqb E\AB& rqbq:‘ﬁ'\g, He uhon H" s M

On Quercus: Module 3 - Poll 2
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Size and the Probability of Rejection

@ If we have a simple null hypothesis and X is continuous, we can often
construct R so that Py, (X € R) = «, for some pre-chosen ae € (0, 1)

@ But for a more general null hypothesis Hy : 6 € O, it's usually impossible to
have Py(X € R) = « for all 6 € ©

@ Instead, we can try to ask for a “worst-case” probability

@ Definition 3.9: The size of a test with rejection region R is a number
a € [0,1] such that supycg, Ps (X € R) = a.

Thint & Jiic os e maxinim e ol poside Oc@,
® Example 3.12:

N())(O:">, q> \me Ro‘-/ls-O vs. W:/.»O, Q.-’ﬁ)‘(a?f: s?>c,,(. \'deo we dhose C
ts moke K 0 Size-k tett? (be ned .
- \"ﬂm)

A= ;\Fo "&}(ie?b

- 55, (- TG fonbhe = oz ¢= < -F (1D
= | — )
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Significance Levels

@ A size-a test might be too much to ask for (especially when the underlying
distribution is discrete)

@ All we might be able to do is upper bound the worst-case probability

e, %‘f@, )'5(9') ¢k

@ Definition 3.10: The level (or significance/l_eygl) ofa/ét with rejection

region I is a number o € [0, 1] such that supgce Po (X € R) <a

Nete: some outhess Use “She” 0d “(et* dewde:ua‘. E/% colk o site “excct <ige ™ ad aw led
® Bxample 3.13: "e‘\- XN%.M(‘S|®¢ QC(_O)D- \’(019'-'-‘/2. Vs \‘(A'-8°V2. e
\{' R= 5-5}, than é‘fyz @e()ﬁca

gt o°

= (é)s = O.b%\?,g .
Co it i o level-0:05 Aesk (od o lnl-0.0¢ fest-) oi:\:h&gr)’am *«ﬂ\-
Rud- its net o (@~ D03 fect! (on we ever g2t 0. Size~o ere Ac\‘ln\\ﬁr\o.
Thaes ne R E30,\,..,5% sudndhat §F R(XeR) = 0.05.
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Test Statistics

@ A test statistic 7(X) is a statistic which is used to specify a hypothesis test

@ The rejection region specifies which values of T'(X) have low probability
under Hy

o If R={xe X" :T(x)>c}, then Py (X € R) =Py (T'(X) > ¢), and
evaluating that requires knowing the distribution of T'(X)

@ So a test statistic is only useful if we know its distribution under the null

hypothesis
-lnthe N( =) mode| wik g Yrown, TR =X \S&gm-\ ‘oot

@ Example 3.14: d‘ot\'K'\'\cbaco&Se. i ‘r\of/.,,m\cm'ﬂx)a N/-’o a2/
- n e Beanodli (6 medal, TTRI= 2X; 16 gpod becavse under Yo: 926, TR ~Biln0:)
- Indhe Bieen( N Mmoda), T(X) = XT: ts..... prbcbhy vot Hat sl
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p-Values

@ Definition 3.11: Suppose that for every o € (0,1), we have a level-a test
with rejection region R,. For a given sample X, the p-value is defined as

p(X) =inf{a € (0,1) : X € R, }.

@ The idea of a p-value may be the single most misinterpreted concept in
statistics

How 4o we yse o-values? We fist et ote (D,b/ +hon e obsene
X=X, ond then e colevlete oo (,obsaw:D ?"\bk’e ?Gt\-

- ¢ ?(‘O ¢ We fpct Ko Oc\-+le (S %\&mhco.r\ce lam\
\% ‘)(x\>0‘ e foul o ﬂ%«:’\‘ Y, Oc\--H/e. k- S\&nﬁucwce lm\
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p-Values Based On Test Statistics

@ In non-specialist statistics courses, the p-value for a test with observed data
X = x is often defined as “the probability of obtaining data at least as
extreme as the data observed, given that Hj is true”

@ At first glance, this bears no resemblance to the previous definition; however...

@ Theorem 3.1: Suppose a test has rejection region of the form
R={xe X" :T(x) > c}, for some test statistic T : X" — R. If we observe
X = X, then our observed p-value is p(x) = supgce, Po (T'(X) > T'(x)).

No praf (¢ hoed )
@ When Hj is simple, that becomes p(x) = Py, (T'(X) > T'(x))

@ Of course, the theorem also applies when the test specifies that low values of
T'(x) are to be rejected

12, 1@ ReER T eck, Hon 0 8, (T = T1)
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Poll Timel

?—\;()&wzﬁ'. V\OY‘QCQ Mcbaﬂ\

On Quercus: Module 3 - Poll 3
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Famous Examples: The Two-Sided Z Test

@ Example 3.15: Let X¢, Xo, ..., X, ~ g Wlt{,u € R and o2 known.
Construct a size-« test of HO = | versus HA [t # Lo using the

Z -statistic -«
X —
Z(X) = ~ N(OD wder
We wor 20 <. Vi /n /

L= 57, ARESRD

= ©,(1261 =9
- @’(\2\75 dhoe 2~NEN)
= |- {%- ce2 <0

= \- 'ﬂc)—!-[\' ﬂb}

Se o r{,fpﬁw refion is
W = ie X" \2m)| >

2= 2ry fy o e l.o,%

" 2-280
fe TR
LB ([~ M) = Ba, T R pint
é § (\ 9) % ”C\ffstn‘ \h\l&‘ =f -
{r dhe N(o,1) Sk bban 2= -2y 2,
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Famous Examples: The One-Sided Z-Test

@ Example 3.16: Let X1, Xo,..., X, N (,u, 02) with 1 € R and o2 known.

Construct a size-a test of Hy : o < g versus H 4 : ;o > pg using the
Z-statistic.

He wonk came =20 st

5 85 -

. @(% 7§ W) .7 Pecnant 3...
(=70 wwe 24NN

T 1- T

=c=0(-) = 2, (= - 2,_) = Toke R=$pcx™ 2 >2,3

2w -2,

UL . ok o Sreetea & oo o oope.
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The t-Distribution

@ Definition 3.12: A real-valued random variable T is said to follow a
Student’s t-distribution with v > 0 degrees of freedom if its pdf is given by

We write this as T ~ t,,.

0.4-
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The t-Distribution: Important Properties

o Theorem 3.2: Let Y, X1, Xa,..., X, “Y A7 (0,1). Then

Y
T = ~ Tp.

VXE A+ X3)/n

Y
o Eopvortly, T2 JT v Q7T 30D, Q 1Y

@ [heorem 3.3: Let I,, ~t,,. Then I}, 4y Z asn — oo, where Z ~ N (0,1).
- } R ? v -
Proof. B‘g tre WL, ?‘\'%X — \E[X't )L
% ?
By be 0T, Ji5xs—> 4

(lody s N(oOY)

Y d
e (L ‘-—"’N(Dn
— = N, 6““ 330 4.,,.>>

By Cluksen dearom, T——

k/w.\/ . J_&ZX'L
Module S, f %wfwm(, A D
M'&o&mﬂ%

Rob Zimmerman (University of Toronto) July 16-18, 2024 27/59



A Great Approximation For Even Moderate n

04- | /—\ |

-4 -2 0 2 4
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The t-Distribution: More Important Properties

@ The t-distribution is mainly used when we have A/ (,u,aQ) data and we're
interested in , but o2 is unknown

e What happens if we swap o2 with S? in the Z-statistic?

@ Theorem 3.4: Let X1, Xo,..., X, 7’rzxfl/\/(,u,(ﬂ) with # € R and o2 > 0.
Then
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Famous Examples: The Two-Sided t-Test

@ Example 3.17: Let X1, Xo,..., X, N (,u, 02) with 1 € R and o2 > 0.
Construct a size-« test of Hy : = g versus H 4 @ pu # pg using the

t-statistic )
X —p
T(X) = — ~ €, onder” 0
‘NZ W&“ore\)ad- \)\OW\_\_()JO\)C-‘A)&(\@\/S /n
= BT =) — dasdy & b
R ACACED
"1 - Pt O+ g, £ -0)
- 2 . E( {-M > b b} M (he d’-") toy 1o, €., o,
= C= E:‘( - Wy) =tk Ty s He some wag 05 2.

%: f""ﬂ‘= _{'H;\-u , et
G, R iReq™ \ k= £, 0, 3
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Famous Examples: The One-Sided ¢-Test

@ Example 3.18: Let X1, Xo,..., X, %l/\/'(u, 02) with 1 € R and o2 > 0.
Construct a size-a test of Hy : 0 > g versus H 4 : < pg using the

t-statistic.

S\

BERUSE !
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Sample Size Calculations

@ Usually, increasing our sample size increases the power of a test

@ In real-world studies, obtaining a sample of independent data is typically
quite expensive

@ Whoever's paying for the study doesn’'t want experimenters collecting more
data than necessary, since that costs money @%@

@ Moreoever, the larger the sample, the higher the chances of problems (errors
in data entry, non-independence of some samples, etc.)

@ So if we have demands for the power of our test at certain alternative
parameters 6 € OF, it's often useful to find the minimum sample size n that
will give us that power
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Sample Size Calculations

o Example 3.19: Suppose X1, Xo. ..., X,, N (11, 0%) where € R and o
known, and we want to test Hj : i § to versus H 4 : p > pg using a test

that rejects Hy when (X,, — i0)/+v/02/n > ¢, for some ¢ € R. How can we
choose ¢ and n to obtain a size-0.1 test with a maximum Type Il error

probability of 0.2 if u > g+ o? M 2NN,

ot 3575150 750 B -
We wark O\—/,,,j.,(i ﬂc«%>

1% = - (04 = \28l6 (J‘Qaw&\e%g%

We olse work :l_ - ,BL)’::*'T £0.2 ‘Nkua ?\09 n j),.\-qg We want

] |- A(\ADZ Foro.\l 2 Po* 7. hoke e
O g ¢ T =4- -Jv) 4 %4
= 0O.§ ﬁgﬁ’f’* 1 ﬂc Some, ag QC*M)‘O'Z 1c°”’“/"7""‘

T

= ¢ F
c «F'(0D)+dn . Sinte BLY i increscing, e should ke sse i helk
= ng(‘_‘zg(b—y'[o.?% < 4.507 ﬁ’r/”"“ &Mgo«ﬁfc subject o tle cnsivaint

= (hosse n=5.

July 16-18, 2024

Rob Zimmerman (University of Toronto)
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The Problems With the p's |- H7)*°%

’”
ﬂ”/%?)g oL
Almost every scientific study that uses statistics will feature p-values
somewhere

The “strength” of a scientific conclusion often wrests upon those p-values

Ronald Fisher suggested 5% as a reasonable significance level, and it's been
widely adopted

Bﬁ‘r‘ém@k&%c«b&mg\,

If every published study used significance levels of 5%, then on average, 1 out
of every 20 studies make a type | error

Think about how many scientific studies are published every day

(W\mgmﬁc ‘ Ters & H\ousomés?
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The Problems With the p's

p-VALWE  INTERPRETATION

0,001

0.0l

ooz [—HIGHLY SIGNIFICANT
0.03 _

88:9 _ SIGNIFICANT
0050}‘ mous.

0.051"] o\ THE EDGE
006 | OF SIGNIFICANCE.

007 | HGHLY SUGGESTIVE,
008 | —SIGNIFICANT AT THE
0.09 | P<0.I0 LEVEL

00971 HEY, LOOK AT
>0.] _}—THIS INTERESTING
SUBGROUP ANALY5I

Source: https://xkcd.com/1478/
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The Problems With the p's

@ p-values lead to publication bias; the p < 0.05 threshold is so entrenched that
a study result with p = 0.06 is considered a “negative” study

@ Journals with limited space want to publish new, interesting, “positive”
findings

@ A study with p > 0.05 may contain important new information, but is far less
likely to be published

@ This pressure leads to p-hacking: “the misuse of data analysis to find
patterns in data that can be presented as statistically significant, thus
dramatically increasing and understating the risk of false positives.”
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https://en.wikipedia.org/wiki/Data_dredging

Examples of p-Hacking

@ Changing « after seeing the data to declare the results statistically significant
%: chot Uih K=20.05 | thare X=X, calndake <D ~0.03-
dedare Pe. rosufts <'Ign'\ﬁm* sk Pe 0.\—s'gn'ﬁm€e, lanl

@ Increasing the size of the study population to produce a result that is
statistically significant, but not practically significant

%.. the fime v pdniewe. o nermal bd%*anyeo:\w\ was 19.5 hous with Lrig A,
vz 19.R hows woth Dg®.. 6 stefistesly <ignbadt difaere. Bot e would Wtk o by ongay 2!

Drua A odvertisemant : " Expansive. na0 Drog A raduess ever signifionty footer thon dreng & DR (

@ Conducting multiple studies on the same data and “choosing” the one with
significant results (this is called the multiple comparisons problem)
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Should We Be Eating Less Cheese? Nol
p= 0.66

Per capita cheese consumption
correlates with

Number of people who died by becoming tangled in their bedsheets

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
33lbs 800 deatt
o
(]
£
2
€ 315lbs 600 deatt
S
Q
(%]
[N
2
U 30lbs 400 deatt
28.51bs 200 deatt
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
-®- Bedsheet tanglings—- Cheese consumed
tylerviger

Source: https://www.tylervigen.com/
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Poll Time!

On Quercus: Module 3 - Poll 4
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Examples of p-Hacking

@ Post-hoc analyses (i.e., testing hypotheses suggested by a given dataset)

This \s \ac:s‘ucvl\(nj Ciseulor asonin) (ke e dosaning X=\2 and -Hon
clasiming ok POX> 1) % very hight

@ Qutright fraud (such as “editing out” data points that sway the results away
from the hoped-for conclusion, or simply lying about the p-value calculation
in the hopes that no one will check)

@ See also: the Replication Crisis ()
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https://en.wikipedia.org/wiki/Replication_crisis

Bringing Back the Likelihood

@ In Module 2, we saw that many common point estimators turned out to be
MLEs

@ It turns out that many common hypothesis tests are examples of an
important kind of test based on the likelihood

@ Definition 3.13: The likelihood ratio test statistic for testing Hy : 6 € O
versus H 4 : 6 € ©F is defined as

Sup9€@o L(@ ’ X)

supge L(0 | X)

A(X) =

A likelihood ratio test (LRT) [s any test that has a rejection region of the
form R = {x € X" : A\(x) < c¢}| for some ¢ € [0, 1].

ouivdandty, L[N = gy, 2610~ 5% A(61%)
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Poll Time!
R= &)‘Zeexnt Nz 1?{

ook LIOIX) ook LBIR)
O£ N9 % vop® muen” ©

o¢® oe®

On Quercus: Module 3 - Poll 5

Choos'lvg‘ =1 mand we rgject Ho whon N <4,

whidh s dwags foue. (€ we dee =0 neod Aoy
foul b rect .

S0 moﬁ\?j care when Ce (o)),

Rob Zimmerman (University of Toronto)
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LRTs: Examples X, xwd)(e Moo= o
%{’;"’ Ha: 2 P% Yo

@ Example 3.20: Show that the two-sided Z-test is an LRT.

N = L(/%\Q Q\l(’[ &LB ) (‘(27’3 chede
X\’D e,w( ﬂ“_"’d—> X 207/n

2¢t

The LU fjects hor NRY2¢. i ame ce(00)
() -

@-Q[)?- ol £

2w z J*-/tg )

)

obsemnd 2- thafighic®

So e "idd- o \2(%\>C' ﬁrsm c'>0. ""M% e -hpo—{\e‘aé 2“‘\68‘!3‘,
Qo de Yto- QHQ-\ 2"'&4.9&, S \vMA&A [ T.
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LRTs: Examples

@ Example 3.21: Let X¢, Xo,...,X,, be a random sample from a distribution

with pdf fo(z) = e @=9 . 1,5y, where § € R. Determine the LRT for
testing Hy : 60 < 0 versus Hy : 60 > 6.

LW e .4, .,

Unsestiieke) E?. LIBIR) ts clealy incrassingie & WAl ©= X, or

A

Ahon etuds O s O>%, S 9'-5&5-‘ Kea.

Reshicked M5 Depands 0n Bo... ( xeas B0, than some. 05 befbre.
\t Bot Xeu, Hon e 0 go e/ thon Bo argjuay 50 He MUE
M@o ¢ 60,

S O ¢ Kené ©o
\ e—h(‘ﬁm-eb, Xo> o

S0 Q=§fe7[“: e'h(x"‘-gbfc RPN
TIRE X" KnZOomc! B YersOe] fr come

5 NX*E
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Simple Tests Have Simple LRTs

@ Theorem 3.5: Let X4, X5,..., X, g fo. Suppose we want to test

Hy:0 =0y versus Hy : 0 # 90 using an LRT. Then

L6y | X S —

where 8 is the (unrestricted) MLE of 6 based on X.

@ Example 3.22: Suppose X1, Xo,..., X, g Unif (0, 0) where 6 > 0.

Determine the LRT for testing HO ; 0 = 0 versus H, : 0 # 0.
\/C90l23= 60-“.4-&.366.. 1‘.&“20

EYBROSE : find c fhek
FCRDME e na 20 = %o~ La20 '2?:';’.?1&

SN 8 Ao L paseorn ()4, oec?

e

'FG‘ come C—eCOHB.
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LRTs: Examples

o Example 3.23: Let X1, Xo, ..., Xn ¢ Bernoulli (6) with 6 € (0,1).
Determine the LRT for testing Hy : 8 = 6y versus H 4 : 6 #~ 6.

L (612 =B (-85 ™
L(x x\ =g (\”‘5

- 5K,
90 éS( \'_eo ‘
SN0 (% (\—z}

n-2%
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Making Life Easier With Sufficiency

o If T'(X) is some sufficient statistic with pdf/pmf gg(t), we might be interested
in constructing an LRT based on its likelihood function L*(0 | t) = go(¢)

@ But would this change our conclusions?

@ Theorem 3.6: Suppose T'(X) is sufficient for 8. If A\(x) and A\*(T'(x)) are the
LRT statistics based on X and T'(X), respectively, then A\*(T'(x)) = A(x) for
every x € A",

Proof. Ba e fOC"O‘."”ﬁ""

WY 9) ST WCIRVE:
oL ov, _ oo, £ L ___Séf@o g ___3@@0 CeITw)y _ ()
Bl % AR () Wl
Q4

Lravom, J[o(%"\"b—aﬂdm\w’ 'TFQ&Rm,
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Optimal Hypothesis Testing

@ We have seen that there can be many tests of two competing hypotheses,
with each test characterized by a rejection region

@ What makes one test “better” than another?
@ A natural idea is to try minimizing the probabilities of type | and type Il errors

@ Unfortunately, it's usually impossible to get both of these arbitrarily low
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You Can't Get the Perfect Power Function

o Let X ~ Bin (5,6), where 6 € (0,1), and suppose we want to test Hy : 6 < 2
versus H, : 0 > %; consider two different tests characterized by the following
rejection regions: Ry = {5} and Ry = {3,4,5}

By(0) = Ru(x=5=6"
° 4,(6> R(K 35D (06 (-8 + 5.6 1R+ &
g 26 4
* Rlige tem) = Qim0

TR (0B} (16F + 564 (1B~ ©

st of
@(%ﬁe Em‘b ‘Qo o*(\-ey + 5-6*

06

i Ry
g (ol e 25

02F

O[J 0.2 0.3 0.4 f‘S 0.6 0.7 0.8 0.9 1.0 6

4z ,8(93 R(4ype T end g= 1- B>* Raliype T oo '
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A Compromise

@ We have to settle on minimizing either type | error or type Il error

@ We will settle on the latter; that is, we fix a level a, and among all level-a
tests, we try to find the one with the lowest probability of type Il error

@ This compromise isn't ideal for every real-life situation; sometimes, we care
more about minimizing the probability of type | error

@ Example 3.24:

= ne medical ch.ex&: test £ o disacse which te (00T fotel omess reated. We Ae{w“dg
Woutt o minwnige. folse. hgetias (1.2, 19pe TC exers)

o ortroon: a comiichion Maans the dacth poralty. A tope T antr means purtting o oot
o to dextin

- \&ydtas‘s tert G o heart disaddec: i o pokiand hos e Sigerder, Hhe orly dreciment. c o leart Aorsplant .

W (eft ool hares @ S0% chonce & deockh. o ‘
etAWIa"MMo.c\ov\or‘w'{"\cwadeJ daWth%3mm‘-q«hmA«¢sfc\&
* Atope T e e, \e\-\inéa?dim‘\-&e_w‘rkpkeb\\:\» 2
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Uniformly Most Powerful Tests

@ Definition 3.14: A size-a (or level-a) test for testing Hy : 0 € O versus
H, : 0 € ©F with power function () is called a uniformly most powerful
(UMP) size-a (or level-a) test if 3(0) > 3'(6) for all 6 € ©F, where 5'(+)
is the power function of any other size-a (or level-a) test of the same
hypotheses.

So rgadess & whdh O B goarwled e dafo, o, LIP sizeflael - o tect will do
wk\-f\‘n\ﬁ (i, conrectly '¢+HDch('aw-\f\~0nGB_0’c‘vf§'\ze/\an\'ou+e‘§f

(Eq,uivalmly: '(“B: c ("\22/(2\'2.["0("\25'\' ‘QU'iUE_P% SIMFk odemative. Y\,: O =G, e@o%

@ UMP tests usually don't exist

@ But when they do, how do we actually find them? How do we know that a
test is UMP?
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The Neyman-Pearson Lemma

@ Theorem 3.7 (Neyman-Pearson Lemma): Consider testing Hy : 6 = 6
versus H 4 : 6 = 6. Consider a test whose rejection region R satisfies

fo,(x) fo,(x)
f90 (X) f90 (X)

for some ¢y > 0, and let a = Py, (X € R). Then the test is a UMP level-«
test. Moreover, any existing UMP level-a test has a rejection region that
satisfies the above conditions. N

o pf...

x € R if

>cog and x € RCif

< Cp

@ Why is the rejection region stated so strangely here? Why not just write
__ n . fo, (%)
R = {X e X" f@(l)(x) > CQ}?
< e -> V‘:
Recoue @ ohat bapamor e "By’ 22X 70

e tun o &t Lotk ok Lot i o dte. "bomday ™ (v, uhn 2
[ W,&cax@
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A Useful Corollary

@ Theorem 3.8: Consider testing Hy : 6 = 0y versus Hy4 : 0 = 6. Suppose
T(X) ~ gg is sufficient for 8. Then any test based on T' = T'(X) with
rejection region S is a UMP level-« test if it satisfies

t
te S if g6, (*) >k and te SCif g6, (*) < ko
g6, (1) g6, (1)

for some ko > 0, where a = Py, (T'(X) € 9).

Vood™, EXERASE  (Inink: {ackofbokinn aran')
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The Neyman-Pearson Lemma: Examples

@ Example 3.25: Let X1, Xo, ..., X, %Z/\/’(,u, 02) with p € {po, 1} and o2
known. Find a UMP level-a test of Hy : = pg versus Hy : 1w = 1, where

M IO (o 1re TR = Ko, ohich i suficiark for .

e et 1, whon ¢, 2 22 . on{ BR8N
WK\QC ’(-3 -(x-zs“/ W('l " /) 0P+ 2%y '/’)-.)>
‘21"/!\

;;ng(m e A PH 25 0) DeSar gecl
‘oﬁ’mwvﬁa\ “dxeN - X <C

2_ —
g Io(g(v,) .()’/'3 <o e %&\'W K cc lorome ¢
Zg‘-’j’) PG{\Q&'M Médﬁrs‘mc!

&’T‘
g— aneided 2-tert! By Thawem 3%, He ao-sided 2t

fr Y= v KB s o UNPAast, whae onx D, (%<
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Making Neyman-Pearson Useful

There's one thing that keeps the Neyman-Pearson lemma from being useful
In practice

In real life, almost no one needs to test two simple hypotheses!
On the other hand, one-sided tests are used in abundance

Luckily, there's a way extend Neyman-Pearson that makes plenty of one-sided
tests into UMP level-a tests

We'll just look at a special case of this, which works when we have a
sufficient statistic in an exponential family
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The Karlin-Rubin Theorem

@ Theorem 3.9 (Karlin-Rubin): Consider testing Hy : 6 < 6y versus
Hy :0 > 0. Suppose T'=T(X) ~ gy is an R-valued sufficient statistic for ¢
such that gg, (t)/ge, (t) is monotone non-decreasing in t whenever 65 > 6.
Then atest with rejection region R = {T > ¢y} is a UMP level-a test, where

00 (T' > o). - { ReX": T >e) No poef...
o O M\m wfd\a (“u)
Lo TR remme Bt 1T 0l = (e

Scoshion -
@ By suitably restricting the entire parameter space, this also holds for a test of
the form Hg : 6 = 6y versus H4 : 0 > 0

@ The analogous result holds when we want to test Hy : 6 > 6y versus
Hy : 0 < 6y; then gg,(t)/ge, (t) must be monotone non-increasing in ¢t and

the rejection region looks like R = {T' < cp} EXFROSE" Bow s
mﬁi
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The Neyman-Pearson Lemma: Examples
\—(O/J)J, s Kn}}"/’o

) Example 3.26: Show that the one-sided Z-test is a UMP level-« test.

TERY= % s siont e o, uis 935 9,00 = (2x0e) ® epp 3 )

20V

(e * e 2pte0))

Ljit/}fzfa}L 'Y?“,A

P> (=2t
ON ﬁ)( (&Z‘r;ﬂ g (2¢»,4\(Zb 932?—( S

By Kadlin-Rulbin, Yo fect widh etion rggin =3 5 52 344
lowl-on test, ubre. = (-0

Thot i, indead o, ore-sided 2-test.
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The Neyman-Pearson Lemma: Examples ({ite! inafer lectwo)

@ Example 3.27: Let X1, Xo,..., X, Y Poisson (M), where A > 0. Explain how
to produce a UMP level-a LRT for testing Hy : A = Ay versus Hg : A > Ag.

(I\)e— Know _ﬂi): éx\ [N Q-&Rc'\e'\* Lo N, TR ?o'\gon('\D w‘r\-[,\ Pw\.“.

AL ("%Lff"k, Lk X 2N, Then
B (rx ™ (;S "5 -

_ X  Tcrensing ik
PG (n Y €™ v)\:,) < ireeasing

24 _s : v
@g Kar\in-%'m, o fest wih w&cﬁm nzg‘tm & 23'3:?6" Sx cok \S

o WMP leval- fest, whae *“?%0(%}: ).
\'(oto do mod\nug,ﬁvé c,? Or e, \ ,Sinke <K ‘\s'an'\ni-?er? BA Aeﬁnl%& "\eve,\", we

n I ) ~nhe :
motha 2 |- B (3 £0) 2 |- 2 ©Fe Lo Sota sbhaciy s o
oY 1 wiil e cosol s £ o<
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UMP Tests: Nonexistence

@ Sadly, UMP tests usually don't always exist for a given pair of complementary
hypotheses (especially for two-sided tests)

@ Example 3.28: Let X1, Xo,..., X, Zrz\fl/\/'(,u, 02) with 1 € R and o2 known.
Show there exists no UMP IeveI « test for Hy : = g versus Hy @y # po.

.  Test & geks M, X.\ ‘o )
\’Q'\'jo\cy,)oc)iz, Covidar 2 teste: ngyects _;6_% -2, (uh.eh w\pu,{fse
Tet 2 < a0, by v-0)
et Zofeels W XKooy ,;M Which %5 o, U el test
\AZMM : & “A/’/’z‘a\f-
Test 4. hs‘l\d"“"’f PW&ES-}’. (odrfak R R o OW Lo
M E o, tf et 2 Test A Koo . %
Balo) =, (K (B

oD b
P ("%2)

TBL Stk 2 bas iy
(MJW Mu&/uz%'('ec\' 1. ek oinlichion’
2. No UMP [ewl-on fert aiiths hwe,
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