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Initial Hypotheses
Consider our usual setup: we collect X1, X2, . . . , Xn

iid≥ f◊ for some unknown
◊ œ �

In Module 2, we learned how to produce the “best” point estimators of ·(◊)

Now, we turn things around (sort of)

Before observing X = x, we already have some conjecture/hypothesis about
which specific value (or values) of ◊ œ � generate X

Example 3.1:
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HeightsofUATstudents NG f whereNER isunknown
Theaverageheightin Canadais 56.5 AreUeftstudentsdifferentonaverage
i.e isµ 5 6.5

EventofvotingforCandidateA intheelection Bernoullio where cCoDis
unknown Is thecandidateunpopular i.e is p c 0.5



Questions About Plausibility
Suppose, for example, we initially suspect that ◊ = ◊0

We find a good point estimator ◊̂(X) for ◊, observe X = x, and produce the
estimate ◊̂(x), which turns out to equal, say, ◊0 + 3

Is this evidence in favor of our initial suspicion, or against it?

Is the di�erence of 3 “significant”?

Hypothesis testing allows us to formulate this question rigorously (and answer
it)
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It depends

Dependsonwhatwemeanby significant

significantlydifferent

significantlylower

etc



The Hypotheses in Hypothesis Testing
Null hypothesis significance testing (NHST) (or null hypothesis testing

or statistical hypothesis testing) is a framework for testing the plausibility
of a statistical model based on observed data

For better or worse, it has become a major component of statistical inference

Very roughly speaking, NHST consists of three basic steps:

1

2

3
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Assumesomedefaultmodel orsetofmodels forx ̅ andsetathreshold e 0,1
forplausibility

Observex ̅ x ̅ andcalculatethelikelihoodofobserving suchdata
underthe defaultmodels

If thatlikelihoodfallsbelow α rejectthedefaultmodels infavourofalternatives



The “Hypothesis” in Hypothesis Testing
Definition 3.1: A hypothesis is a statement about the statistical model that
generates the data, which is either true or false.

The negation of any hypothesis is another hypothesis, so they come in pairs

Usually, we already have a parametric model {f◊ : ◊ œ �} in mind, and our
hypotheses relate to the possible value (or values) of the parameter ◊ itself

The two hypotheses in this setup can be written generically as H0 : ◊ œ �0
versus HA : ◊ œ �c

0, where �0 µ � is some “default” set of parameters

Example 3.2:
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notalwaysthecase aswe'llseeinModule4

at

FortheHoftheights How 516.5
5.6.5

Hap 516.5 R 516.5
p Ho0 2,4630110,0
HaOe x10192,46

EventofvotingforCandidateA Ho 0 0.5
0.53

Ha C0.5 0,05



Kinds of Hypotheses
We designate one hypothesis the null hypothesis (written H0) and its
negation the alternative hypothesis (written HA or H1)

Mathematically speaking, any subjective meanings of the null and alternative
hypotheses are irrelevant

But in a scientific study, the null hypothesis typically represents the “status
quo” or the “default” assumption

The study is being conducted in the first place because we suspect the
alternative hypothesis may be true instead
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Onlythemathematicalstatementsarerelevanttothetheory

Typicallya scientificstudylooksforevidenceofan effect e.g theeffectofanew
drugon a disease theeffectofCO2emissionsonclimate theeffectofgettingshotinthe
earonapresidentialcandidatesfavourability

The default assumptionisthattheresnoeffect



Simple and Composite Hypotheses
Example 3.3:

Example 3.4:

Definition 3.2: Suppose a hypothesis H can be written in the form
H : ◊ œ �0 for some non-empty �0 µ �. If |�0| = 1, then H is a simple

hypothesis. Otherwise, H is a composite hypothesis.
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We'regivenacoinwhichmaybebiased wewanttoassesswhether

it isornot IfweflipthecoinandmodeltheeventofHasBernoulliQ c oil then

Hop
HAp 0 U 1

Maybethenumberofacesinadeckofcards producedbysomecompanyisPoisson x
HoD 4
µ y y

wouldbeaprettybadcompany thevarianceinthe ofacesinadeckwouldalsobeX

i.e fafff

A simplehypothesiscompletelyspecifiesthedate generatingdistribution



The Courtroom Analogy
Consider a prosecution: the defendent is innocent until proven guilty

But the whole point of the case is that the prosecutor suspects the defendent
is guilty, and the purpose of the trial is to determine whether the evidence
supports that guilt

The jurors ask themselves: if the defendent really was innocent, how unlikely
would this evidence be?

If the evidence is overwhelmingly unlikely, the defendent is found guilty

But if there’s a lack of unlikely evidence, they find the defendent not guilty
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NOTTHESAMEASINNOCENCE It doesn'tmeanthedefendentistrulyinnocent justthe
theresnotenoughdatato prove beyonda reasonabledoubt guilt

InNHST weneveracceptHo either we rejectHoorwefailtorejectHo
findguilty findnotguilty



A Motivating Example
Example 3.5: Let X1, . . . , X100

iid≥ N (◊, 1), where ◊ œ R. Assess the
plausibility that ◊ = 5 if we observe X̄ = ≠10.
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Seemsunlikely Heuristics largesamplesizetheWLLNSUNsays In 5underHo0 5

ourobserved x ̅ ismanystandarddeviationsawayfromthemeanunderHoO
etc

If 0 5 then IP 10 0 Doesn'thelp

Insteadofjust 10 howaboutallvalues 10

UnderHo IP x ̅ 10

Psl
IP Ze 1507 whereZ NOID

IC150 Lowerthananyreasonablethresholdofplausibility

00000000
sotheobserveddataprovidesevidenceagainst µ



Hypothesis Tests and Rejection Regions
Definition 3.3: A hypothesis test is a rule that specifies for which sample
values the decision is made to reject H0 in favour of HA.

Example 3.6:

Definition 3.4: In a hypothesis test, the subset of the sample space for which
H0 will be rejected is called the rejection region (or critical region), and its
complement is called the acceptance region.

Given competing hypotheses H0 and HA, a hypothesis test is characterized

by its rejection region R ™ X n

In other words, P◊ (Reject H0) = P◊ (X œ R)

Example 3.7:
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Rejectif x ̅ 2

If flies festRejectif 2 or 10 4
Rejectif 12

É

R X x ̅ 2 rejectHD KER B x ̅ 2

R xe̅X 2 or 4 1ParejectHo Po x 2 or X

R xe̅X 12 PorejectHo PoXa 12



Poll Time!

On Quercus: Module 3 - Poll 1
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Po fail to reject tt 1 PorejectH

1 PoKER



One-Tailed and Two-Tailed Tests
If � ™ R and H0 is simple, then the rejection region is usually in both tails of
the distribution:

But if H0 : ◊ Æ ◊0, then the rejection region is only in one tail:

Definition 3.5: Suppose � ™ R. A two-sided test (or two-tailed test) has
H0 : ◊ = ◊0, for some ◊0 œ �. A one-sided test (or one-tailed test) has
H0 : ◊ Æ ◊0 or H0 : ◊ Ø ◊0 for some ◊0 œ �.
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HoO

EgR xe̅X x ̅ forsome c 0
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soso.eeB chittered

P xE̅R PoXnccarxnsd areaofR.taree.fr

Eg R xe̅X xs̅C

BIKER B.CI areacfR I f
undero

itinerant



Type I and Type II Errors
Definition 3.6: A type I error is the rejection of H0 when it is actually true.
A type II error is the failure to reject H0 when it is actually false.

Example 3.8:

Of course, we can never know if we are committing either of these errors
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i.e a falsepositive

I ie a falsemeative

y Xn NY0 02known How 0 usHay 0 Ourtestis say R Exe̅X x ̅ I

Supposeweobserve In 3 andhencerejectHo

IfthedataactuallycamefromNO 8 we'vemadeaType I error

OR underthesamesetup supposeweobserve 0.5 and

hence failtorejectHo If thedataactuallycamefrom
NC1 8 we'vemadea typeII error

becausetheydependonwhatthetrues is whichwe'llneverknow



The Probability of Rejection
Suppose the rejection region looks like R = {x œ X n : x̄ Ø c}, for some
c œ R

If we demand very strong evidence against H0 before we would reject it, we
might set c very high, which would make P◊ (X œ R) = P◊

!
X̄ Ø c

"
very

small under H0

In the standard framework, we choose the (low) probability first, and then
calculate c based on that

Example 3.9:
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i.e we rejectHowhen x ̅n islargeenough

III tie is

y too NGD How 0 vsHavO Sayour threshold is α 0.05
Whatc doweneed 1 I110 c
0.05 18 0 c 955

0.1645

Iff Ef.z.nu
fnyo

weget go.gg
Forgoodtests asmallernmeanswedemandmoreextreme
valuestorejectthe



The Power Function
Definition 3.7: The power function of a test with rejection region R is the
function — : � æ [0, 1] given by —(◊) = P◊ (X œ R).

Observe that

—(◊) =
I
P◊ (Type I error) , ◊ œ �0
1 ≠ P◊ (Type II error) , ◊ œ �c

0

Definition 3.8: Let ◊ œ �c
0. The power of a test at ◊ is defined as —(◊).

Example 3.10:
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Unfortunately thepowerofa test isoften
writtenas 1 B That B isnotthesameasourBLO



The Power Function: Examples
Example 3.11: Let X1, X2, . . . , Xn

iid≥ N
!
µ, ‡

2"
with ‡

2 known. Suppose a
test of has a rejection region of the form R = {x œ X n : x̄ > c}. Calculate
the power function of this test.
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BY P xE̅R
P I x ̅ c

P EE 5
P Z 4 whereZ NO1

1 If
Note wedidn'tneedtospecifyHoorHahere ButBG isonlyuseful

whenweknowwhichwe andwhichye



Poll Time!

On Quercus: Module 3 - Poll 2
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Po xe̅R
PoorejectHo

probabilityofrejectingHowhenHo istrue



Size and the Probability of Rejection
If we have a simple null hypothesis and X is continuous, we can often
construct R so that P◊0(X œ R) = –, for some pre-chosen – œ (0, 1)

But for a more general null hypothesis H0 : ◊ œ �0, it’s usually impossible to
have P◊(X œ R) = – for all ◊ œ �0

Instead, we can try to ask for a “worst-case” probability

Definition 3.9: The size of a test with rejection region R is a number
– œ [0, 1] such that sup◊œ�0 P◊ (X œ R) = –.

Example 3.12:
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Thinkofthisasthemaximumoverallpossible c

NG 8 orknown Howe 0 usHays0 R xe̅X x ̅ c Howdowechoosec
tomakeR asize α test Weneed

1PUER
I It frombefoffChoose c VE l a
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Significance Levels
A size-– test might be too much to ask for (especially when the underlying
distribution is discrete)

All we might be able to do is upper bound the worst-case probability

Definition 3.10: The level (or significance level) of a test with rejection
region R is a number – œ [0, 1] such that sup◊œ�0 P◊ (X œ R) Æ –.

Example 3.13:
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Notesomeauthorsuse sizeand levelintern.ge y eEittififffifi
Let Bin 5 DELOID Ho vsHa

IfR 5 then8 IPo XeR

82
E
5 0.03125

Sothis is a level 0.05 test and a level0.04test and alevel
0.03125test

Butitsnota level0.03test Canweevergetasize
a testhere Actuallyno

Theresno RE 0 1 5 suchthat P XeR 0.05



Test Statistics
A test statistic T (X) is a statistic which is used to specify a hypothesis test

The rejection region specifies which values of T (X) have low probability
under H0

If R = {x œ X n : T (x) Ø c}, then P◊ (X œ R) = P◊ (T (X) Ø c), and
evaluating that requires knowing the distribution of T (X)

So a test statistic is only useful if we know its distribution under the null
hypothesis

Example 3.14:
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IntheNG02 modelwith02known TCx ̅ x ̅ is agoodtest
statisticbecauseunderHo O weknowT x ̅ No 0h

IntheBernoulli modelTCx ̅ Xi is goodbecauseunderHo0 0 TCI Binn

InthePoissonDmodel T x ̅ is probablynotthatuseful



p-Values
Definition 3.11: Suppose that for every – œ (0, 1), we have a level-– test
with rejection region R–. For a given sample X, the p-value is defined as

p(X) = inf{– œ (0, 1) : X œ R–}.

The idea of a p-value may be the single most misinterpreted concept in
statistics

Rob Zimmerman (University of Toronto) STA261 - Module 3 July 16-18, 2024 21 / 59

How do weuse p values Wefirst set α e 0 1 then we observe

x ̅ x ̅ andthenwe calculate our observed pvalue p x ̅

If p x α we rejectHoatthe x significancelevel

If p x ̅ α wefailto rejectHo atthe x significancelevel



p-Values Based On Test Statistics
In non-specialist statistics courses, the p-value for a test with observed data
X = x is often defined as “the probability of obtaining data at least as
extreme as the data observed, given that H0 is true”

At first glance, this bears no resemblance to the previous definition; however...

Theorem 3.1: Suppose a test has rejection region of the form
R = {x œ X n : T (x) Ø c}, for some test statistic T : X n æ R. If we observe
X = x, then our observed p-value is p(x) = sup◊œ�0 P◊ (T (X) Ø T (x)).

When H0 is simple, that becomes p(x) = P◊0(T (X) Ø T (x))

Of course, the theorem also applies when the test specifies that low values of
T (x) are to be rejected
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Noproof itshard

i.e if R xe̅X TG c thenp x ̅ 89 IPOTCI TED



Poll Time!

On Quercus: Module 3 - Poll 3
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p values noneoftheabove



Famous Examples: The Two-Sided Z-Test
Example 3.15: Let X1, X2, . . . , Xn

iid≥ N
!
µ, ‡

2"
with µ œ R and ‡

2 known.
Construct a size-– test of H0 : µ = µ0 versus HA : µ ”= µ0 using the
Z-statistic

Z(X) = X̄ ≠ µ
‡2/n

.
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Famous Examples: The One-Sided Z-Test
Example 3.16: Let X1, X2, . . . , Xn

iid≥ N
!
µ, ‡

2"
with µ œ R and ‡

2 known.
Construct a size-– test of H0 : µ Æ µ0 versus HA : µ > µ0 using the
Z-statistic.
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The t-Distribution
Definition 3.12: A real-valued random variable T is said to follow a
Student’s t-distribution with ‹ > 0 degrees of freedom if its pdf is given by

fT (x) = �( ‹+1
2 )

Ô
‹fi �( ‹

2 )

3
1 + x

2

‹

4≠ ‹+1
2

, x œ R.

We write this as T ≥ t‹ .
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The t-Distribution: Important Properties
Theorem 3.2: Let Y, X1, X2, . . . , Xn

iid≥ N (0, 1). Then

T = Y
(X2

1 + · · · + X2
n)/n

≥ tn.

Theorem 3.3: Let Tn ≥ tn. Then Tn
d≠æ Z as n æ Œ, where Z ≥ N (0, 1).

Proof.

Rob Zimmerman (University of Toronto) STA261 - Module 3 July 16-18, 2024 27 / 59

Equivalently Tt whereQ X Y NOD Q LY
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A Great Approximation For Even Moderate n
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The t-Distribution: More Important Properties
The t-distribution is mainly used when we have N

!
µ, ‡

2"
data and we’re

interested in µ, but ‡
2 is unknown

What happens if we swap ‡
2 with S

2 in the Z-statistic?

Theorem 3.4: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡

2"
with µ œ R and ‡

2
> 0.

Then
X̄ ≠ µ

S2/n
≥ tn≠1.

Proof.
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Famous Examples: The Two-Sided t-Test
Example 3.17: Let X1, X2, . . . , Xn

iid≥ N
!
µ, ‡

2"
with µ œ R and ‡

2
> 0.

Construct a size-– test of H0 : µ = µ0 versus HA : µ ”= µ0 using the
t-statistic

T (X) = X̄ ≠ µ
S2/n

.
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Famous Examples: The One-Sided t-Test
Example 3.18: Let X1, X2, . . . , Xn

iid≥ N
!
µ, ‡

2"
with µ œ R and ‡

2
> 0.

Construct a size-– test of H0 : µ Ø µ0 versus HA : µ < µ0 using the
t-statistic.
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Sample Size Calculations
Usually, increasing our sample size increases the power of a test

In real-world studies, obtaining a sample of independent data is typically
quite expensive

Whoever’s paying for the study doesn’t want experimenters collecting more
data than necessary, since that costs money

Moreoever, the larger the sample, the higher the chances of problems (errors
in data entry, non-independence of some samples, etc.)

So if we have demands for the power of our test at certain alternative
parameters ◊ œ �c

0, it’s often useful to find the minimum sample size n that
will give us that power
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Sample Size Calculations
Example 3.19: Suppose X1, X2, . . . , Xn

iid≥ N
!
µ, ‡

2"
where µ œ R and ‡

2 is
known, and we want to test H0 : µ Æ µ0 versus HA : µ > µ0 using a test
that rejects H0 when (X̄n ≠ µ0)/


‡2/n > c, for some c œ R. How can we

choose c and n to obtain a size-0.1 test with a maximum Type II error
probability of 0.2 if µ Ø µ0 + ‡?
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The Problems With the p’s
Almost every scientific study that uses statistics will feature p-values
somewhere

The “strength” of a scientific conclusion often wrests upon those p-values

Ronald Fisher suggested 5% as a reasonable significance level, and it’s been
widely adopted

If every published study used significance levels of 5%, then on average, 1 out
of every 20 studies make a type I error

Think about how many scientific studies are published every day
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But its completelyarbitrary
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The Problems With the p’s

Source: https://xkcd.com/1478/
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The Problems With the p’s
p-values lead to publication bias; the p < 0.05 threshold is so entrenched that
a study result with p = 0.06 is considered a “negative” study

Journals with limited space want to publish new, interesting, “positive”
findings

A study with p > 0.05 may contain important new information, but is far less
likely to be published

This pressure leads to p-hacking: “the misuse of data analysis to find
patterns in data that can be presented as statistically significant, thus
dramatically increasing and understating the risk of false positives.”
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https://en.wikipedia.org/wiki/Data_dredging


Examples of p-Hacking
Changing – after seeing the data to declare the results statistically significant

Increasing the size of the study population to produce a result that is
statistically significant, but not practically significant

Conducting multiple studies on the same data and “choosing” the one with
significant results (this is called the multiple comparisons problem)
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Eg startwith A 0.05
observe x ̅ x ̅ calculate p x 0.07

declaretheresultssignificantatthe0.1 significancelevel

Egthetimetoachievea normalbodytemperaturewas19.5hourswithDrugA
versus19.8hourswithDrugB astatisticallysignificantdifference Butwhowouldwaitsolonganyway

DrugAadvertisement ExpensivenewDrugAreducesfeversignificantlyfasterthancheapoldDrugB



Should We Be Eating Less Cheese?

Source: https://www.tylervigen.com/
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NO

P 0.96

https://www.tylervigen.com/


Poll Time!

On Quercus: Module 3 - Poll 4
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Examples of p-Hacking
Post-hoc analyses (i.e., testing hypotheses suggested by a given dataset)

Outright fraud (such as “editing out” data points that sway the results away
from the hoped-for conclusion, or simply lying about the p-value calculation
in the hopes that no one will check)

See also: the Replication Crisis
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This is basically circularreasoning Itslikeobserving 12andthen

claimingthat IPX 11 isveryhigh

 😬

https://en.wikipedia.org/wiki/Replication_crisis


Bringing Back the Likelihood
In Module 2, we saw that many common point estimators turned out to be
MLEs

It turns out that many common hypothesis tests are examples of an
important kind of test based on the likelihood

Definition 3.13: The likelihood ratio test statistic for testing H0 : ◊ œ �0
versus HA : ◊ œ �c

0 is defined as

⁄(X) = sup◊œ�0 L(◊ | X)
sup◊œ� L(◊ | X) .

A likelihood ratio test (LRT) is any test that has a rejection region of the
form R = {x œ X n : ⁄(x) Æ c}, for some c œ [0, 1].
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Poll Time!

On Quercus: Module 3 - Poll 5
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LRTs: Examples
Example 3.20: Show that the two-sided Z-test is an LRT.
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LRTs: Examples
Example 3.21: Let X1, X2, . . . , Xn be a random sample from a distribution
with pdf f◊(x) = e

≠(x≠◊) · xØ◊, where ◊ œ R. Determine the LRT for
testing H0 : ◊ Æ ◊0 versus HA : ◊ > ◊0.
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Simple Tests Have Simple LRTs
Theorem 3.5: Let X1, X2, . . . , Xn

iid≥ f◊. Suppose we want to test
H0 : ◊ = ◊0 versus HA : ◊ ”= ◊0 using an LRT. Then

⁄(X) = L(◊0 | X)
L(◊̂ | X)

,

where ◊̂ is the (unrestricted) MLE of ◊ based on X.

Example 3.22: Suppose X1, X2, . . . , Xn
iid≥ Unif (0, ◊) where ◊ > 0.

Determine the LRT for testing H0 : ◊ = ◊0 versus HA : ◊ ”= ◊0.
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LRTs: Examples
Example 3.23: Let X1, X2, . . . , Xn

iid≥ Bernoulli (◊) with ◊ œ (0, 1).
Determine the LRT for testing H0 : ◊ = ◊0 versus HA : ◊ ”= ◊0.
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Making Life Easier With Su�ciency
If T (X) is some su�cient statistic with pdf/pmf g◊(t), we might be interested
in constructing an LRT based on its likelihood function L

ú(◊ | t) = g◊(t)

But would this change our conclusions?

Theorem 3.6: Suppose T (X) is su�cient for ◊. If ⁄(x) and ⁄
ú(T (x)) are the

LRT statistics based on X and T (X), respectively, then ⁄
ú(T (x)) = ⁄(x) for

every x œ X n.

Proof.
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Optimal Hypothesis Testing
We have seen that there can be many tests of two competing hypotheses,
with each test characterized by a rejection region

What makes one test “better” than another?

A natural idea is to try minimizing the probabilities of type I and type II errors

Unfortunately, it’s usually impossible to get both of these arbitrarily low
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You Can’t Get the Perfect Power Function
Let X ≥ Bin (5, ◊), where ◊ œ (0, 1), and suppose we want to test H0 : ◊ Æ 1

2
versus HA : ◊ >

1
2 ; consider two di�erent tests characterized by the following

rejection regions: R1 = {5} and R2 = {3, 4, 5}
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A Compromise
We have to settle on minimizing either type I error or type II error

We will settle on the latter; that is, we fix a level –, and among all level-–
tests, we try to find the one with the lowest probability of type II error

This compromise isn’t ideal for every real-life situation; sometimes, we care
more about minimizing the probability of type I error

Example 3.24:
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Uniformly Most Powerful Tests
Definition 3.14: A size-– (or level-–) test for testing H0 : ◊ œ �0 versus
HA : ◊ œ �c

0 with power function —(·) is called a uniformly most powerful

(UMP) size-– (or level-–) test if —(◊) Ø —
Õ(◊) for all ◊ œ �c

0, where —
Õ(·)

is the power function of any other size-– (or level-–) test of the same
hypotheses.

UMP tests usually don’t exist

But when they do, how do we actually find them? How do we know that a
test is UMP?
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The Neyman-Pearson Lemma
Theorem 3.7 (Neyman-Pearson Lemma): Consider testing H0 : ◊ = ◊0
versus HA : ◊ = ◊1. Consider a test whose rejection region R satisfies

x œ R if f◊1(x)
f◊0(x) > c0 and x œ R

c if f◊1(x)
f◊0(x) < c0

for some c0 Ø 0, and let – = P◊0(X œ R). Then the test is a UMP level-–
test. Moreover, any existing UMP level-– test has a rejection region that
satisfies the above conditions.

Why is the rejection region stated so strangely here? Why not just write
R =

Ó
x œ X n : f◊1 (x)

f◊0 (x) > c0
Ô

?
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A Useful Corollary
Theorem 3.8: Consider testing H0 : ◊ = ◊0 versus HA : ◊ = ◊1. Suppose
T (X) ≥ g◊ is su�cient for ◊. Then any test based on T = T (X) with
rejection region S is a UMP level-– test if it satisfies

t œ S if g◊1(t)
g◊0(t) > k0 and t œ S

c if g◊1(t)
g◊0(t) < k0

for some k0 Ø 0, where – = P◊0(T (X) œ S).
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The Neyman-Pearson Lemma: Examples
Example 3.25: Let X1, X2, . . . , Xn

iid≥ N
!
µ, ‡

2"
with µ œ {µ0, µ1} and ‡

2

known. Find a UMP level-– test of H0 : µ = µ0 versus HA : µ = µ1, where
µ1 > µA.
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Making Neyman-Pearson Useful
There’s one thing that keeps the Neyman-Pearson lemma from being useful
in practice

In real life, almost no one needs to test two simple hypotheses!

On the other hand, one-sided tests are used in abundance

Luckily, there’s a way extend Neyman-Pearson that makes plenty of one-sided
tests into UMP level-– tests

We’ll just look at a special case of this, which works when we have a
su�cient statistic in an exponential family
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The Karlin-Rubin Theorem
Theorem 3.9 (Karlin-Rubin): Consider testing H0 : ◊ Æ ◊0 versus
HA : ◊ > ◊0. Suppose T = T (X) ≥ g◊ is an R-valued su�cient statistic for ◊

such that g◊2(t)/g◊1(t) is monotone non-decreasing in t whenever ◊2 Ø ◊1.
Then a test with rejection region R = {T > c0} is a UMP level-– test, where
– = P◊0(T > c0).

By suitably restricting the entire parameter space, this also holds for a test of
the form H0 : ◊ = ◊0 versus HA : ◊ > ◊0

The analogous result holds when we want to test H0 : ◊ Ø ◊0 versus
HA : ◊ < ◊0; then g◊2(t)/g◊1(t) must be monotone non-increasing in t and
the rejection region looks like R = {T < c0}
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The Neyman-Pearson Lemma: Examples
Example 3.26: Show that the one-sided Z-test is a UMP level-– test.
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The Neyman-Pearson Lemma: Examples
Example 3.27: Let X1, X2, . . . , Xn

iid≥ Poisson (⁄), where ⁄ > 0. Explain how
to produce a UMP level-– LRT for testing H0 : ⁄ = ⁄0 versus HA : ⁄ > ⁄0.
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UMP Tests: Nonexistence
Sadly, UMP tests usually don’t always exist for a given pair of complementary
hypotheses (especially for two-sided tests)

Example 3.28: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡

2"
with µ œ R and ‡

2 known.
Show there exists no UMP level-– test for H0 : µ = µ0 versus HA : µ ”= µ0.

Rob Zimmerman (University of Toronto) STA261 - Module 3 July 16-18, 2024 59 / 59

Letµ gocuz
Consider2testsTest2rejects H if c 2n whichisaUMPlevelatest

ofHain byK RTest2rejectsHit a a44111WeknowthatTest 1 hashighestpowerat µ outofa tenet tests Soif aUMPlevelatestdoesexistforHantwo itmustbetest 1

z.tt f
BaGa IPy TF zntF

P Z 2 YETwhereEND I a a
IP Z z a

P Z c z a Bald Sotest 2hasstrictly
higherpoweratNzthenTest 1doesContradiction

NoUMPlevelatestexistshere


