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Extracting Information

@ In Module 1, we learned about how a statistic can capture (or not capture)
the information provided by our data sample X = (X1,..., X,,) ~ fg about
the unknown parameter 6§ € ©

@ For the remainder of the course, our focus will be on how to extract that
information

@ In Module 2, we have one goal: to estimate the parameter § — or some
function of the parameter 7(6) — as best we can (whatever that means)
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Point Estimation
@ How do we estimate @ from the observed data x?
o lIdeally, we want some statistic 7'(X) such that T'(x) will be close to

@ Definition 2.1: Suppose X1, Xo,..., X, g fo. A point estimator 6 = é(X)

is a statistic used to estimate 6.

@ How do we find good point estimators?
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Poll Time!

On Quercus: Module 2 - Poll 1
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Choosing “Good” Point Estimators

@ A point estimator é(X) is a random variable, so it has its own distribution
(as does any statistic)

@ Definition aside, it would seem that the best point estimator is the constant
0(X) = 6, but of course this is unattainable

@ The constant 8 has Ey [#] = 6 and Vary (6) =0

—

o It would be nice if the distribution of §(X) got close to these properties:
E, [é(X)} ~ 6 and Var, (é(X)) ~ 0

@ It would also be good if Varg (é(X)) got lower as the sample size n got

bigger (if we're willing to pay good money for more samples, we should
demand a higher precision in return)
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Moments Are (Often) Functions of Parameters
. Always cemesrier : (3 = E[¥*) - EIX)*
@ Here's one approach to choosing 0(%)

@ In parametric families, it is often the case that the parameters are functions
of the moments (i.e., Eg [X], Eg [X?|, E|[X?|, and so on)

@ Example 2.2: Y~ N(/.fé = \an:/' E0¢? :/)l*_ o
\ 4 Binld) = ELQzvp, BR= npl1-p) + p"
Y~ Don (N S ER: N EXXI= ?\2* \
- G = BIXYT A 12h e "/A,\ (xeetse)

L~ Nl => B0, B
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Towards the Method of Moments

@ Suppose X1, Xo,..., X, YN (,u, 02) and we want to estimate p

o We know that E [X;] = p and E [ X7| — E X1]% = o2
o So if we took /i(X) = Xj, then we'd have 1ELA(X)) u;,[x.]?) (@)= o

o Can we do better?ﬁm(i)= Ko = \Eﬁ,},(iﬁy wd \Ii(ﬂi‘b- % ¢ T =No(5R)

@ Now suppose we want to estimate both 1 and

o If we let mi(X)=2%" X, and my(X) =
ml(X) %}/) and mQ(X_) i}/”* T"- (: g'

N oo
o Therefore'mgz’X) — my (X)? B by Ao Covitimapz mapﬁva%mw (tmT)

G vo tnble, PR=m DX, b = h2x? ~ (2K
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The Method of Moments

o Effectively, we're replacing the true moments with the sample moments

@ Definition 2.2: Suppose we have k£ parameters 6,0, ...,0; to estimate in a
paremetric model, and each one is some function of the first £ moments:

9j:¢j(E9[X],E9 (X?],... By [Xk}) 1<j<k.

The Method of Moments (MOM) estimator for 6, is defined by choosing
0,() = (1 (X0, ma (X, oe (X)) 1< < K

where m;(X) =", X7

Racic. prnsgle/mofisation: WLLN ond LN
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pecestony 1 grice. MO eximators)
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Method of Moments: Examples

@ Example 2.3: Suppose X1, Xo,..., X, 'Y Poisson (M), where A > 0. Find the
MOM estimator for A.

M- il
= . 0= %

Cppies 21y, 2n i X h . Whokd He MO bused on 2
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Method of Moments: Examples

@ Example 2.4: Suppose X1, Xo,..., X, Y Bin (k,0), where k € N and @ is

known. Find the MOM estimator for k.

B =vo = = \\‘:_,ig_}

) _
2 a7

Yoo Theres ne mason Sor Fon() $0
\Dem nakuvod m‘:er. -EVW\‘“N“C'V @:\N
(@ B (OD\R, Hhon e [K) con naser bo on rteger’)

@ Could this be a problem?
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Poll Time!

On Quercus: Module 1 - Poll 2
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Method of Moments: Examples

o Example 2.5: Let X1, Xa,..., X, & fo(x) = (1+ax)/2- 1,ci-1,1, where

a € [—3, 3]. Find the MOM estimator for a.

B s [ (9 - 554 =

-t
-

= x = 3 E[X)

= % (0=3%..

Rob Zimmerman (University of Toronto)

July 9-11, 2024 12 /66




Method of Moments: Examples

@ Example 2.6: Suppose X1, Xo,..., X, Y Gamma (a, B), where a, 5 > 0.
Find the MOM estimators for « and B ek O B)

&\’\ = \E;X 'n_\ = 75 CD
). %t ot" @ A _ —fn
‘YZ [EQSX >4B M(% Xa:.‘ _ (?Dl

Gy

) >=Y-5 “ (JX.__‘
X ==  ([—
@% Y, = ‘I’.b*"\’\’,&".= ¥, ) M Xz -G
}?. E""Vl
= p= _N
ﬁ Yo vp
== x = “’\7—
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The Likelihood Function (LOD o o it

@ Definition 2.3: Let X ~ fy, where fy is a pdf or pmf in a parametric family.
Given the observation X = x, the likelihood function for @_is"the function
L(-|x):© —[0,00) given by L(0 | x) = fo(x). Sl

- ° o OI\ .
¢ i'{s diccete, then L(B(R)" @o-(i‘-‘k)eio:\.). Ruk in genera\, L5 =)e o)
@ Interpret this as the “probability” of observing the sample x, given that the

sample came from fy NOT "?Le=e\‘§z;'b“ \\\.

@ So L(61 | x) > L(fA2 | x) says that the chance of observing X = x is more
likely under fg, than under fy, Co L (D) vovits Re amants €®

@ It could be that the likelihood is very'small for all # € ©, so knowing L(6 | x)

for just a single 6 is useless

@ Instead, we want to know how L(6 | x) compares to L(#’ | x) for other
0 € ©
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The Likelihood Principle

@ Much of modern statistics revolves around the likelihood function: it will be
with us in some form or another for the rest of our course

@ The likelihood principle states that if two model and data combinations
Li(0 | x) and La(0 | y) are such that L;(0 | x) = c(x,y) - Lo(6 | y), then
the conclusions about 6 drawn from }kénd y should be identical

olR)
r lcz((eg’) [ 'Fm &£ S

@ In other words, the likelihood principle says that anything we want to say
about 6 should be based solely on L(- | x), regardless of how x was actually
obtained

@ Is this requirement too strong? .
Crpucimant .. 4055 o in o P(W) =B 40 dines 0 Lok X=d:& R Bin(10,8).
We dseve X4, L (0 x=d)= () 6*(+65
Brpeiment D 105 R cone. coin ikl wia csene & V1. Lok {= 6 T ol ok b
Thon - NegBin (- We dmese Y=, Thon La(014:6)= (1) 8*C-0"
Thon \_.(9‘3(34)&\4[0\‘?@. e (eeliheod yr‘mu'f(e Says A\t e ghoold Ge
wdfoant ko phidh & Erainart | o Epetvark L He dote ome from Do gou ofree?

@ Example 2.7:
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Maximizing the Likelihood

® Suppose there were some 6 € © which makes L(0 | x) the highest; would it
be sensible to use that 6 as an estimator?

o If we can maximize L(6 | x) with respect to 0, the resulting maximizer 6 will
be a function of the sample x

@ Example 2.8: Let X1, Xo,..., X, "9 Bernoulli (0), where 8 € (0,1).

Maximize the likelihood with respect to 6.

LBR)= A= TX O (e - 67
el am <ze. 4ok Mo masiom Ocons & O = R

Co 8R4 s don, o ravswdia goivk estivai tald ba O (Y= Y.
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Maximum Likelihood Estimation

@ Definition 2.4: Let X = (X1,...,X,) ~ fy. Let L(0 | x) be the likelihood
function based on observing X = x. The maximum likelihood estimate of

0 is given by )
6(x) = argmax L(0 | x),
0cO

and the maximum likelihood estimator (MLE) for 6 is the point estimator
given by OmLE = H(X) e "\his \s mMﬂ‘ﬁc\.

Ec,yiw\mHy, é(}"&\ sk (0w I\R= Ol ¥0e®
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Maximum Likelihood: Examples

@ Nothing says the distribution needs to have a “nice” functional form

o Example 2.9: Suppose X ={1,2,3} and © = {a, b}, and a parametric family
is given by the following table:

r=1

r =2

r=3

fa(z)

0.3

0.4

0.3

0.7

0.2

fb(ilf) 0.1
Suppose we observe X ~ fy. Find the MLE of 6.

K=\ =2 40> £y = By ~a
(=2 = ADAD = BD =P
(=2 DEHDAD 2 BB =

= ém;b@"- &'ﬂ’xcf\.3§ ¥ b./&\'x"z-
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Maximum Likelihood: Examples

@ But when fy does have a nice form and is continuously differentiable for
6 € ©, we can use calculus to find the MLE

@ Example 2.10: Let X1, Xo,..., X, "9 Bernoulli (0), where 6 € (0,1). Find

the MLE of 6. .
-— i’. n- x'.
=7 (©
L(BR = 6*(1-6) et

= %e = (£x) & (- 63»9.- - (- éxbei" (6}
-\ n divde wb} 3
= (208" - (n-2e)19)" = O O (15" %0

= éx;_____—_e $A="'é¢;=fn.
Y\"éx', \"6 e "

[ ] U ¢ A =_ ;
\s 4hs o locd rax’ Wed need 4o find Xﬁl—” ‘7\3 n 0= Y% 0\1\‘
dredl Lot A"L. \ L 0 %‘0 CW\ﬂ;sa SO 6m($\= xm.
T
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Maximum Likelihood: Examples

@ Suppose that Xq, Xo,..., X, %l/\/'(u,az), where 11 € R and o2 is known

@ What happens if we try to find the MLE of i in the same fashion?

L)z TT A = (meS™. ef?( 5h§ Sk -2 8 mitd).

AL Y. _£ if - Ex-rr\ ?) ‘*O
(2\1«% } er? PSS s
%’ +0 Mot be O k-_/;ro

=2 p=voK :X.

Tk SRomphatog g\/% wet. p oot ba oufil |
¢ thee o Lok wﬂd7

— AQS
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The Log-Likelihood

@ Definition 2.5: Given data x and a parametric model with likelihood function
L(0 | x), the log-likelihood function is defined as by

£(0 | x) = log (L(0 | x)).

@ Maximizing the log-likelihood is equivalent to maximizing the likelihood
becoke, 5 o Morottne nereasiy furion & L(OI)
@ ...but usually way easier

becose ¥ casier 4o &ferenticke. coms lan poducks \

(€ de dofo oe iid, B ACOGDT Xﬂl( L(e)
= £y P
"2 Aog( Aobd)
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The Score Function

@ Definition 2.6: Given data x and a parametric model with log-likelihood
function ¢(6 | x), the score function is defined as

0
S(0 | %) = 260 %),
when it exists.
@ When 6 = (0., ...,0;) is a vector, this is interpreted as the gradient
S8 %) = VIO | x) = (b6 | %), (6 | %)
B —\ oo, 00,

@ If the likelihood function is nice enough, then any extremum 0 will satisfy the
score equation S(0 | x) =0

e So finding the MLE amounts to finding 0 such that S(0 | x) = 0 and then
checking that 6 is a global maximum
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Maximum Likelihood: More Examples

1id

@ Example 2.11: Let X4, Xo,..., X,, ~ N(,LL, 02) with 1 € R and o2 known.

Find the MLE of 1. . p(26)
LG (nS™ ep(22ZE) oo 2
9}9@: Ca "é"‘t*é’:_f_"”'i*? wee ce@ ® Fm“Pj:
5&(/\2‘): i"_q_:"ﬁ 20 = j=k&.
Ceord datintive kest: 5
_99799/(;‘\: —?:‘3_ = 5 S \faA = ’—:—,_ e 0

Trowke, PO XKawte ME G (i, 53,00 K.
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Maximum Likelihood: More Examples

@ Example 2.12: Let X1, Xo,..., X, g Exp (A) with A > 0. Find the MLE of

A.
LD =TT ne™ = X - erpl-x £

= J(\F) = V\‘Lg(% — N\ 2x;

wo_ Se
550\\%: ~ | ¢x; = O

> 4%

Carnd darivaline Hert:
2 AuD=
2 g L T S oR\=
29(\9&\0\)\:&_ s <0 S0 MdX) /Xv\'

Rob Zimmerman (University of Toronto) July 9-11, 2024 24 /66



Maximum Likelihood: More Examples

@ Even if the likelihood is smooth and well-behaved, this method doesn't
always work

S
o Example 2.13: Let X1, Xo,..., X, ~ ﬁ(a,Q) with o > 0. Try to find the
MLE OfOé “‘ 24 — zr (» .g\ -2436
(XY = “ T T Ve

=2 Ylx)= 1\0\-1@(23“ n~1tg(\‘(¢§ ¢ (*b'g.x‘:)(*b v, uhare ce® s Foe & ot

= o) = M X‘D@) N’D * ? ’(ﬂ'()o
Q/w-—)

777100 wid wol it s bamare e c\;ym fincton.
Y(N := ‘-\_:'('“ los no cloed Larm e)(\xuﬁb\

Euler -Mascheron: corgtont 2 0.5932...

\II&(I € x=tne N, don Y = é-— =Y. Bt K@ =IN —\w\wcdnoo\éw\-!pe.c\vf(armd\dv\(mmh
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Maximum Likelihood: More Examples

@ What about when 6 is multidimensional? We need to bring out our

multivariate calculus

@ Example 2.14: Let X1, Xo,..., X, Zfz\fl/\/'(,u,(ﬂ) with # € R and o2 > 0.

Find the MLE of 6§ = (M,UQ)_

Ly 21 (rey ™ e~ Esa)
= M= -3 0D - 200 e o= 75 Ay scm&(/,(,-,y
939)0"'(% Q/LI g‘e's (q?—é(x/b zﬁé(%/))) — O CD O)

=5 ()&3 (%, +El- x%

Se::mé defakive. fesb: Tre deminak 4 Wession 16

5 w0 T4 o

FL - Y ::’/'—D"'L L _": > O

S aee w0 [ oy | T Ge 2

- P Y| s T LSV TF) s e ME
2t L S s G (T hERS) e

/20"' g
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Maximum Likelihood: More Examples

@ The likelihood may not be differentiable, but that doesn't mean it can't be

maximized
@ Example 2.15: Let X1, Xo,..., X, g Unif (0, 8) with # > 0. Find the MLE
of 6.

L(,@()'g)"‘i:\ £6= 0o txon xence = Loexa S I

(€ O= xen, Hon (%)) = Woiny Crod

\f B x Hhn LOID= X, BT & 4 - (13" = W0l
(02 1 than LOWD= ooy O 0 =02 L ralX

Hace One(D)= Koo, Rk we (A0t (e Calphs 0 find i,
becorie L(OIR) 6 rok Mrrentiade in ©-
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Regression Through the Origin

@ Example 2.16: Let Y7,Y5,...,Y,, be independent where Y; ~ N/ (B:EZ-,JZ)
with B3 € R, ; € R, and 02 > 0. Find the MLE of 5.

" o) Kroun) e A _ ", - 2(wi- Ay
LA =Tl Cre s e ) = (25 ™ e 752

‘-%ﬁ(B\ED = c- g(‘l%ﬁxy whae ce® 15 dree & &

= S = éx-.hg;;.&xb = 0

> Zyly-py= O = L= 2xu:

Sx2
Cecand defntive dest: ) 5 %0
oI oyper.  Mawe BudDT 23
0-?-

@ This is a particular case of linear regression; see Assignment 2 for more
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Reparameterization

@ Instead of 0 itself, what if we want to find the MLE of some one-to-one
function of the parameter 7(6)?

o Let X1, Xo,..., X, “ Bernoulli (0), where 6 € (0,1). Find the MLE of 62.

Lek ¢= B% Y ot
Thae L= € (1-T%)
= Qel?) = Zx; Lylde) + A (M)

> (4R * 22 zrzfj‘) =
- = JT =%,
= ¢ = (&

> D= (X5 = (8ulD)

BABRAISE <eron) dcuskine 4est!
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Reparameterization

@ [hat wasn't a coincidence

@ Theorem 2.1 (Invariance Property): If é(X) is an MLE of § € © and 7(-)

is a bijection, then the MLE of 7(0) is given by T(é(X)) ‘e, «f(;)m(%: t_( éu(ﬂ)
A . "gg-in eslimoter”
Proof. Let % :4(6) o sk ©=1(¥), ond dso lak 1= 0( D).

Lot Hle. flelihood mder © be L(BID) md Re Waliood gnder ® bz | (1.

- B9 ve con poemelrize the expnetial dictribubion o5
TF\”‘ QV m‘a» \\) 't(GB (3 t(@§, Eﬂ‘)(m:h',=9) W'W\?-\? fo&zae-ﬂx‘ o oS
L’(‘i“\ \ i’\ = -)r_n-'(ﬁ?)( i‘) - j;’:‘(%(z) Eplecie=) with pdt 5 7% e, V=2t6)=)p.
) r \E"w.ahwc. & Swgle Xzx, Han
(@D | TUGD- | D e e h1d = A
= LI61 Race Q mesmiaze LG O
Z (81X 5
= (D) Rrompt: ook 1 i vok eto-one
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Reparameterization

o Example 2.17: Let X1, Xo, ..., X ¢ Bernoulli (p) where p € (0,1). Find

the MLE of 7(p) = log (f%p)

1\:““‘“ \'DeQre/ \gmu(ix: SZH
giV\Ce )@3(‘5?} s a \P‘Sac&im\ \octwiaan (Ob ”"-\’_R: Pe
NOROCL ()m\;ag say> Yot (KD = ,(o(j(\_-—%
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Poll Time!

On Quercus: Module 1 - Poll 3
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MOMs versus MLEs

@ Maximum likelihood is by far the most common method that statisticians use
to find point estimates®; when in doubt, it's usually a good idea to use
maximum likelihood if you can

@ How do MOMs compare to MLEs?
— MULEs ce fonstrmokion inyarint (MOMe aren®)

~MNUBs oe oy in @, or ot leask Yo Uosore € @ (NOMs ovent

= Nerber OIS rer MLEs oluay Yot dle " oreeck” expectition, e, El Gruu (D), Elbu) e
- Neither MO rer MUEs . olaye oo e in ozt Copm. (orly e Gingle medel) i
-INLEs, whan \MV),W-, oL 05%5 foncoas € ety soficat etebe (MoMcast) EXERUSE |
~NLEs bove nicer m%w propaties (Modvke 5 ctf) \f%‘

v\-\;\\; (0(9) : éME (RB - Xcv.\\_-
D@ = 2K

1 Assuming those statisticians aren’t Bayesians — more on that:in Medule 6
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Evaluating Estimators

@ Back to the idea of what makes a point estimator “good”
@ From now on, we focus on point estimators of 7(6), rather than ¢

@ It turns out there's a much more convenient way to assess the quality of a
point estimator estimator than our earlier thoughts

o Consider the error (or absolute deviation) of an estimator |T'(X) — 7(4)
which is of course a random variable

@ It's too much to ask for this to always be small; some random sample X
may be an “outlier”, so that T'(X,) is far from 7(6)

@ But we can ask for it to be small on average
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Mean-Squared Error

@ In other words, it's reasonable to ask for Ey [|T(X) — 7(0)|] to be small g®

@ That's fine, but it turns out that for mathematical reasons, it's much more
convenient to ask for the squared error (T'(X) — 7(6))? to be small on average

@ Definition 2.7: Let T'(X) be an estimator for 7(f). The mean-squared error
(MSE) is defined as

MSEq (T(X)) = Eq [(T(X) — 7(6))?] .
@ So why not look for the T'(X) that minimizes the MSE for all 6§ € ©7
@ Because unfortunately, such a T'(X) almost never exists

@ Let's try to restrict the class of estimators under consideration to one where
minimizers of the MSE are easier to find

July 9-11, 2024 35/66
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Bias
@ Definition 2.8: The bias of a point estimator T'(X) is defined as
Biasy (T'(X)) = Eg [T(X)] — 7(0).

If Biasy (T'(X)) = 0, then T'(X) is said to be an unbiased estimator of 7(4).
(e , E{T@i‘ - ‘((05\

@ Example 2.18: Noaval o- not,

\(l/v--,xv\m NQ‘"‘Y'%:/J(-:\Q, >0 Thew T‘(i)-‘ Ko whitase ?v’/u 5(,,,%.1.)

L S - 16 olwayt wibicsed
T 5w whiesad fy & &(g?ia. ()

. _ ‘obbe:xvmko
Koo, Yo B Remdtid, g (0. Thon TN Fon s obiasel B -
Bios, (TCR) = ESTRY-¢ = Eeli2K)-p = ene -p =0,

@ Example 2.19:

Y., % &N, 2lrd=a>
Bios o[ 72, B (K4 (0-%) 7

(2 g> - g2 = § % O. Riasall
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Unbiased Estimators Don't Always Exist

@ Example 2.20: Let X ~ Bernoulli (#), where 8 € (0,1). There exists no

unbiased estimator of 7() = 5.

.C»P\bée TUQ 15 wbloe r We)=Yp .

T = ESTORN = T R(X-D) + T Pl=D)
=T (1-6) + TU)-©  9c (o).

But 15 s obunded o © D0, bt Ha WS — Tl
s C“ﬁ'\""q??e*’\\, So X tomek eset.
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The Bias-Variance Tradeoff \orl) = ELPD - B

@ Theorem 2.2 (Bias-Variance Tradeoff): [f a point estimator T'(X) has a
finite second moment, then YD) = 'L +Ne ()

MSEy (T'(X)) = Biasy (T'(X))* + Varg (T'(X)).

e

Proof. MSE,(TR) = BL(TR-eY )
TR (TR~ ) + \re(TR- el6)
= Bt~ + Voo(TR).

Co muguuegﬁxmm with o fied MSE, we mugt dhoose loetwa

Moo owmca + e Qt\!,(i«;’\on/ of e vorsa,
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Poll Time!

On Quercus: Module 1 - Poll 4
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Best Unbiased Estimation

@ So let's restrict our attention to the class of unbiased estimators, and then
choose the one (or ones?) with the lowest MSE

o Equivalently, choose the unbiased estimator (or estimators?) with the lowest
variance

@ Definition 2.9: An unbiased estimator 7% (X) of 7(6) is a best unbiased
estimator of 7(0) if

Varg (T*(X)) < Varg (T(X)) forall 0 € ©

where T'(X) is any other unbiased estimator of 7(6). A best unbiased
estimator is also called a uniform minimum variance unbiased estimator

(UMVUE) of 7(9). L2 ——— — —
Noe® eshmadoc
\ouast yotonee oogy dll ubiose
estirdeis & 2(0)
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Questions That We Will Answer

@ How do we know whether or not an estimator 7'(X) is a UMVUE for 7(6)7
e How do we find a UMVUE for 7(6)?

@ Are UMVUEs unique?
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An Ubiquitous Inequality in Mathematics

@ Recall (from Assignment 0)

@ Theorem 2.3 (Cauchy-Schwarz Inequality): Let X and Y be random
variables, each having finite, nonzero variance. Then

[Cov (X,Y)| < +/Var(X) Var (Y).

Furthermore, if Var (Y) > 0, then equality is attained if and only if
X =t*Y + s*, where

*

~ Cov(X,Y)
~ Var(Y)

Cov (X,Y)

and s*=E[X]|-E[Y] Var (V)

July 9-11, 2024 42 / 66

Rob Zimmerman (University of Toronto)




UMVUEs Are Unique (oo ) = Efx ) -ELx)- ELY)

@ Theorem 2.4: If a UMVUE exists for 7(6), then it is unique.

Proof et W omd N be wo UINUBS € (). Let W =5 (wew),
(ledy, \N* '& wblared @ 2(6) | 0nd warasnar)
V(WA = % Vo) + & VoW + & Goulw,w)
£ N + 4 VoW + 5.3 Vogld Vgl by ooy Sdano>
= Nogl0)  since b voionces @ dle Some (ou oot

Bk W ot beod o UWNUE' o “lﬁd"ﬂ st WAL fom Ass.O C‘?/ (,,u,(u,\»5= \Ier.(w)x\.
Theate, W' = ol +lo. Wit e ood o 2
B it \org(1) = (o010, aW+6)

Vinally, O Eo(—w‘l

= (s (W, o) *ELAW

~¥ CNO lW.W) s tce\ +5

= o \Jorg (W ’:"9:0’
W=, O

=>o0=4.
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The Rao-Blackwell Theorem

@ It turns out that sufficiency can help us in our search for the UMVUE in

powerful ways e Saé..w ic boged on T

@ Theorem 2.5 (Rao-Blackwell): et W(X) be unbiased for 7(6), and let
T'(X) be sufficient for 6. Define Wp(X) = Ey [W(X) | T(X)]. Then W (X)
is also an unbiased point estimator of 7(6), and moreoever,

Varg (WT(X)) < Vary (W(X)) ((e, Cu\dﬂ‘tmux unblocad. pout estimators i
suRiciont clalicfes voe” horte*)
ole
Proof \\asosainas: 5, LNy (R0 = B ESWOTIRY = Triwenzud

sinte Wi
ine e e (.

" Condler vosince v W) = \EQ{ Nura{ WO T + e €. WL TRY)

\(ZD ‘J = WT(.X\

Z ool D). P
L W) | TEY puutdit b faae &8
(and hence, 1ok o ok estiersr)

(Whot gbout Sv@caemé? \f T weent sAlicont, thoe
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Interpreting Rao-Blackwellization

@ The process of replacing an estimator with its conditional expectation (with
respect to a sufficient statistic) is called Rao-Blackwellization

@ Theorem 2.5 says that we can always improve on (or at least make no worse)

any unbiased estimator W (X) with a second moment by Rao-Blackwellizing
It

@ Example 2.21: 7(\/ e Xv\ }% ‘?g"gcﬂ\[»' >\‘>O
e bowe ok ek oo whbiozed ostivaion fo N: Yor ond Sn .
Bt X e woffcet & X\ by Thazrom 1.2, 5o SEANARE
Voetter hon Sy !
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~N Binln = Z X~ ‘
Rao-Blackwell: Examples &0~ Bt = Zh Bl

@ Example 2.22: Let X1, Xo,..., X, “ Bin (k,0), where § € (0,1) and k is

known. Let 7(0) = k6(1 — H)k 1. Show that W(X) = 1x,— is unbiased for
7(6), and then Rao-Blackwellize it.

Uvbiosedre - B[ W= RIX =D = ¢B(-0)*" = z(lo.
A\ TG
Now, azcalt et TS X; s aficorts b B S leb W, (D= F\L

g“PpcﬁQ TR:=1. Th.. \%(X.z\)'@é;/\f"f
E] WED\ TR)=4) = ﬁ%x -0)
) P(‘LF\\%X;:Q - Lal-e)Y (\ﬂ(n Be U_e“('”) “led
= ?9(5((-\ A%X.“‘lh (f"} et (\"6}”‘ -&
B 2X. =) ”
= R(K,\ A Sxet) e/ f("_g
X =6) S, 0" ¢ éx 5/
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The Lehmann-Scheffé Theorem

@ Theorem 2.6 (Lehmann-Scheffé Theorem): Let W(X) be unbiased for
7(#) and let T'(X) be a complete sufficient statistic, for all 8 € ©. Then
Wr(X) =E[W(X) | T(X)] is the unique UMVUE.

b Spe thak N(R) s o UNUE by (@, Thon Vo(= ELVEDITRY
15 oo ubiesel for 18> ord g (Vp(RD) £ \lou(NOR) 'ty Roo- Blckosl,
<01k 420 st be 0. UMNIE. By Thewem 24, V(D)= V().
Then O - Lae{\/x(i%-\&[wm
* €] o] - B Elwei o))
=& € [ vo-we TRl

\/{

= h(T)
"B LR 40O
By ermfetress, T W(TRY=D) 40 <0 EWE T,

G W= VD=V So e WN(E «
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More On Lehmann-Scheffé

@ This is a bit startling

@ If we take some unbiased estimator and condition it on a complete sufficient
statistic, then the resulting estimator is the UMVUE

@ As such, if we find an unbiased estimator T'(X) of 7(6) which is also a
complete sufficient statistic, then we're done

@ However, Lehmann-Scheffé assumes that a complete sufficient statistic exists
(which isn't always the case, as we know from Module 1), so it doesn’t
subsume Theorem 2.4

@ In fact, there do exist models where UMVUEs exist but complete sufficient
statistics don't

July 9-11, 2024 48 / 66

Rob Zimmerman (University of Toronto)




Lehmann-Scheffé: Examples

@ Example 2.23: Let X4, Xo,..., X, N (,LL, 02) with 1 € R and o2 > 0.

Find the UMVUE of (u, o2).

We Unwe fret (Zn. ) 6 & Lamq\e&z coficent stobetic
(ec\' Ex 129, Theamn (23, A“smmt Q

Alse (%o, S ¢ biosed P (po.

% Larwom-5drefie, TTR) = (K, <2) < de MUE € (/.q%.

Thete ot e E & (0"
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Lehmann-Scheffé: Examples

@ Example 2.24: Let X, Xo,..., X, 'Y Poisson (M), where A > 0. Find the
UMVUE of \.

(,\)a, Unoto Alet K-\S WDices QGI*)\‘ and e odeo o
COV‘M&Q’ Sbﬁ\'(:\m’f stefietic .

%\(,) Lalronn- Sche Nz, T(i)’zu ‘s He UMNUE £ A\
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Poll Time!

On Quercus: Module 1 - Poll 5
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What About the Likelihood?

@ Rao-Blackwellization and Lehmann-Scheffé tell us how to get the unique
UMVUE (if it exists) via complete sufficient statistics

@ [ he likelihood wasn't involved

@ It turns out there exists a very helpful tool that helps us with finding the
UMVUE (if it exists) by exploiting the likelihood

@ It doesn't always work...

@ But when it does, it works like a charm

@ But we need several auxiliary results to produce it
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The Covariance Inequality

@ Theorem 2.7 (Covariance Inequality): Let T'(X) and U(X) be two
statistics such that 0 < Eg |T'(X)?| ,Ey |U(X)?] < oo for all # € ©. Then

Covy (T(X), U(X))”

Varg (T'(X)) > Varg (U(X))

for all 6 € ©.

Equality holds if and only if

Covy (T'(X), U (X))

T(X) =Eq [T(X)] + Vary (U(X))

(U(X) — Eg [U(X)])

with probability 1.

Proof. AW\% de\g,. Cohworz ’\O“ )Z: TR od V= W
0rd Saue mc/gkﬁg. @

Rob Zimmerman (University of Toronto) July 9-11, 2024 53 /66



The Fisher Information

@ Definition 2.10: Let X = (X1,...,X,) ~ fo, and let S(0 | x) be the score
function for the parametric model. The (expected) Fisher information is
the function I,, : © — [0, 00) defined by

1,(6) = Vars (S(0| X))

@ Definition 2.11: Let X = (X1,...,X,) ~ fo, and let S(0 | x) be the score
function for the parametric model. The observed Fisher information is the

function J,, : X™ — [0, 00) defined by

0
J’n(X) — _@S\ﬂé}‘ﬁzémm(ﬂ .

=)
-561(9\)'{)

\' Y /

-
%‘1(9(5’6

L hon HeR « a vecks, flaso. oo W‘i\ﬁ@<\
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The Fisher Information: Examples

@ Example 2.25: Let X1, Xo,..., X, 'Y Poisson (M), where A > 0. Calculate
the observed and expected Fisher information for .

L= [ e

= L(N\RD= S, .,(,a(g-—nwc L uhare ccR s fme& X

79()\\’5‘ -/-1\

_ }\L- (
= \- \/(r}(ﬁ)() Sh(—‘) - X,,\ y—L_
= JE ‘> 2 K (Yo 3 X
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The Fisher Information: Examples
@ Example 2.26: Let X1, Xo,..., X, N (,u, 02), where 1 € R and o2 is
known. Calculate the observed and expected Fisher information for p.

— é =N
rom Ex.2.(2, S@(»‘ZY %&)

N (D)= X, Then
LU= Vg (E522) bad b,
/d CN}; o+ S ,_—-3 g( l)é()
— | jV\CK)— g/) / 3-)2
- '074—\/0,9'(5)45 ) 2
- N —_'z—
Eae 4 \f”?"
=n
d—'L
\&m-\lui&'\‘hm,‘ww\‘

theye usoly dilerent
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The Cramér-Rao Lower Bound(&tﬁ%

@ Theorem 2.8 (Cramér-Rao Lower Bound): Let X = (Xq,...,X,) ~ fy,
and let T'(X) be any estimator such that aeS TR A I

@ Varg (T(X < X0 and@@Eg / (99

Then

(LE, [T(X)])Q.

I,,(9)

In particular, if T'(X) is unbiased for 7(6) and 7(-) is differentiable on ©, then

Varg (T(X)) >

(7'(6))°
Vary (T'(X)) > L0)

Proof. \n e wNofimce ‘%"“““‘3' ot U = LelR) = 26 L(6\X).

Than Co(TERY, 61 = w - E&Tcﬂ-@g\)@aw&
©
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The Cramér-Rao Lower Bound

0 T con o 32 @ =L (3 4yl 40) S0 32
"
* (00 (3o 40 kD - {2 (3 AR by &
" (T (g S hon) SbTE AETCE:
YT Bk 22 (Ao
:j‘%é(ﬂi)'}a(v& &% =3 4
04¢. w
= 1 XT(‘{)' Jo(® % _
=25 L TR,

So (TR, o) = 55 ELTRD. ©  Pleo, by i,
g (<ol D)= T,(6). ?\\3 ® e Ke Covfoce vveap.o.\dg and

were dore | Q
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The Cramér-Rao Lower Bound Conditions

Unfortunately, the conditions of the Cramér-Rao Lower Bound don't always
hold

The first says that our estimator must actually have a variance to minimize,
which seems reasonable

Example 2.27: \@ ’}Q‘/”./X'\NN(/,"\. D‘“H“&ﬂ’a: nyh. - wont work\

The second says that we need to be able to push a derivative inside an
integral, which is more subtle

When would this condition fail to hold?

Example 228 WibRE) => Sk @ =(0,9) depants m 6

'i’e E,(TR) =+ S g%am-ié\ IR n gerenl.
©9 ey i€ 2
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Easing the Computation
@ [heorem 2.9: Under the conditions of Theorem 2.8,

I,(0) =T [S(6 ] X)?].

Proof. T, (8> = \las( LoD by definition
= £l SER31- ElerY,

=0 {rante ?1&

_ 3
= E LS. he B

@ Theorem 2.10: If X1, Xo,..., X, g fo and conditions of Theorem 2.8 hold,

1,(0) = nEq [S(0 | X)°] .

Bk, EXEUEE)
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More Easing

@ Theorem 2.11 (Second Bartlett Identity): If X ~ fy and fy satisfies

d
@Ee /39 (0| 2)fo(z)] d

(which is true when fy is |n an exponential family) then

Eo [S(0 ]| X)?] = —Eg [%5(9 | X)] .

Proof. RWS = — \Eg& %6 (%9 Z"g’(fe(xm}

- Eg& — ) e Yoo Gindn & o

Ttéa‘o%’vﬁd%. ee de assungbins...

Rob Zimmerman (University of Toronto) July 9-11, 2024

61 /66



Etfficiency

@ Definition 2.12: An estimator T'(X) of 7(6) that attains the Cramér-Rao
Lower Bound is called an efficient estimator of 7(0).

@ What's the connection between UMVUEs and efficient estimators?
widiesed

@ If an efficient estimator exists, then it must be the UMVUE

@ But an efficient estimator doesn’t always exist, as we'll soon see

Rob Zimmerman (University of Toronto)
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Efficiency: Examples

@ Example 2.29: Let X1, Xo, ..., X, N (,u, 02) with 1 € R and o2 > 0.

Show that T'(X) = X, is an efficient estimator for .

We need {o calofote e CRUD (&‘QQ'\'\WSCG/, o okeo
N, (TIR) | 0nd drow ot Hafre oo

Ve frow fet \fo,(TR)= 7.
_ (4 X
Wher doost Hhe cuRY  Numaroter: (-3/; tg&'\b'&)m - (a,) f) =1
Dargrirator: T ="0> Can Eromgle 220

So Ve RR ... %yq,_ =% = \/G;IKD.
ga (\—(i):K 3 é«ic'wt fo P
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A Criterion for Efficiency

@ Is there a better way to find efficient estimators than simply making an
educated guess?

@ Theorem 2.12: Let X4, X5,..., X, g fo satisfy the conditions of Theorem
2.8. An unbiased estimator T'(X) of 7(6) is efficient if and only if there exists
some function a : © — R such that

S0 [ x) = a(0)[T(x) —7(0)].

Proof. Trwn fe ovaioce (m%m&\'t), pr/-d\b ol n A le C(U.‘b'\@

TR = » (TR, Lol _
D= B LT o) .(gce\i) E;ﬁece&x’%

— (' (en”
0 + LLPN. gle\
® T \5)

el 3 Iﬁ‘%ﬂk‘)‘ @) q

(Y

=:0{0)
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Efficiency: Examples

o Example 230 Let X1, Xa,..., X, ~ N (1, 0%) with p € R and 02 > 0,
Show that there exists no eff|C|ent estimator of o2,

If foe &) exctoo o T(K), Hen Yae (wadd be save foctom a(e)
Such At §C¢‘\%=&&‘5~(Tﬁﬁ’o”§- Rk QUYO_NO/\;}MW (evewcet)
chovs et SIRY= T (5 G o)

E‘j harm 212, Mo m&i;) ?sss\‘:ie coindidete forﬂi\ 18 T(%= %%ﬂt
whidn 6 tot . pont estimater s 6 wleum

S o ficont estomet £ ¢+ ersts. &k p mvue w\cim\lac&m\
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Efficiency: Examples

@ If an unbiased point estimator is efficient, then it's the UMVUE — but the
converse is not true in general

@ Example 2.31: Let X1, Xo,..., X, %Y Poisson (M), where A > 0. Show that
an efficient estimator of 7(\) = P, (X = 0) does not exist, and find its
UMVUE. SR

OR)= é—;—‘-vx = é—; -ha e -t Uedy no eficient estivater £ 277 exists, by
Thewen 212 Bk eides WIRY=Ay.g , hich s abiosed @ T0D. e Voo et
m? P s 0. Gnglete affciont stufet for . @y Wwan-Soraly, oK)=
ELWERITRY= Rx=0 15K © the WVUE & (). How do e use i€ ?
Chat ok 33 P and KU Z Ko has go s, 50) (8" (1)1
wWhidh makeo )‘Z\ é‘ﬁ':. ¢ = Moktnomiod (L, 5., %) and X\ é‘ﬁ‘z £ 2Rinlt, 1),

Harce W (X)= P(x=0| 2x3) = (\—;‘;)"é"x‘ s e (WNVLE § 27
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