STA261 - Module 2 Point Estimation

Rob Zimmerman

University of Toronto

July 9-11, 2024

E

 \mathcal{A}

★母 ▶ ★ 臣 ▶ ★ 臣 ▶

Extracting Information

- In Module 1, we learned about how a statistic can capture (or not capture) the information provided by our data sample $\mathbf{X} = (X_1, \ldots, X_n) \sim f_{\theta}$ about the unknown parameter $\theta \in \Theta$
- For the remainder of the course, our focus will be on how to *extract* that information
- In Module 2, we have one goal: to estimate the parameter θ or some function of the parameter $\tau(\theta)$ as best we can (whatever that means)
- Example 2.1: $X_1, \dots, X_n \stackrel{\text{iff}}{\sim} N(\mu, 3) \cap \mu \in \mathbb{R}$.

- If we wont to estimate v_i morpe we can take $j(\vec{x}) = \vec{X}_n$. Seems reasonable!

- Event & voting for (andidate A in an election ~ Bernoulli(p), pe (0,1).
Maybe we want to estimate
$$Y(p) = \log(\frac{p}{1-p})$$
 "log-odds & p"

 $\mathcal{A} \cap \mathcal{A}$

Point Estimation

- How do we estimate θ from the observed data x?
- Ideally, we want some statistic $T(\mathbf{X})$ such that $T(\mathbf{x})$ will be close to θ
- Definition 2.1: Suppose $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} f_{\theta}$. A point estimator $\hat{\theta} = \hat{\theta}(\mathbf{X})$ is a statistic used to estimate θ .
- How do we find good point estimators?

SQ P

Poll Time!

On Quercus: Module 2 - Poll 1

$$N(y,\sigma^2)$$
, y unknown, σ^2 known.
 $T(\vec{x}) = X_n - y$ is not a point estimator because
it's not a statistic!

-

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Choosing "Good" Point Estimators

- A point estimator $\hat{\theta}(\mathbf{X})$ is a random variable, so it has its own distribution (as does any statistic)
- Definition aside, it would seem that the best point estimator is the constant $\hat{\theta}(\mathbf{X}) = \theta$, but of course this is unattainable
- The constant θ has $\mathbb{E}_{\theta} \left[\theta \right] = \theta$ and $\operatorname{Var}_{\theta} \left(\theta \right) = 0$
- It would be nice if the distribution of $\hat{\theta}(\mathbf{X})$ got close to these properties: $\mathbb{E}_{\theta}\left[\hat{\theta}(\mathbf{X})\right] \approx \theta$ and $\operatorname{Var}_{\theta}\left(\hat{\theta}(\mathbf{X})\right) \approx 0$
- It would also be good if $Var_{\theta}(\hat{\theta}(\mathbf{X}))$ got lower as the sample size n got bigger (if we're willing to pay good money for more samples, we should demand a higher precision in return)

Moments Are (Often) Functions of Parameters Always remember : Var(x) = E[x²] - E[x²]

• Here's one approach to choosing $\hat{\theta}(\vec{\mathbf{x}})$

• In parametric families, it is often the case that the parameters are functions of the moments (i.e., $\mathbb{E}_{\theta}[X]$, $\mathbb{E}_{\theta}[X^2]$, $\mathbb{E}[X^3]$, and so on)

• Example 2.2: $X \rightarrow N(y, r^{2}) \Rightarrow (E(x) = y, (E(x^{2}) = y^{2} + r^{2})$ $X \rightarrow Bin(n, p) \Rightarrow (E(x) = np, (E(x^{2}) = np(1-p) + n^{2}p^{2})$ $X \sim Poisson(X) \Rightarrow (E(x) = \lambda, (E(x^{2}) = \lambda^{2} + \lambda))$ $X \rightarrow Exp(X) \Rightarrow (E(x) = \lambda, (E(x^{2}) = \lambda^{2})$ $X \rightarrow N(y, r^{2}) \Rightarrow (E(x) = 0, (E(x^{2}) = r^{2}))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■

Towards the Method of Moments

- Suppose $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ and we want to estimate μ
- We know that $\mathbb{E}[X_1] = \mu$ and $\mathbb{E}[X_1^2] \mathbb{E}[X_1]^2 = \sigma^2$
- So if we took $\hat{\mu}(\mathbf{X}) = X_1$, then we'd have $\mathbb{E}[\hat{\mathbf{X}}] = \mathbb{E}[\mathbf{X}] = \mathcal{V}(\hat{\mathbf{X}}) = \sigma^2$
- Can we do better? $\hat{\mu}(\vec{x}) = \vec{x}_n \implies \text{IE}(\hat{\mu}(\vec{x})) = \sigma_n^2 < \sigma_n^2 = V\sigma(\beta(\vec{x}))$
- Now suppose we want to estimate both μ and σ^2 def: the kith sample moment is $\overline{X^{\mu}} := \frac{1}{n} \frac{2}{2} X^{\mu}$
- If we let $m_1(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^n X_i$ and $m_2(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^n X_i^2$, then $m_1(\mathbf{X}) \xrightarrow{d} \mathcal{N}$ and $m_2(\mathbf{X}) \xrightarrow{d} \mathcal{N}^2 + \mathcal{T} \left(= \mathbb{E}_{\mathcal{N}} \left(\mathbb{X}_i^2 \right) \text{ by the WLN} \right)$

• Therefore
$$m_2(\mathbf{X}) - m_1(\mathbf{X})^2 \xrightarrow{d} r^2$$
 by the continuous mapping theorem (CMT)

So we can take
$$\beta(\vec{x}) = m_1(\vec{x}) = \vec{x}_1$$
 and $\hat{\sigma}^2(\vec{x}) = h_2^2 X_1^2 - (h_2^2 X_1)^2$

Alen convertes

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団 > < 団 > < 団 > < 団 > 三 三

The Method of Moments

- Effectively, we're replacing the true moments with the sample moments
- Definition 2.2: Suppose we have k parameters $\theta_1, \theta_2, \ldots, \theta_k$ to estimate in a paremetric model, and each one is some function of the first k moments:

$$\theta_j = \psi_j \left(\mathbb{E}_{\theta} \left[X \right], \mathbb{E}_{\theta} \left[X^2 \right], \dots, \mathbb{E}_{\theta} \left[X^k \right] \right), \quad 1 \le j \le k.$$

The **Method of Moments (MOM)** estimator for θ_j is defined by choosing

$$\hat{\theta}_j(\mathbf{X}) = \psi_j \left(m_1(\mathbf{X}), m_2(\mathbf{X}), \dots, m_k(\mathbf{X}) \right), \quad 1 \le j \le k,$$

where $m_j(\mathbf{X}) = \sum_{i=1}^n X_i^j$.

SQ Q

Method of Moments: Examples

• Example 2.3: Suppose $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Poisson (λ) , where $\lambda > 0$. Find the MOM estimator for λ .

$$\lambda = IEXiJ$$

 $\implies \lambda_{mon}(\vec{x}) = X_{n}$

Suppose
$$Z_{1,..,}Z_{n} \stackrel{\text{iff}}{\longrightarrow} X_{;}-\lambda ...$$
 What's the main based on \overline{Z} ?
 $IE[Z_{i}]=0$. Doesn't help!
 $IE[Z_{i}^{2}]=IE[(X_{:}-\lambda)^{2}]=Va_{\lambda}(X_{i})=\lambda$
 $\implies \widehat{\lambda}_{max}(\overline{Z})=\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{2}=\overline{Z}_{n}^{2}$

Grenardize to one-parameter centered distributions? EXERCISE!

Э.

 \mathcal{A}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Method of Moments: Examples

• Example 2.4: Suppose $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} Bin(k, \theta)$, where $k \in \mathbb{N}$ and θ is known. Find the MOM estimator for k.

$$|E_{k}(X_{i}) = k0 \implies k = \frac{|E_{k}(X_{i})|}{\Theta}$$

$$\implies \tilde{k}_{mon}(X) = \frac{X_{n}}{\Theta}$$

• Could this be a problem? be a natural number, even though
$$\widehat{W} = \mathbb{N}$$

(If $\Theta \in (O, \mathbb{N} \setminus \mathbb{R}, \text{then } \widehat{K} \text{ an } \underline{R})$ con never be an integer)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

Poll Time!

On Quercus: Module 1 - Poll 2 $X_{1,...,} X_{n} \xrightarrow{ij} Bin(K, \Theta), K Krown, \Theta \in (0, i).$ $IE f X_{i} J = K \Theta \implies \Theta = \frac{1}{k} IE X_{i} J$ $\implies \tilde{\Theta}_{mm}(\tilde{K}) = \frac{1}{k} X_{n}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Method of Moments: Examples

• Example 2.5: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} f_{\alpha}(x) = (1 + \alpha x)/2 \cdot \mathbb{1}_{x \in [-1,1]}$, where $\alpha \in [-\frac{1}{3}, \frac{1}{3}]$. Find the MOM estimator for α .

$$F[(X_{i}) = \int_{1}^{1} x \cdot \left(\frac{1+\alpha x}{2}\right) dx = \frac{1}{2} \left(\frac{x^{2}}{2} + \frac{\alpha x^{3}}{3}\right)_{1}^{1} = \frac{\alpha}{3}$$

 $\Rightarrow \alpha = 3 \cdot E_{\alpha}(X_{i})$

 $\Rightarrow \hat{\alpha}_{\text{Man}}(\hat{\chi}) = 3 \overline{\chi}_n$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Method of Moments: Examples

• Example 2.6: Suppose $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Gamma}(\alpha, \beta)$, where $\alpha, \beta > 0$. Find the MOM estimators for α and β . let 0: (a, B) $\Psi = \mathbb{E}[X_{\cdot}] = \mathscr{X}_{\mathcal{B}}$ $\gg \hat{B}_{mm}(\vec{X}) = \frac{X_n}{\overline{X^2} - (\overline{X})^2}$ $\Psi_2 = \mathbb{E}_0[X_i^2] = \frac{\alpha + \alpha^2}{B^2}$ $\frac{(\chi_n)}{\sqrt{2}}$ $\alpha_{max}(x) =$ $(1) \Rightarrow \alpha = \forall_i \cdot B$ $(\widehat{z}) \Rightarrow \psi_2 = \frac{\psi_1 B + \psi_1^2 B^2}{B^2} = \frac{\psi_1}{R} + \psi_1^2$ $\Rightarrow B = \frac{\Psi_1}{\Psi_2 - \Psi_2}$ $\Rightarrow \alpha = \frac{\psi_1^2}{\psi_2 - \psi_2}$

SQ (~

The Likelihood Function

$(L(\Theta|X)$ is a random function $\mathcal{E} \Theta$).

- Definition 2.3: Let X ~ f_θ, where f_θ is a pdf or pmf in a parametric family. Given the observation X = x, the likelihood function for θ is the function L(· | x) : Θ → [0,∞) given by L(θ | x) = f_θ(x).
 (f X is discrete, then L(Θ(x) = R_θ(x=x) ∈ [0,1]. But in general, L(∂(x)) ∉ [0,1].
 Interpret this as the "probability" of observing the sample x, given that the sample came from f_θ <u>NOT</u> "P(Θ=Θ(X=x)" [1]).
- So $L(\theta_1 \mid \mathbf{x}) > L(\theta_2 \mid \mathbf{x})$ says that the chance of observing $\mathbf{X} = \mathbf{x}$ is more likely under f_{θ_1} than under $f_{\theta_2} \leq \mathcal{O}$ L(\mathbf{x}) ranks the elements $\mathbf{f}(\mathbf{x})$
- It could be that the likelihood is very small for all $\theta \in \Theta$, so knowing $L(\theta \mid \mathbf{x})$ for just a single θ is useless
- Instead, we want to know how $L(\theta \mid \mathbf{x})$ compares to $L(\theta' \mid \mathbf{x})$ for other $\theta' \in \Theta$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団ト < 巨ト < 巨ト 三 巨

The Likelihood Principle

- Much of modern statistics revolves around the likelihood function; it will be with us in some form or another for the rest of our course
- The likelihood principle states that if two model and data combinations $L_1(\theta \mid \mathbf{x})$ and $L_2(\theta \mid \mathbf{y})$ are such that $L_1(\theta \mid \mathbf{x}) = c(\mathbf{x}, \mathbf{y}) \cdot L_2(\theta \mid \mathbf{y})$, then the conclusions about θ drawn from \mathbf{x} and \mathbf{y} should be identical i.e. $\frac{L_1(\theta \mid \mathbf{x})}{L_2(\theta \mid \mathbf{y})}$ is free $\mathcal{L} \Theta$
- In other words, the likelihood principle says that anything we want to say about θ should be based solely on L(· | x), regardless of how x was actually obtained
- Is this requirement too strong?
 Experiment 1: toss a coin of P(H) = 0 10 times and let X=# & H ~ Bin(10,0).
 Example 2.7: We dosene X=4. L₁(01x=4) = (14) 04(1-0)
 Experiment 2: toss the some coin until we dosene 4 H. Let Y=# & T unit thet happens. Then Y~ NegBin(4,0). We dosene Y=6. Then L₂(0(y=6)= (9) 04(1-0)⁶.
 Then L₁(0(x=4) ~ L₂(0(y=6). The ficelihead principle says that we should be indifferent to which & Experiment 1 or Experiment 2 the date came from Doyau grose?

Maximizing the Likelihood

- Suppose there were some $\hat{\theta} \in \Theta$ which makes $L(\hat{\theta} \mid \mathbf{x})$ the highest; would it be sensible to use that $\hat{\theta}$ as an estimator?
- If we can maximize $L(\theta \mid \mathbf{x})$ with respect to θ , the resulting maximizer $\hat{\theta}$ will be a function of the sample \mathbf{x}
- Example 2.8: Let X₁, X₂,..., X_n ^{iid} Bernoulli (θ), where θ ∈ (0,1). Maximize the likelihood with respect to θ.

 L(Θ(x) = f_θ(x) = ∏ θ^x: (1-θ)^{-x}: = θ^{2x}: (1-θ)^{n·2x}:

 We'll con see that the maximum occurs at θ = x_n.
 So with this idea, a reasonable point estimator could be Θ(x) = X_n.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Maximum Likelihood Estimation

Definition 2.4: Let X = (X₁,..., X_n) ~ f_θ. Let L(θ | x) be the likelihood function based on observing X = x. The maximum likelihood estimate of θ is given by

$$\hat{\theta}(\mathbf{x}) = \operatorname*{argmax}_{\theta \in \Theta} L(\theta \mid \mathbf{x}),$$

and the maximum likelihood estimator (MLE) for θ is the point estimator given by $\hat{\theta}_{MLE} = \hat{\theta}(\mathbf{X})$. \leftarrow This is a statistic!

Equivelently, $\hat{\Theta}(\vec{x})$ is st. $L(\hat{\Theta}(\vec{x})|\vec{x}) = L(\Theta|\vec{x}) \quad \forall \Theta \in \Theta$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(日)

- Nothing says the distribution needs to have a "nice" functional form
- Example 2.9: Suppose $\mathcal{X} = \{1, 2, 3\}$ and $\Theta = \{a, b\}$, and a parametric family is given by the following table:

	x = 1	x = 2	x = 3
$f_a(x)$	0.3	0.4	0.3
$f_b(x)$	0.1	0.7	0.2

Suppose we observe $X \sim f_{\theta}$. Find the MLE of θ .

$$\begin{array}{l} \chi=1 \implies f_{a}(1) > f_{b}(1) \implies \widehat{\Theta}(1) = a \\ \chi=2 \implies f_{a}(2) < f_{b}(2) \implies \widehat{\Theta}(2) = b \\ \chi=3 \implies f_{a}(3) > f_{b}(3) \implies \widehat{\Theta}(3) = a \\ \implies \widehat{\Theta}_{mre}(\chi) = a \cdot 1_{\chi \in \{1,3\}} + b \cdot 1_{\chi=2}. \end{array}$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団ト < 巨ト < 巨ト 三 巨

• But when f_{θ} does have a nice form and is continuously differentiable for $\theta \in \Theta$, we can use calculus to find the MLE

• Example 2.10: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Bernoulli (θ), where $\theta \in (0, 1)$. Find the MLE of θ . $\bigcup_{i=1}^{n} (i-i)^{n-\epsilon_{x_i}}$ $= \frac{dL}{d\theta} = (\xi_{x_i}) \theta^{\xi_{x_i}-1} (1-\theta)^{n-\xi_{x_i}} - (n-\xi_{x_i}) \theta^{\xi_{x_i}} (1-\theta)^{n-\xi_{x_i-1}} \stackrel{\text{set}}{=} 0$ $\Rightarrow (\Xi_{X})\Theta^{-1} - (n - \Xi_{X})(1 - \theta)^{-1} = 0 \qquad \begin{pmatrix} \text{divide through by} \\ \Theta^{\Xi_{X}}(1 - \theta)^{n - \xi_{X}} \pm 0 \end{pmatrix}$ $\Rightarrow \frac{\xi_{x_i}}{n-\xi_{x_i}} = \frac{\theta}{1-A} \Rightarrow \hat{\theta} = \frac{1}{n}\xi_{x_i} = \overline{x_n}.$ Is this a local max? We'd need to find $\frac{d^2L}{d\theta^2}$, plug in $\hat{\Theta} = \bar{x}_n$ and check that $\frac{d^2 L}{d\Theta^2} \Big|_{\Theta = \widehat{\Theta}} \leq O$. You can verify... So $\widehat{\Theta}_{max}(\widehat{X}) = \widehat{X}_{n}$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

• Suppose that
$$X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}\left(\mu, \sigma^2\right)$$
, where $\mu \in \mathbb{R}$ and σ^2 is known

• What happens if we try to find the MLE of μ in the same fashion? $\begin{aligned}
& \left(\mu(x) = \prod_{i=1}^{n} f_i(x_i) = (2\pi\sigma^2)^{-\frac{n}{2}} \cdot \exp\left(-\frac{1}{2\sigma^2} \sum \xi x_i^2 - 2\mu \xi x_i + n\mu^2\right) \right), \\
& \frac{dL}{d\mu} = (2\pi\sigma^2)^{-\frac{n}{2}} \cdot \left(\frac{\xi x_i - n\mu}{\sigma^2}\right) \cdot \exp\left(-\frac{1}{2\sigma^2} \sum \xi x_i^2 - 2\mu \xi x_i + n\mu^2\right) & \stackrel{\text{eff}}{=} 0 \\
& = \rho \left(-\frac{1}{2\sigma^2} \sum \xi x_i^2 - 2\mu \xi x_i + n\mu^2\right) & \stackrel{\text{eff}}{=} 0 \\
& = \rho \left(-\frac{1}{2\sigma^2} \sum \xi x_i^2 - 2\mu \xi x_i + n\mu^2\right) & \stackrel{\text{eff}}{=} 0 \\
& = \rho \left(-\frac{1}{2\sigma^2} \sum \xi x_i^2 - 2\mu \xi x_i + n\mu^2\right) & \stackrel{\text{eff}}{=} 0 \\
& = \rho \left(-\frac{1}{2\sigma^2} \sum \xi x_i^2 - 2\mu \xi x_i + n\mu^2\right) & \stackrel{\text{eff}}{=} 0
\end{aligned}$

But differentiating
$$\frac{dL}{dw}$$
 w.r.t. w would be awful!
(c there a better way?

3

 $\mathcal{A} \cup \mathcal{A}$

-.. yes.

▲□▶ ▲□▶ ▲□▶ ▲□▶

The Log-Likelihood

• Definition 2.5: Given data \mathbf{x} and a parametric model with likelihood function $L(\theta \mid \mathbf{x})$, the log-likelihood function is defined as by

 $\ell(\boldsymbol{\theta} \mid \mathbf{x}) = \log \left(L(\boldsymbol{\theta} \mid \mathbf{x}) \right).$

- Maximizing the log-likelihood is equivalent to maximizing the likelihood becase it a monotone increasing function & LOIX)
- ...but usually way easier
 becase its easier to differentiate coms than products !

The Score Function

• Definition 2.6: Given data x and a parametric model with log-likelihood function $\ell(\theta \mid \mathbf{x})$, the score function is defined as

$$S(\theta \mid \mathbf{x}) = \frac{\partial}{\partial \theta} \ell(\theta \mid \mathbf{x}),$$

when it exists.

• When $\boldsymbol{\theta} = (\theta_1, \dots, \theta_k)$ is a vector, this is interpreted as the gradient

$$S(\boldsymbol{\theta} \mid \mathbf{x}) = \nabla \ell(\boldsymbol{\theta} \mid \mathbf{x}) = \left(\frac{\partial}{\partial \theta_1} \ell(\boldsymbol{\theta} \mid \mathbf{x}), \dots, \frac{\partial}{\partial \theta_k} \ell(\boldsymbol{\theta} \mid \mathbf{x})\right)$$

- If the likelihood function is nice enough, then any extremum $\hat{\theta}$ will satisfy the score equation $S(\hat{\theta} \mid \mathbf{x}) = 0$
- So finding the MLE amounts to finding $\hat{\theta}$ such that $S(\hat{\theta} \mid \mathbf{x}) = 0$ and then checking that $\hat{\theta}$ is a global maximum

SQ Q

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Example 2.11: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and σ^2 known. Find the MLE of μ . $| (\mu|\bar{x}) = (2\pi\sigma^2)^{n/2} \exp\left(-\frac{5\pi i^2 + 2\mu 5\pi i - n\mu^2}{2\sigma^2}\right) = C = -\frac{n}{2} \log(2\pi\sigma^2)$ $\Rightarrow | (\mu|\bar{x}) = c + \frac{-5\pi i^2 + 2\mu 5\pi i - n\mu^2}{2\sigma^2} \text{ where } c \in \mathbb{R} \text{ is free } f_{\mu}$ $\Rightarrow S(\mu|\bar{x}) = \frac{5\pi i - n\mu}{\sigma^2} \stackrel{\text{set}}{=} 0 \quad \Rightarrow \tilde{\mu} = \bar{x}_n.$

Second derivative first:

$$\frac{\partial}{\partial y} S(y|\vec{x}) = -\frac{n}{\sigma^2} \implies \frac{\partial}{\partial y} S(y|\vec{x}) \Big|_{y=\hat{y}} = -\frac{n}{\sigma^2} < 0$$
Therefore, $\hat{y}(\vec{x}) = \overline{X}_n$ is the MCE for y (i.e., $\hat{y}_{met}(\vec{x}) = \overline{X}_n$)

 \mathcal{A}

▲□▶ ▲圖▶ ▲토▶ ▲토▶ - 토 -

• Example 2.12: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \operatorname{Exp}(\lambda)$ with $\lambda > 0$. Find the MLE of λ . $\lfloor (\lambda | \hat{x}) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda \cdot \exp(-\lambda \cdot \xi x_i)$ $\Rightarrow \pounds(\lambda | \hat{x}) = n \cdot \log(\lambda) - \lambda \cdot \xi x_i$ $\Rightarrow \underbrace{ S(\lambda | \hat{x}) = n - \xi x_i}_{\lambda = x_n} \stackrel{\text{def}}{=} 0$

SQ P

- Even if the likelihood is smooth and well-behaved, this method doesn't always work
- Example 2.13: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathbf{f}(\alpha, 2)$ with $\alpha > 0$. Try to find the MLE of α . $\begin{aligned} & \prod_{n=1}^{n} \frac{2^n}{\Gamma(\alpha)} \times_{i}^{n-1} e^{-2x_i} = \frac{2^{n\alpha}}{\Gamma(\alpha)^n} \left(\prod_{i=1}^{n} \times_{i}^{n-1} \cdot e^{-2\xi_i} \right) \end{aligned}$ $= \int l(\alpha(\vec{x}) = n\alpha \cdot lop(2) - n \cdot log(1(\alpha)) + (\alpha \cdot i) \cdot \sum_{i=1}^{n} log(x_i) + c, \text{ where } cell is five f \alpha$ $\Rightarrow S(\alpha|x) = n \cdot \log(2) - \frac{n}{\Gamma(\alpha)} \cdot \frac{r'(\alpha)}{\Gamma(\alpha)} + \frac{Z}{Z} \log(x;)$??? We con't work with this bocasse the digamma function $\Psi(\alpha) := \frac{\Gamma'(\alpha)}{\Gamma(\alpha)}$ has no closed form expression! Enter-Mascheroni constant = 9.5972 ... $F(I: if x = m \in IN, \text{ than } \Psi(m) = \underset{k=1}{\overset{m}{\underset{k=1}{2}}} - Y. \text{ But if } W = IN \text{ than we shouldn't be differentiating to begin with...}$

• What about when θ is multidimensional? We need to bring out our multivariate calculus

• Example 2.14: Let
$$X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$
 with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$.
Find the MLE of $\theta = (\mu, \sigma^2)$.
 $\mathcal{L}(\mu, \sigma^2(\vec{x}) = (2\pi \sigma^2)^{-N_2} \cdot \exp(-\frac{5(x_i - \mu)^2}{2\sigma^2})$
 $\Rightarrow \mathcal{L}(\mu, \sigma^2(\vec{x}) = c - \frac{n}{2} \log(\sigma^2) - \frac{5(x_i - \mu)^2}{2\sigma^2}$ where $c = -\frac{n}{2} \log(2\pi)$ is free $d(\mu, \sigma^2)$
 $\Rightarrow \mathcal{L}(\mu, \sigma^2(\vec{x}) = c - \frac{n}{2} \log(\sigma^2) - \frac{5(x_i - \mu)^2}{2\sigma^2} = (\frac{1}{\sigma^2} \leq (x_i - \mu), \frac{-n}{2\sigma^2} + \frac{1}{2\sigma^4} \leq (x_i - \mu)^2) \stackrel{\text{set}}{=} \vec{0} = (\mathcal{D}, 0)$
since $\det(instead)$ $(\mathcal{J}, \vec{0}) = (\overline{x}_n, \frac{1}{n} \leq (x_i - \overline{x})^2)$
Second derivative feets:
The determinant of the these ion is

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{n}{\sigma^{1}} < 0$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = \frac{n}{\sigma^{1}} - \frac{1}{\sigma^{6}} \lesssim (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = \frac{n}{\sigma^{6}} - \frac{1}{\sigma^{6}} \lesssim (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} \lesssim (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} \lesssim (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} \lesssim (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{4}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{2}} = -\frac{1}{\sigma^{6}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{6}} = -\frac{1}{\sigma^{6}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{6}} = -\frac{1}{\sigma^{6}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{6}} = -\frac{1}{\sigma^{6}} - \frac{1}{\sigma^{6}} (x, -\mu)^{2}$$

$$\frac{\partial^{2} \ell}{\partial \mu^{6}} = -\frac{1}{\sigma^{6}} - \frac{1}{$$

- The likelihood may not be differentiable, but that doesn't mean it can't be maximized
- Example 2.15: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Unif}(0, \theta)$ with $\theta > 0$. Find the MLE of θ . $L(\Theta(x) = \prod_{i=1}^{n} f_{\Theta}(x_{i}) = \Theta^{-n} \cdot 1_{O \leq X_{i} \wedge X_{i} \wedge \Theta} = 1_{O \leq X_{i}} \cdot \Theta^{-n} \cdot 1_{X_{i} \wedge \Theta}$ $|f \Theta = x_{cos}, \text{ than } \lfloor (x_{cos} \mid x) = -1 \lfloor D \leq x_{cos} \cdot (x_{cos})^{-n}$ $|f \Theta = x_{cm}, \text{ then } \lfloor(\Theta|\vec{x}) = 1_{0 \leq x_{cn}} \cdot \Theta^{-n} 1 \leq 1_{0 \leq x_{cn}} \cdot (x_{cn})^{-n} = \lfloor(x_{cn}|\vec{x})$ $|P \Theta < x_{co}, \text{ then } L(\Theta(\vec{x}) = 1 L_{OSX_{co}} \cdot \Theta^{-n} \cdot \Theta = \Theta \leq L(x_{co} | \vec{x})$ Hence $\widehat{\Theta}_{me}(\vec{x}) = X_{cm}$. But we couldn't use calculus to find it, because L(U(x)) is not differentiable in Θ .

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■

Regression Through the Origin

• Example 2.16: Let Y_1, Y_2, \ldots, Y_n be independent where $Y_i \sim \mathcal{N}\left(\beta x_i, \sigma^2\right)$
with $\beta \in \mathbb{R}$, $x_i \in \mathbb{R}$, and $\sigma^2 > 0$. Find the MLE of β .
$L(\mathcal{B} \vec{y}) = \prod_{i=1}^{n} (2\pi\sigma^{2})^{-1/2} \cdot \exp\left(-\frac{(q_{i}-\mathcal{B}x_{i})^{2}}{2\sigma^{2}}\right) = (2\pi\sigma^{2})^{-n/2} \cdot \exp\left(-\frac{2(q_{i}-\mathcal{B}x_{i})^{2}}{2\sigma^{2}}\right)$
$\Rightarrow l(B(y)) = c - \frac{\sum(y; -Bx;)^2}{2\sigma^2} \text{ where } ceR \text{ is free } S B$
$\Rightarrow S(\underline{R}(\underline{y}) = \frac{\sum x_i(\underline{y}_i - \underline{B}x_i)}{\sigma^2} \stackrel{\text{set}}{=} 0$
$\Rightarrow \Xi_{K_{1}}(y_{1} - B_{K_{1}}) = 0 \Rightarrow B = \frac{\Xi_{K_{1}}y_{1}}{\Xi_{K_{1}}^{2}}$
Second derivative test: $\Sigma_{x;Y;}$
$\frac{\partial S}{\partial B} = -\frac{S_{x_i}^2}{\sigma^2} \times O \forall B \in \mathbb{R}$. Hence $\hat{B}_{mu}(\vec{Y}) = \overline{S_{x_i}^2}$.

• This is a particular case of linear regression; see Assignment 2 for more

SQ (~

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

Reparameterization

- Instead of θ itself, what if we want to find the MLE of some one-to-one function of the parameter $\tau(\theta)$?
- Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Bernoulli (θ) , where $\theta \in (0, 1)$. Find the MLE of θ^2 . Let $z = \Theta^2$. Then $L(\tau|\vec{x}) = \sqrt{\tau} \frac{\xi_{x_i}}{(1-\sqrt{\tau})}$ $\Rightarrow l(z|\vec{x}) = \xi_{X_i} \cdot lop(Jz) + (n - \xi_{X_i}) \cdot log(1 - Jz)$ $\Rightarrow S(z|x) = \frac{zx_i}{2z} + \frac{n-zx_i}{2(x-\sqrt{x})} \stackrel{\text{eff}}{=} 0$ $\dots \rightarrow \int \overline{t} = \overline{x}_n$ $\Rightarrow \hat{Y} = (\vec{x}_{x})^{2}$ $\Rightarrow \hat{\mathfrak{r}}_{me}(\vec{X}) = (\vec{X}_{n})^{2} = (\Theta_{me}(\vec{X}))^{2}.$

EXERCISE: second derivative test!

 \mathcal{A}

Reparameterization

• That wasn't a coincidence

• Theorem 2.1 (Invariance Property): If $\hat{\theta}(\mathbf{X})$ is an MLE of $\theta \in \Theta$ and $\tau(\cdot)$ is a bijection, then the MLE of $\tau(\theta)$ is given by $\tau(\hat{\theta}(\mathbf{X}))$. is $\tau(\hat{\theta}_{max}) = \tau(\hat{\theta}_{max})$ "plup-in estimator Proof. Let $\psi = \chi(\theta)$ so that $\theta = \chi'(\psi)$, and also let $\hat{\psi} := \chi(\hat{\theta})$. Let the likelihood under Θ be $L(\Theta(\vec{x}))$ and the likelihood under Ψ be $L^*(\Psi(\vec{x}))$. Eq: we can pocometrize the exponential distribution os Then for any $\Psi = \tau(\Theta) \in \tau(\Theta)$, $E_{xp}(rate=0)$ with pdf $f_{\theta}(x) = \Theta e^{-\Theta x}$, or as $= f_{y^{-1}(\psi)}(\vec{x})$ $L^{*}(\tilde{\psi}|\vec{x}) = f_{r^{*}(\tilde{\psi})}(\vec{x})$ Exp(scale=4) with pdf $\frac{1}{4}e^{-x_{4}}$; i.e., $\Psi = \chi(\Theta) = \frac{1}{6}$. If we absolve a single X = x, then $\lfloor \stackrel{\text{\tiny (41x)}}{=} = \frac{1}{\Psi} e^{-x/\psi} = \theta e^{-x\theta} = f_{\theta}(x) = f_{t^{-1}(\psi)}(x).$ $= L^{*}(\Psi | \vec{x})$. = [(س'(ψ)|x) flance i maximizer L*(1)] $= \left| \left(\hat{\theta} \right| \hat{x} \right)$ 三门日文 Prompt: what it is not one-to-one? $= | (v'(\Psi) | \vec{x})$ <ロ > < 同 > < 三 > < 三 > < □ > < E. $\mathscr{O} \mathcal{Q} \mathcal{O}$

Reparameterization

• Example 2.17: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Bernoulli (p) where $p \in (0, 1)$. Find the MLE of $\tau(p) = \log\left(\frac{p}{1-p}\right)$.

From before,
$$\hat{p}_{me}(\vec{x}) = X_n$$
.
Since $log(\frac{x}{1-x})$ is a bijection between (0,1) and IR, the
invariance property says that $\hat{z}_{me}(\vec{x}) = log(\frac{\bar{X}_n}{1-\bar{X}_n})$.

On Quercus: Module 1 - Poll 3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MOMs versus MLEs

- Maximum likelihood is by far the most common method that statisticians use to find point estimates¹; when in doubt, it's usually a good idea to use maximum likelihood if you can
- How do MOMs compare to MLEs?
- MLEs ce transformation invariant (MOMs aren't)
- MLEs one always in Q, or at least the closure of Q (MOMs arent)
- Neither MOMs nor MLES always have the "correct" expectation; is, IEo[Ômm(X)], IEo[Ômm(X)] = 0
- Neither MOMs nor MLEs one always asseilable in closed form (only for simple models)
- -MLES, when unique, ore always functions & every sufficient statistic (MOMCODIE) EXERCISE!
- MLES have nicer asymptotic properties (Madule 5 stuff)

¹Assuming those statisticians aren't Bayesians – more on that in Module $6 \rightarrow 4 \equiv 9 = 9 \propto 2$

6 (x)= 2X.

e.g.

Milf (D, e): Ême (x) = Xm

Evaluating Estimators

- Back to the idea of what makes a point estimator "good"
- From now on, we focus on point estimators of $\tau(\theta)$, rather than θ
- It turns out there's a much more convenient way to assess the quality of a point estimator estimator than our earlier thoughts
- Consider the *error* (or *absolute deviation*) of an estimator $|T(\mathbf{X}) \tau(\theta)|$, which is of course a random variable
- It's too much to ask for this to *always* be small; some random sample \mathbf{X}_j may be an "outlier", so that $T(\mathbf{X}_j)$ is far from $\tau(\theta)$
- But we can ask for it to be small on average

SQ Q

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Mean-Squared Error

- In other words, it's reasonable to ask for $\mathbb{E}_{\theta}\left[|T(\mathbf{X}) \tau(\theta)|\right]$ to be small $\boldsymbol{\theta} \boldsymbol{\vartheta}$
- That's fine, but it turns out that for mathematical reasons, it's much more convenient to ask for the squared error $(T(\mathbf{X}) \tau(\theta))^2$ to be small on average
- Definition 2.7: Let T(X) be an estimator for τ(θ). The mean-squared error (MSE) is defined as

$$\mathsf{MSE}_{\theta}\left(T(\mathbf{X})\right) = \mathbb{E}_{\theta}\left[\left(T(\mathbf{X}) - \tau(\theta)\right)^{2}\right].$$

- So why not look for the $T(\mathbf{X})$ that minimizes the MSE for all $\theta \in \Theta$?
- Because unfortunately, such a $T(\mathbf{X})$ almost never exists
- Let's try to restrict the class of estimators under consideration to one where minimizers of the MSE are easier to find

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bias

• Definition 2.8: The **bias** of a point estimator $T(\mathbf{X})$ is defined as

$$\mathsf{Bias}_{\theta}\left(T(\mathbf{X})\right) = \mathbb{E}_{\theta}\left[T(\mathbf{X})\right] - \tau(\theta).$$

If $\text{Bias}_{\theta}(T(\mathbf{X})) = 0$, then $T(\mathbf{X})$ is said to be an **unbiased estimator** of $\tau(\theta)$. (i.e., $\text{Ext}(\mathbf{X}) = \tau(\theta)$)

• Example 2.18:

$$X_{1,...,} X_{n} \stackrel{\text{iii}}{\longrightarrow} N(\mu, \sigma^{n}), \mu \in \mathbb{R}, r^{2} > 0.$$
 Then $T(\vec{x}) = X_{n}$ is unbiased for μ .
 $T_{2}(\vec{x}) = S_{n}^{n}$ is unbiased for σ^{2} is always unbiased for $(E(x), Va(x))$
 $X_{1,...,} X_{n} \stackrel{\text{iii}}{\longrightarrow} Bernulli(p), pe(0,1).$ Then $T(\vec{x}) = X_{n}$ is unbiased for p .
 $Bios_{p}(T(\vec{x})) = IE_{p}(T(\vec{x}) - p = IE_{p}(\frac{1}{n} \leq X; 1) - p = 0.$

• Example 2.19:

$$X_{1}...,X_{n} \text{ if } N(0,\sigma), \quad z(\sigma^{2}) = \sigma^{2}.$$

$$\operatorname{Bios}_{r}\left(\widehat{\sigma}_{mu}^{2}(\overline{X})\right) = \operatorname{Bios}_{r}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X}_{n})^{2}\right) = \left(\frac{n-1}{n}\right)\sigma^{2} - \sigma^{2} = \frac{\sigma^{2}}{n} \neq 0.$$

$$\operatorname{Bios}_{r}\left(\widehat{\sigma}_{mu}^{2}(\overline{X})\right) = \operatorname{Bios}_{r}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X}_{n})^{2}\right) = \left(\frac{n-1}{n}\right)\sigma^{2} - \sigma^{2} = \frac{\sigma^{2}}{n} \neq 0.$$

$$\operatorname{Bios}_{r}\left(\widehat{\sigma}_{mu}^{2}(\overline{X})\right) = \operatorname{Bios}_{r}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X}_{n})^{2}\right) = \left(\frac{n-1}{n}\right)\sigma^{2} - \sigma^{2} = \frac{\sigma^{2}}{n} \neq 0.$$

$$\operatorname{Bios}_{r}\left(\widehat{\sigma}_{mu}^{2}(\overline{X})\right) = \operatorname{Bios}_{r}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X}_{n})^{2}\right) = \left(\frac{n-1}{n}\right)\sigma^{2} - \sigma^{2} = \frac{\sigma^{2}}{n} \neq 0.$$

Unbiased Estimators Don't Always Exist

• Example 2.20: Let $X \sim \text{Bernoulli}(\theta)$, where $\theta \in (0, 1)$. There exists no unbiased estimator of $\tau(\theta) = \frac{1}{\theta}$.

Suppose
$$T(X)$$
 is unbiased for $\chi(\theta) = i\theta$.
Then $\frac{1}{\theta} = IE_{\theta}[T(X)] = T(\theta) \cdot IB(X=\theta) + T(i) \cdot P(X=i)$
 $= T(\theta) \cdot (i-\theta) + T(i) \cdot \theta \quad \forall \theta \in (0,i).$
But to is a follow $\theta \ge 0$ but the RHS $\longrightarrow T(\theta) \in \mathbb{R}$.

But to is unbunded on $\Theta \supset O$, but the RHS $\longrightarrow T(O) \in \mathbb{R}$. This can't happen! So T(X) comot exist.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<ロト < 団 > < 団 > < 団 > < 団 > 三 三

The Bias-Variance Tradeoff
 Theorem 2.2 (Bias-Variance Tradeoff): If a point estimator T(X) has a finite second moment, then

 $\mathsf{MSE}_{\theta}\left(T(\mathbf{X})\right) = \mathsf{Bias}_{\theta}\left(T(\mathbf{X})\right)^{2} + \mathsf{Var}_{\theta}\left(T(\mathbf{X})\right).$

Proof. $MSE_{\theta}(T(\vec{x})) = E_{\theta}[(T(\vec{x}) - \tau(\theta))^{2}]$ = $IE_{\theta}[(T(\vec{x}) - \tau(\theta)]^{2} + V\sigma_{\theta}(T(\vec{x}) - \tau(\theta))$ = $Bios_{\theta}(T(\vec{x}))^{2} + V\sigma_{\theta}(T(\vec{x}))$.

So among all estimators with a fixed MSE, we must choose between more accuracy + less precision, or vice versa.

SQ P

Poll Time!

On Quercus: Module 1 - Poll 4

590

(ロ)

Best Unbiased Estimation

- So let's restrict our attention to the class of unbiased estimators, and *then* choose the one (or ones?) with the lowest MSE
- Equivalently, choose the unbiased estimator (or estimators?) with the lowest variance
- Definition 2.9: An unbiased estimator T^{*}(X) of τ(θ) is a best unbiased estimator of τ(θ) if

$$\operatorname{Var}_{\theta}(T^{*}(\mathbf{X})) \leq \operatorname{Var}_{\theta}(T(\mathbf{X})) \quad \text{ for all } \theta \in \Theta$$

where $T(\mathbf{X})$ is any other unbiased estimator of $\tau(\theta)$. A best unbiased estimator is also called a **uniform minimum variance unbiased estimator** (UMVUE) of $\tau(\theta)$.

estimators of z(0)

SQ P

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Questions That We Will Answer

- How do we know whether or not an estimator $T(\mathbf{X})$ is a UMVUE for $\tau(\theta)$?
- How do we find a UMVUE for $\tau(\theta)$?
- Are UMVUEs unique?

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ> < □ > < □ > < □ > < □ > < □ >

An Ubiquitous Inequality in Mathematics

- Recall (from Assignment 0)
- Theorem 2.3 (Cauchy-Schwarz Inequality): Let X and Y be random variables, each having finite, nonzero variance. Then

$$|\mathsf{Cov}\,(X,Y)| \leq \sqrt{\mathsf{Var}\,(X)\,\mathsf{Var}\,(Y)}.$$

Furthermore, if Var (Y) > 0, then equality is attained if and only if $X = t^*Y + s^*$, where

$$t^* = rac{\mathsf{Cov}\,(X,Y)}{\mathsf{Var}\,(Y)}$$
 and $s^* = \mathbb{E}\,[X] - \mathbb{E}\,[Y] \cdot rac{\mathsf{Cov}\,(X,Y)}{\mathsf{Var}\,(Y)}.$

 \mathcal{A}

<ロ> < 回> < 回> < 回> < 回> < 三> < 三> 三三

UMVUEs Are Unique $(w(x,y) = \mathbb{E}[xy] - \mathbb{E}[x] \cdot \mathbb{E}[y]$

• Theorem 2.4: If a UMVUE exists for $\tau(\theta)$, then it is unique.

Proof. Let W and W' be two UNNUESS &
$$t(a)$$
. Let $W' = \frac{1}{2}(W+W)$.
(leady, W' is unbiased for $z(a)$, and monasular,
 $Varg(W') = \frac{1}{4}Varg(W) + \frac{1}{4}Varg(W) + \frac{1}{2}Org(W) - Varg(W) -$

The Rao-Blackwell Theorem

It turns out that sufficiency can help us in our search for the UMVUE in powerful ways
 We say W is based on T"

• Theorem 2.5 (Rao-Blackwell): Let $W(\mathbf{X})$ be unbiased for $\tau(\theta)$, and let $T(\mathbf{X})$ be sufficient for θ . Define $W_T(\mathbf{X}) = \mathbb{E}_{\theta} [W(\mathbf{X}) \mid T(\mathbf{X})]$. Then $W_T(\mathbf{X})$ is also an unbiased point estimator of $\tau(\theta)$, and moreoever, $\operatorname{Var}_{\theta}(W_T(\mathbf{X})) \leq \operatorname{Var}_{\theta}(W(\mathbf{X})).$ (i.e., conditioning unbiased. point estimators on sufficient statistics never hurle!) <u>Unbiasedness</u>: $\mathbb{E}_{\sigma}[W_{T}(\vec{x})] = \mathbb{E}_{\sigma}[\mathbb{E}_{\sigma}[W(\vec{x})] = \varepsilon(\vec{\sigma})$ Proof. Smaller variance: Varo(W(X)) = IEo[Varo(W(X)(T(X))] + Varo(IEo[W(X)(T(X)]) $= W_{\tau}(\vec{X})$ $\geq V_{0}(w_{\tau}(\vec{x}))$. D

What about sufficiency? If T weren't sufficient, then ES[W(X) (T(X)) wouldn't be face of D (and hence, not a point estimator)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Interpreting Rao-Blackwellization

- The process of replacing an estimator with its conditional expectation (with respect to a sufficient statistic) is called **Rao-Blackwellization**
- Theorem 2.5 says that we can always improve on (or at least make no worse) any unbiased estimator $W(\mathbf{X})$ with a second moment by Rao-Blackwellizing it
- Example 2.21: X₁,..., X_n ≈ Poisson(λ), λ>0.
 We have at least two unbiased estimators for λ: X_n and S_n².
 But X_n is sufficient for λ by Theorem 1.2, so IE[S_n] X_n] is better than S_n² itself.

SQ (~

Rao-Blackwell: Examples

$$Z_{i} \sim Bin(nk, \Theta) \Rightarrow Z_{i} \sim Bin((n-i)k, \Theta)$$

• Example 2.22: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Bin (k, θ) , where $\theta \in (0, 1)$ and k is known. Let $\tau(\theta) = k\theta(1-\theta)^{k-1}$. Show that $W(\mathbf{X}) = \mathbb{1}_{X_1=1}$ is unbiased for $\tau(\theta)$, and then Rao-Blackwellize it. Unbiasedness: $\mathbb{E}_{\theta}[W(\hat{\mathbf{x}}_{\lambda})] = \mathbb{P}_{\theta}(\mathbf{x}_{1}=1) = \mathbf{k} \Theta(1-\theta)^{\mathbf{k}-1} = \mathbf{r}(\theta).$ Now, recall that $T(\vec{x}) = \underbrace{\mathbb{E}}_{\mathcal{F}} X$; is sufficient for Θ . So let $W_{T}(\vec{x}) = \mathbb{E}_{\mathcal{F}} [W(\vec{x})|T(\vec{x})]$. $B(X_{1}=1)-B(\tilde{Z}_{1}X_{1}=t-1)$ Suppose T(x)=t. Then ... $E[W(\vec{x})|T(\vec{x})=t]$ $\mathbb{R}(\mathbb{Z}X;=t)$ $= \mathbb{K} \Theta(1-\Theta)^{\mathbb{K}-1} \cdot \binom{\mathbb{K}(n-1)}{t-1} \Theta^{t-1}(1-\Theta)^{\mathbb{K}(n-1)-(t-1)}$ $= P(x_{i}=1) \leq x_{i}=1$ $\binom{kn}{t} \Theta^{t} (1 - \Theta)^{kn-t}$ $= B(X_{i}=1) \land \leq X_{i}=1)$ $R(\Sigma X; =t)$ $= \frac{k(k(n-b))}{t}$ $= IB(X_{1}=1 \land X_{1}=t-1)$ $S_{0} W_{T}(\overline{X}) = \frac{k(n-1)}{\xi x_{1}-1} / \binom{kn}{\xi x_{2}}$ $R(\leq X_i = t)$

 $\mathscr{O} \mathcal{Q} \mathcal{O}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Lehmann-Scheffé Theorem

• Theorem 2.6 (Lehmann-Scheffé Theorem): Let $W(\mathbf{X})$ be unbiased for $\tau(\theta)$ and let $T(\mathbf{X})$ be a complete sufficient statistic, for all $\theta \in \Theta$. Then $W_T(\mathbf{X}) = \mathbb{E}[W(\mathbf{X}) \mid T(\mathbf{X})]$ is the unique UMVUE.

Proof. Suppose that $V(\vec{x})$ is a UMVUE for $z(\Theta)$. Then $V_T(\vec{x}) = \mathbb{E}[V(\vec{x})|T(\vec{x})]$ is also unbiased for $z(\Theta)$ and $Va_{\Theta}(V_T(\vec{x})) \leq Va_{\Theta}(V(\vec{x}))$ by Rao-Blackwell, so if too must be a UMVUE. By Theorem 2.4, $V(\vec{x}) = V_T(\vec{x})$.

Then
$$O = \mathbb{E}\left[V_{\tau}(\vec{x})\right] - \mathbb{E}\left[W_{\tau}(\vec{x})\right]$$

= $\mathbb{E}\left[\mathbb{E}\left[V(\vec{x}) + V(\vec{x})\right] - \mathbb{E}\left[\mathbb{E}\left[W(\vec{x}) + V(\vec{x})\right]\right]$
= $\mathbb{E}\left[\mathbb{E}\left[V(\vec{x}) - W(\vec{x}) + V(\vec{x})\right]\right]$
= $\mathbb{E}\left[\mathbb{E}\left[V(\vec{x}) - W(\vec{x}) + V(\vec{x})\right]\right]$
= $\mathbb{E}\left[h(\tau x)\right] + \theta \in \Theta$.

By completeness,
$$B(h(\tau(\vec{x}))=0)=1$$
 $H \in \mathbb{R}$.
So $W_{\tau}(\vec{x})=V_{\tau}(\vec{x})=V(\vec{x})$. So the (UMV/LE is $E[W(\vec{x})|T(\vec{x})]$.

More On Lehmann-Scheffé

- This is a bit startling
- If we take some unbiased estimator and condition it on a complete sufficient statistic, then the resulting estimator is *the* UMVUE
- As such, if we find an unbiased estimator $T(\mathbf{X})$ of $\tau(\theta)$ which is also a complete sufficient statistic, then we're done
- However, Lehmann-Scheffé assumes that a complete sufficient statistic exists (which isn't always the case, as we know from Module 1), so it doesn't subsume Theorem 2.4
- In fact, there do exist models where UMVUEs exist but complete sufficient statistics don't

SQ Q

Lehmann-Scheffé: Examples

- Example 2.23: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Find the UMVUE of (μ, σ^2) .
 - We know that (\overline{X}_n, S_n^2) is a complete rufficient statistic (eg. Ex 1.29, Theorem 1.28, Assignment 1).

Also
$$(\overline{X}_{n}, S_{n})$$
 is unbiased for (p, σ^{2}) .
By Lehmonn-Scheffe, $T(\overline{X}) = (\overline{X}_{n}, S_{n}^{2})$ is the UMNUE $\mathcal{E}(p, \sigma^{2})$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Lehmann-Scheffé: Examples

- Example 2.24: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Poisson (λ) , where $\lambda > 0$. Find the UMVUE of λ .
 - We know that X_n is unbiased for λ , and its also a complete sufficient statistic.
 - By Lehmann-Scheffé, T(x)=Xu is the UMVUE & X.

(日)

Poll Time!

On Quercus: Module 1 - Poll 5

590

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What About the Likelihood?

- Rao-Blackwellization and Lehmann-Scheffé tell us how to get the unique UMVUE (if it exists) via complete sufficient statistics
- The likelihood wasn't involved
- It turns out there exists a very helpful tool that helps us with finding the UMVUE (if it exists) by exploiting the likelihood
- It doesn't always work...
- But when it does, it works like a charm
- But we need several auxiliary results to produce it

SQ Q

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

The Covariance Inequality

• Theorem 2.7 (Covariance Inequality): Let $T(\mathbf{X})$ and $U(\mathbf{X})$ be two statistics such that $0 < \mathbb{E}_{\theta} \left[T(\mathbf{X})^2 \right], \mathbb{E}_{\theta} \left[U(\mathbf{X})^2 \right] < \infty$ for all $\theta \in \Theta$. Then

$$\mathsf{Var}_{\theta}\left(T(\mathbf{X})\right) \geq \frac{\mathsf{Cov}_{\theta}\left(T(\mathbf{X}), U(\mathbf{X})\right)^{2}}{\mathsf{Var}_{\theta}\left(U(\mathbf{X})\right)} \qquad \text{for all } \theta \in \Theta.$$

Equality holds if and only if

$$T(\mathbf{X}) = \mathbb{E}_{\theta} \left[T(\mathbf{X}) \right] + \frac{\mathsf{Cov}_{\theta} \left(T(\mathbf{X}), U(\mathbf{X}) \right)}{\mathsf{Var}_{\theta} \left(U(\mathbf{X}) \right)} \left(U(\mathbf{X}) - \mathbb{E}_{\theta} \left[U(\mathbf{X}) \right] \right)$$

with probability 1.

Proof. Apply Cauchy-Schwarz to
$$X = T(\overline{X})$$
 and $\overline{Y} = U(\overline{X})$
and square everything. \Box

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

The Fisher Information

Definition 2.10: Let X = (X₁,...,X_n) ~ f_θ, and let S(θ | x) be the score function for the parametric model. The (expected) Fisher information is the function I_n : Θ → [0,∞) defined by

$$I_n(\theta) = \mathsf{Var}_{\theta} \left(S(\theta \mid \mathbf{X}) \right).$$

Definition 2.11: Let X = (X₁,...,X_n) ~ f_θ, and let S(θ | x) be the score function for the parametric model. The observed Fisher information is the function J_n : Xⁿ → [0,∞) defined by

The Fisher Information: Examples

• Example 2.25: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Poisson (λ) , where $\lambda > 0$. Calculate the observed and expected Fisher information for λ .

$$L(\lambda|x) = \prod_{i=1}^{n} \frac{\lambda^{k_i} e^{-\lambda x_i}}{x_i!}$$

$$\Rightarrow \mathcal{L}(\lambda | \vec{x}) = \xi_{X_{1}} \cdot \log(\lambda) - n\lambda + c , \text{ whore } cell \text{ is fore } \delta \lambda$$

$$\Rightarrow S(\lambda | \vec{x}) = \frac{\xi_{X_{1}}}{\lambda} - n$$

$$I_{n}(\lambda) = Va_{\lambda} \left(\frac{\xi_{X_{1}}}{\lambda} - n \right)$$

$$= \frac{1}{\lambda^{2}} Va_{\lambda}(\xi_{X_{1}})$$

$$= \frac{1}{\lambda^{2}} \cdot n\lambda$$

$$I_{n}(\vec{x}) = \frac{\xi_{X_{1}}}{\lambda} = \frac{n}{\lambda^{2}} \cdot \frac{1}{\lambda}$$

$$I_{n}(\vec{x}) = \frac{\xi_{X_{1}}}{\lambda} = \frac{n}{\lambda} \cdot \frac{1}{\lambda}$$

$$I_{n}(\vec{x}) = \frac{\xi_{X_{1}}}{\lambda} = \frac{n}{\lambda} \cdot \frac{1}{\lambda} \cdot \frac{1}{\lambda}$$

= "

E

SQ P

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Fisher Information: Examples

• Example 2.26: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and σ^2 is known. Calculate the observed and expected Fisher information for μ .

From Ex. 2.12,
$$S(p(x) = \frac{\Xi x; -nv}{\sigma^2})$$
.
 $T_n(v) = V_{av_{fv}}(\frac{\Xi x; -nv}{\sigma^2})$
 $= \frac{1}{\sigma^4} V_{av_f}(\Xi x;)$
 $= \frac{n}{\sigma^2}$
Here they're the same, but
they're uscoly different!

 $\mathcal{A} \mathcal{A} \mathcal{A}$

The Cramér-Rao Lower Bound (CRUR)

• Theorem 2.8 (Cramér-Rao Lower Bound): Let $\mathbf{X} = (X_1, \dots, X_n) \sim f_{\theta}$, and let $T(\mathbf{X})$ be any estimator such that $\mathbf{Var}_{\theta}(T(\mathbf{X})) < \infty$ and $\mathbf{Z} \frac{d}{d\theta} \mathbb{E}_{\theta}[T(\mathbf{X})] = \int_{\mathbf{V}} \frac{\partial}{\partial \theta} [T(\mathbf{x})f_{\theta}(\mathbf{x})] \, \mathrm{d}\mathbf{x}.$

Then

$$\mathsf{Var}_{\theta}\left(T(\mathbf{X})\right) \geq \frac{\left(\frac{d}{d\theta}\mathbb{E}_{\theta}\left[T(\mathbf{X})\right]\right)^{2}}{I_{n}(\theta)}$$

In particular, if $T(\mathbf{X})$ is unbiased for $\tau(\theta)$ and $\tau(\cdot)$ is differentiable on Θ , then

$$\operatorname{Var}_{\theta}\left(T(\mathbf{X})\right) \geq \frac{\left(\tau'(\theta)\right)^2}{I_n(\theta)}.$$

Proof. In the covariance inequality, let $U(\vec{x}) = S(\Theta|\vec{x}) = \frac{2}{3} l(\Theta|\vec{x})$. Then $(ov_b(T(\vec{x}), S(\Theta|\vec{x})) = E_0(T(\vec{x}) \cdot S(\Theta|\vec{x})) - E_0(T(\vec{x}) \cdot E_0(S(\Theta|\vec{x})))$

4) Q (3

The Cramér-Rao Lower Bound

$$I = \int_{T(\vec{x})} T(\vec{x}) \cdot S(\Theta(\vec{x}) \cdot J_{\Theta}(\vec{x}) \, J_{\vec{x}}$$

$$= \int_{T(\vec{x})} T(\vec{x}) \cdot \left(\frac{1}{2\Theta} L(\Theta(\vec{x})) \cdot J_{\Theta}(\vec{x}) \, J_{\vec{x}}\right)$$

$$= \int_{T(\vec{x})} \left(\frac{1}{2\Theta} L(\Theta(\vec{x})) \cdot J_{\Theta}(\vec{x}) \, J_{\vec{x}}\right)$$

$$= \int_{2\Theta} J_{\Theta}(\vec{x}) \cdot J_{\Theta}(\vec{x}) \, J_{\vec{x}}$$

$$= \int_{2\Theta} J_{\Theta}(\vec{x}) \, J_{\Theta}(\vec{x}) \, J_{\Theta}(\vec{$$

July 9-11, 2024 58 / 66

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 亘 < 三</p>

The Cramér-Rao Lower Bound Conditions

- Unfortunately, the conditions of the Cramér-Rao Lower Bound don't always hold
- The first says that our estimator must actually have a variance to minimize, which seems reasonable
- Example 2.27: IP X,..., X~ N(r,1). Don't tay T(x) = X/Xn. It won't work!
- The second says that we need to be able to push a derivative inside an integral, which is more subtle
- When would this condition fail to hold?
- Example 2.28: $\operatorname{Wrif}(Q, \overline{\Theta}) \xrightarrow{} \operatorname{Sapport} (\overline{\Theta} = (Q, \overline{\Theta}) \text{ depends in } \overline{\Theta}.$ $\frac{1}{\sqrt{\Theta}} \mathbb{E}_{\Theta}(T(\overline{X})) \neq \int_{\Omega} (\frac{2}{\sqrt{\Theta}}T(\overline{X}) \cdot \frac{1}{\Theta}) d\overline{X} \text{ in general.}$ $\operatorname{Try}_{(Q, \Theta)^{n}} \operatorname{Try}_{(X, \Theta)^{n}} = \frac{1}{\sqrt{\Theta}} \mathbb{E}_{\Theta}(T(\overline{X})) = \frac{1}{\sqrt{\Theta}} \mathbb{E}_{\Theta}(T(\overline{$

Easing the Computation

• Theorem 2.9: Under the conditions of Theorem 2.8,

$$I_n(\theta) = \mathbb{E}_{\theta} \left[S(\theta \mid \mathbf{X})^2 \right].$$

Proof. $I_n(\theta) = \sqrt{\alpha_{\theta}(S(\theta|\vec{x}))}$ by definition $= IE[S(\theta|\vec{x})^2] - IE[S(\theta|\vec{x})]^2$ = 0 from the profit of the CPUB

• Theorem 2.10: If $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} f_{\theta}$ and conditions of Theorem 2.8 hold,

$$I_n(\theta) = n \mathbb{E}_{\theta} \left[S(\theta \mid X_{\mathbf{v}})^2 \right].$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

More Easing

• Theorem 2.11 (Second Bartlett Identity): If $X \sim f_{\theta}$ and f_{θ} satisfies

$$\frac{d}{d\theta} \underbrace{\mathbb{E}_{\theta} \left[S(\theta \mid X) \right]}_{= \mathbf{0}} = \int_{\mathcal{X}} \frac{\partial}{\partial \theta} \left[S(\theta \mid x) f_{\theta}(x) \right] \, \mathrm{d}x,$$

(which is true when f_{θ} is in an exponential family) then

$$\mathbb{E}_{\theta} \left[S(\theta \mid X)^{2} \right] = -\mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} S(\theta \mid X) \right].$$
Proof. $\mathbb{P}HS = -\mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log(f_{\theta}(X)) \right]$

$$= -\mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \left(\frac{1}{f_{\theta}(X)} \cdot \frac{\partial}{\partial \theta} f_{\theta}(X) \right) \right]$$

$$= -\mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \left(\frac{1}{f_{\theta}(X)} \cdot \frac{\partial}{\partial \theta} f_{\theta}(X) \right) \right]$$

$$= -\mathbb{E}_{\theta} \left[\cdots \cdots \cdots \right] \qquad \text{Exercise 1 Jos finish it aff!}$$
It's a bit tridy. Use the assumptions...

 \mathcal{A}

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Efficiency

- Definition 2.12: An estimator $T(\mathbf{X})$ of $\tau(\theta)$ that attains the Cramér-Rao Lower Bound is called an efficient estimator of $\tau(\theta)$.
- What's the connection between UMVUEs and efficient estimators?
- If an efficient estimator exists, then it must be the UMVUE
- But an efficient estimator doesn't always exist, as we'll soon see

E.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ> <同> <同> < 同> < 同>

Efficiency: Examples

• Example 2.29: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Show that $T(\mathbf{X}) = X_n$ is an efficient estimator for μ . We need to calculate the CPLB for estimators of p, and also Vor, (T(x)), and show that they're equal. We know that \lor, (T(R) = 01/n. What about the CPUB? Numerator: $\left(\frac{d}{dy} \left[E_{y} \left[T(x) \right]^{2} = \left(\frac{d}{dy} y\right)^{2} = 1$. Dergninator: In(v) = No2 from Example 2.26. So the CRUB is ... / My = 02 = Vol Xn). So T(X) = Xn is efficient for u.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

A Criterion for Efficiency

- Is there a better way to find efficient estimators than simply making an educated guess?
- Theorem 2.12: Let X₁, X₂,..., X_n ^{iid} ~ f_θ satisfy the conditions of Theorem 2.8. An unbiased estimator T(**X**) of τ(θ) is efficient if and only if there exists some function a : Θ → ℝ such that

$$S(\theta \mid \mathbf{x}) = a(\theta)[T(\mathbf{x}) - \tau(\theta)].$$

Proof. From the auditoria inequality, equality holds in the CLUE iff

$$T(\vec{x}) = \left[E_0[T(\vec{x})] + \frac{(a_{10}(T(\vec{x}), S(0|\vec{x}))^2}{Va_0(S(0|\vec{x}))}, \left(S(0|\vec{x}) - E_0[S(0|\vec{x})] \right) \right]$$

$$= \tau(\theta) + \frac{(\tau'(\theta))^2}{E_0(\theta)}, S(\theta|\vec{x})$$
iff $S(0|\vec{x}) = \left(\frac{L(\theta)}{(\tau'(\theta))^2}, (T(\vec{x}) - \tau(\theta)) \right)$

$$= \tau(\theta)$$

Efficiency: Examples

• Example 2.30: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Show that there exists no efficient estimator of σ^2 .

If there did exist me, say T(x), then there would be some function a(r>) such that $S(\sigma^2 | \vec{x}) = \alpha(\sigma^2) \cdot (T(\vec{x}) - \sigma^2)$. But some manipulation (EXERCISE) chave that $S(\sigma^2|\vec{x}) = \frac{n}{2\sigma^4} \left(\frac{2}{2} \frac{(x-p)^2}{p} - \sigma^2 \right)$ By Theorem 2.12, the only possible condidate for $T(\vec{X})$ is $T(\vec{X}) = \frac{2}{n} \frac{(X - \mu)^2}{n}$, which is not a point estimator becase is inknown! So no efficient estimator & J2 exists. Rut a UMVUE certainly does!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三

Efficiency: Examples

- If an unbiased point estimator is efficient, then it's the UMVUE but the converse is not true in general
- Example 2.31: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Poisson (λ), where $\lambda > 0$. Show that an efficient estimator of $\tau(\lambda) = \mathbb{P}_{\lambda}(X = 0)$ does not exist, and find its UMVUE. $S(\lambda|x) = \frac{S_{x_i}}{\lambda} - n = \frac{S_{x_i}}{\lambda} - n + e^{-\lambda} - e^{-\lambda}$. Clearly no efficient estimator of $e^{-\lambda}$ exists, by Theorem 2.12. But consider W(x)=1x,=0, which is $T(\vec{x}) = \tilde{Z}(\vec{x})$; is a complete sufficient statistic for λ . By Lehman-Scheffé, $W_T(\vec{x}) =$ [E[W(X) | T(X)] = [P(X,=0 | SX;) is the UMVUE of r(X). How do we use it? Check that $\overset{\sim}{\geq} X_i \sim \text{Poisson}(n \lambda)$ and $\overset{\sim}{\times} (\overset{\sim}{\geq} X_i = t$ has pmf $(x_{1,...,x_n}) (\overset{\perp}{n})^{x_{1...}} (\overset{\perp}{n})^{x_{n...}}$ which make X (Z X = t ~ Multinomial (t; tr, ..., tr) and X, (Z X = t ~ Bin(t, t)) Hence $W_{T}(\vec{x}) = P(x_{t}=0|\hat{z}x_{t}) = (1-\hat{n})^{\underline{z}x_{t}}$ is the UMVUE $\mathcal{E} = e^{-\lambda}$. <ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > < - - > 3 SQ P

As $n \rightarrow \infty$, $\Sigma X_{i} \sim n \lambda$ by the WLLN, so for large n, $\int_{asymptotically approaches}^{i}$, $(1-\frac{1}{n})^{i} \sim \frac{2X_{i}}{n\lambda} \rightarrow 1$ as $n \rightarrow \infty$ $\left(\left|-\frac{1}{n}\right)^{\frac{2}{2}X_{i}}\sim \left(\left|-\frac{1}{n}\right)^{n\lambda}$ Does the RHS remind you of any-thing ...?