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Extracting Information

In Module 1, we learned about how a statistic can capture (or not capture)
the information provided by our data sample X = (X1, . . . , Xn) ≥ f◊ about
the unknown parameter ◊ œ �

For the remainder of the course, our focus will be on how to extract that
information

In Module 2, we have one goal: to estimate the parameter ◊ — or some
function of the parameter ·(◊) — as best we can (whatever that means)

Example 2.1:
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Point Estimation

How do we estimate ◊ from the observed data x?

Ideally, we want some statistic T (X) such that T (x) will be close to ◊

Definition 2.1: Suppose X1, X2, . . . , Xn
iid≥ f◊. A point estimator ◊̂ = ◊̂(X)

is a statistic used to estimate ◊.

How do we find good point estimators?
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Poll Time!

On Quercus: Module 2 - Poll 1
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Choosing “Good” Point Estimators

A point estimator ◊̂(X) is a random variable, so it has its own distribution
(as does any statistic)

Definition aside, it would seem that the best point estimator is the constant
◊̂(X) = ◊, but of course this is unattainable

The constant ◊ has E◊ [◊] = ◊ and Var◊ (◊) = 0

It would be nice if the distribution of ◊̂(X) got close to these properties:
E◊

Ë
◊̂(X)

È
¥ ◊ and Var◊

1
◊̂(X)

2
¥ 0

It would also be good if Var◊

1
◊̂(X)

2
got lower as the sample size n got

bigger (if we’re willing to pay good money for more samples, we should
demand a higher precision in return)
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Moments Are (Often) Functions of Parameters

Here’s one approach to choosing ◊̂

In parametric families, it is often the case that the parameters are functions
of the moments (i.e., E◊ [X], E◊

#
X2$

, E
#
X3$

, and so on)

Example 2.2:
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Towards the Method of Moments

Suppose X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

and we want to estimate µ

We know that E [X1] = µ and E
#
X2

1
$

≠ E [X1]2 = ‡2

So if we took µ̂(X) = X1, then we’d have

Can we do better?

Now suppose we want to estimate both µ and ‡2

If we let m1(X) = 1
n

qn
i=1 Xi and m2(X) = 1

n

qn
i=1 X2

i , then
m1(X) d≠æ and m2(X) d≠æ

Therefore m2(X) ≠ m1(X)2 d≠æ
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The Method of Moments

E�ectively, we’re replacing the true moments with the sample moments

Definition 2.2: Suppose we have k parameters ◊1, ◊2, . . . , ◊k to estimate in a
paremetric model, and each one is some function of the first k moments:

◊j = Âj

3
E◊ [X] ,E◊

#
X2$

, . . . ,E◊

#
Xk

$ 4
, 1 Æ j Æ k.

The Method of Moments (MOM) estimator for ◊j is defined by choosing

◊̂j(X) = Âj

3
m1(X), m2(X), . . . , mk(X)

4
, 1 Æ j Æ k,

where mj(X) =
qn

i=1 Xj
i .
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Method of Moments: Examples

Example 2.3: Suppose X1, X2, . . . , Xn
iid≥ Poisson (⁄), where ⁄ > 0. Find the

MOM estimator for ⁄.
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Method of Moments: Examples

Example 2.4: Suppose X1, X2, . . . , Xn
iid≥ Bin (k, ◊), where k œ N and ◊ is

known. Find the MOM estimator for k.

Could this be a problem?
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Poll Time!

On Quercus: Module 1 - Poll 2
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Method of Moments: Examples

Example 2.5: Let X1, X2, . . . , Xn
iid≥ f–(x) = (1 + –x)/2 · xœ[≠1,1], where

– œ [≠ 1
3 , 1

3 ]. Find the MOM estimator for –.
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Method of Moments: Examples

Example 2.6: Suppose X1, X2, . . . , Xn
iid≥ Gamma (–, —), where –, — > 0.

Find the MOM estimators for – and —.
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The Likelihood Function

Definition 2.3: Let X ≥ f◊, where f◊ is a pdf or pmf in a parametric family.
Given the observation X = x, the likelihood function for ◊ is the function
L(· | x) : � æ [0, Œ) given by L(◊ | x) = f◊(x).

Interpret this as the “probability” of observing the sample x, given that the
sample came from f◊

So L(◊1 | x) > L(◊2 | x) says that the chance of observing X = x is more
likely under f◊1 than under f◊2

It could be that the likelihood is very small for all ◊ œ �, so knowing L(◊ | x)
for just a single ◊ is useless

Instead, we want to know how L(◊ | x) compares to L(◊Õ | x) for other
◊Õ œ �
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The Likelihood Principle

Much of modern statistics revolves around the likelihood function; it will be
with us in some form or another for the rest of our course

The likelihood principle states that if two model and data combinations
L1(◊ | x) and L2(◊ | y) are such that L1(◊ | x) = c(x, y) · L2(◊ | y), then
the conclusions about ◊ drawn from x and y should be identical

In other words, the likelihood principle says that anything we want to say
about ◊ should be based solely on L(· | x), regardless of how x was actually
obtained

Is this requirement too strong?

Example 2.7:
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Maximizing the Likelihood

Suppose there were some ◊̂ œ � which makes L(◊̂ | x) the highest; would it
be sensible to use that ◊̂ as an estimator?

If we can maximize L(◊ | x) with respect to ◊, the resulting maximizer ◊̂ will
be a function of the sample x

Example 2.8: Let X1, X2, . . . , Xn
iid≥ Bernoulli (◊), where ◊ œ (0, 1).

Maximize the likelihood with respect to ◊.
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Maximum Likelihood Estimation

Definition 2.4: Let X = (X1, . . . , Xn) ≥ f◊. Let L(◊ | x) be the likelihood
function based on observing X = x. The maximum likelihood estimate of
◊ is given by

◊̂(x) = argmax
◊œ�

L(◊ | x),

and the maximum likelihood estimator (MLE) for ◊ is the point estimator
given by ◊̂MLE = ◊̂(X).
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Maximum Likelihood: Examples

Nothing says the distribution needs to have a “nice” functional form

Example 2.9: Suppose X = {1, 2, 3} and � = {a, b}, and a parametric family
is given by the following table:

x = 1 x = 2 x = 3
fa(x) 0.3 0.4 0.3
fb(x) 0.1 0.7 0.2

Suppose we observe X ≥ f◊. Find the MLE of ◊.
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Maximum Likelihood: Examples

But when f◊ does have a nice form and is continuously di�erentiable for
◊ œ �, we can use calculus to find the MLE

Example 2.10: Let X1, X2, . . . , Xn
iid≥ Bernoulli (◊), where ◊ œ (0, 1). Find

the MLE of ◊.
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Maximum Likelihood: Examples

Suppose that X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

, where µ œ R and ‡2 is known

What happens if we try to find the MLE of µ in the same fashion?
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The Log-Likelihood

Definition 2.5: Given data x and a parametric model with likelihood function
L(◊ | x), the log-likelihood function is defined as by

¸(◊ | x) = log (L(◊ | x)) .

Maximizing the log-likelihood is equivalent to maximizing the likelihood

...but usually way easier

Rob Zimmerman (University of Toronto) STA261 - Module 2 July 9-11, 2024 21 / 66

becauseit's a monotoneincreasingfunction LOTx ̅

because itseasier to differentiate sums thanproducts

If thedata are iid then 1017 log 4017

log II FoxD
Élog tox



The Score Function

Definition 2.6: Given data x and a parametric model with log-likelihood
function ¸(◊ | x), the score function is defined as

S(◊ | x) = ˆ

ˆ◊
¸(◊ | x),

when it exists.

When ◊ = (◊1, . . . , ◊k) is a vector, this is interpreted as the gradient

S(◊ | x) = Ò¸(◊ | x) =
3

ˆ

ˆ◊1
¸(◊ | x), . . . ,

ˆ

ˆ◊k
¸(◊ | x)

4

If the likelihood function is nice enough, then any extremum ◊̂ will satisfy the
score equation S(◊̂ | x) = 0

So finding the MLE amounts to finding ◊̂ such that S(◊̂ | x) = 0 and then
checking that ◊̂ is a global maximum
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Maximum Likelihood: More Examples

Example 2.11: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

with µ œ R and ‡2 known.
Find the MLE of µ.
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Maximum Likelihood: More Examples

Example 2.12: Let X1, X2, . . . , Xn
iid≥ Exp (⁄) with ⁄ > 0. Find the MLE of

⁄.
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Maximum Likelihood: More Examples

Even if the likelihood is smooth and well-behaved, this method doesn’t
always work

Example 2.13: Let X1, X2, . . . , Xn
iid≥ �(–, 2) with – > 0. Try to find the

MLE of –.
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Maximum Likelihood: More Examples

What about when ◊ is multidimensional? We need to bring out our
multivariate calculus

Example 2.14: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

with µ œ R and ‡2 > 0.
Find the MLE of ◊ = (µ, ‡2).
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Maximum Likelihood: More Examples

The likelihood may not be di�erentiable, but that doesn’t mean it can’t be
maximized

Example 2.15: Let X1, X2, . . . , Xn
iid≥ Unif (0, ◊) with ◊ > 0. Find the MLE

of ◊.
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Regression Through the Origin

Example 2.16: Let Y1, Y2, . . . , Yn be independent where Yi ≥ N
!
—xi, ‡2"

with — œ R, xi œ R, and ‡2 > 0. Find the MLE of —.

This is a particular case of linear regression; see Assignment 2 for more
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Reparameterization

Instead of ◊ itself, what if we want to find the MLE of some one-to-one
function of the parameter ·(◊)?

Let X1, X2, . . . , Xn
iid≥ Bernoulli (◊), where ◊ œ (0, 1). Find the MLE of ◊2.
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Reparameterization

That wasn’t a coincidence

Theorem 2.1 (Invariance Property): If ◊̂(X) is an MLE of ◊ œ � and ·(·)
is a bijection, then the MLE of ·(◊) is given by ·(◊̂(X)).

Proof.
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Reparameterization

Example 2.17: Let X1, X2, . . . , Xn
iid≥ Bernoulli (p) where p œ (0, 1). Find

the MLE of ·(p) = log
1

p
1≠p

2
.
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Poll Time!

On Quercus: Module 1 - Poll 3
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MOMs versus MLEs

Maximum likelihood is by far the most common method that statisticians use
to find point estimates1; when in doubt, it’s usually a good idea to use
maximum likelihood if you can

How do MOMs compare to MLEs?

1Assuming those statisticians aren’t Bayesians – more on that in Module 6
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Evaluating Estimators

Back to the idea of what makes a point estimator “good”

From now on, we focus on point estimators of ·(◊), rather than ◊

It turns out there’s a much more convenient way to assess the quality of a
point estimator estimator than our earlier thoughts

Consider the error (or absolute deviation) of an estimator |T (X) ≠ ·(◊)|,
which is of course a random variable

It’s too much to ask for this to always be small; some random sample Xj

may be an “outlier”, so that T (Xj) is far from ·(◊)

But we can ask for it to be small on average
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Mean-Squared Error

In other words, it’s reasonable to ask for E◊ [|T (X) ≠ ·(◊)|] to be small

That’s fine, but it turns out that for mathematical reasons, it’s much more
convenient to ask for the squared error (T (X) ≠ ·(◊))2 to be small on average

Definition 2.7: Let T (X) be an estimator for ·(◊). The mean-squared error

(MSE) is defined as

MSE◊ (T (X)) = E◊

#
(T (X) ≠ ·(◊))2$

.

So why not look for the T (X) that minimizes the MSE for all ◊ œ �?

Because unfortunately, such a T (X) almost never exists

Let’s try to restrict the class of estimators under consideration to one where
minimizers of the MSE are easier to find
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Bias

Definition 2.8: The bias of a point estimator T (X) is defined as

Bias◊ (T (X)) = E◊ [T (X)] ≠ ·(◊).

If Bias◊ (T (X)) = 0, then T (X) is said to be an unbiased estimator of ·(◊).

Example 2.18:

Example 2.19:
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Unbiased Estimators Don’t Always Exist

Example 2.20: Let X ≥ Bernoulli (◊), where ◊ œ (0, 1). There exists no
unbiased estimator of ·(◊) = 1

◊ .
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The Bias-Variance Tradeo�

Theorem 2.2 (Bias-Variance Tradeo�): If a point estimator T (X) has a
finite second moment, then

MSE◊ (T (X)) = Bias◊ (T (X))2 + Var◊ (T (X)) .

Proof.
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Poll Time!

On Quercus: Module 1 - Poll 4
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Best Unbiased Estimation

So let’s restrict our attention to the class of unbiased estimators, and then
choose the one (or ones?) with the lowest MSE

Equivalently, choose the unbiased estimator (or estimators?) with the lowest
variance

Definition 2.9: An unbiased estimator T ú(X) of ·(◊) is a best unbiased

estimator of ·(◊) if

Var◊ (T ú(X)) Æ Var◊ (T (X)) for all ◊ œ �

where T (X) is any other unbiased estimator of ·(◊). A best unbiased
estimator is also called a uniform minimum variance unbiased estimator

(UMVUE) of ·(◊).
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Questions That We Will Answer

How do we know whether or not an estimator T (X) is a UMVUE for ·(◊)?

How do we find a UMVUE for ·(◊)?

Are UMVUEs unique?
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An Ubiquitous Inequality in Mathematics

Recall (from Assignment 0)

Theorem 2.3 (Cauchy-Schwarz Inequality): Let X and Y be random
variables, each having finite, nonzero variance. Then

|Cov (X, Y ) | Æ


Var (X) Var (Y ).

Furthermore, if Var (Y ) > 0, then equality is attained if and only if
X = túY + sú, where

tú = Cov (X, Y )
Var (Y ) and sú = E [X] ≠ E [Y ] · Cov (X, Y )

Var (Y ) .
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UMVUEs Are Unique

Theorem 2.4: If a UMVUE exists for ·(◊), then it is unique.

Proof.
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The Rao-Blackwell Theorem

It turns out that su�ciency can help us in our search for the UMVUE in
powerful ways

Theorem 2.5 (Rao-Blackwell): Let W (X) be unbiased for ·(◊), and let
T (X) be su�cient for ◊. Define WT (X) = E◊ [W (X) | T (X)]. Then WT (X)
is also an unbiased point estimator of ·(◊), and moreoever,
Var◊ (WT (X)) Æ Var◊ (W (X)).

Proof.
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Interpreting Rao-Blackwellization

The process of replacing an estimator with its conditional expectation (with
respect to a su�cient statistic) is called Rao-Blackwellization

Theorem 2.5 says that we can always improve on (or at least make no worse)
any unbiased estimator W (X) with a second moment by Rao-Blackwellizing
it

Example 2.21:
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Rao-Blackwell: Examples

Example 2.22: Let X1, X2, . . . , Xn
iid≥ Bin (k, ◊), where ◊ œ (0, 1) and k is

known. Let ·(◊) = k◊(1 ≠ ◊)k≠1. Show that W (X) = X1=1 is unbiased for
·(◊), and then Rao-Blackwellize it.
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The Lehmann-Sche�é Theorem

Theorem 2.6 (Lehmann-Sche�é Theorem): Let W (X) be unbiased for
·(◊) and let T (X) be a complete su�cient statistic, for all ◊ œ �. Then
WT (X) = E [W (X) | T (X)] is the unique UMVUE.

Proof.
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More On Lehmann-Sche�é

This is a bit startling

If we take some unbiased estimator and condition it on a complete su�cient
statistic, then the resulting estimator is the UMVUE

As such, if we find an unbiased estimator T (X) of ·(◊) which is also a
complete su�cient statistic, then we’re done

However, Lehmann-Sche�é assumes that a complete su�cient statistic exists
(which isn’t always the case, as we know from Module 1), so it doesn’t
subsume Theorem 2.4

In fact, there do exist models where UMVUEs exist but complete su�cient
statistics don’t
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Lehmann-Sche�é: Examples

Example 2.23: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

with µ œ R and ‡2 > 0.
Find the UMVUE of (µ, ‡2).
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Lehmann-Sche�é: Examples

Example 2.24: Let X1, X2, . . . , Xn
iid≥ Poisson (⁄), where ⁄ > 0. Find the

UMVUE of ⁄.
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Poll Time!

On Quercus: Module 1 - Poll 5
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What About the Likelihood?

Rao-Blackwellization and Lehmann-Sche�é tell us how to get the unique
UMVUE (if it exists) via complete su�cient statistics

The likelihood wasn’t involved

It turns out there exists a very helpful tool that helps us with finding the
UMVUE (if it exists) by exploiting the likelihood

It doesn’t always work...

But when it does, it works like a charm

But we need several auxiliary results to produce it
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The Covariance Inequality

Theorem 2.7 (Covariance Inequality): Let T (X) and U(X) be two
statistics such that 0 < E◊

#
T (X)2$

,E◊

#
U(X)2$

< Œ for all ◊ œ �. Then

Var◊ (T (X)) Ø Cov◊ (T (X), U(X))2

Var◊ (U(X)) for all ◊ œ �.

Equality holds if and only if

T (X) = E◊ [T (X)] + Cov◊ (T (X), U(X))
Var◊ (U(X)) (U(X) ≠ E◊ [U(X)])

with probability 1.

Proof.
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The Fisher Information

Definition 2.10: Let X = (X1, . . . , Xn) ≥ f◊, and let S(◊ | x) be the score
function for the parametric model. The (expected) Fisher information is
the function In : � æ [0, Œ) defined by

In(◊) = Var◊ (S(◊ | X)) .

Definition 2.11: Let X = (X1, . . . , Xn) ≥ f◊, and let S(◊ | x) be the score
function for the parametric model. The observed Fisher information is the
function Jn : X n æ [0, Œ) defined by

Jn(X) = ≠ ˆ

ˆ◊
S(◊ | Xn)

--
◊=◊̂MLE

.
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The Fisher Information: Examples

Example 2.25: Let X1, X2, . . . , Xn
iid≥ Poisson (⁄), where ⁄ > 0. Calculate

the observed and expected Fisher information for ⁄.
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The Fisher Information: Examples

Example 2.26: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

, where µ œ R and ‡2 is
known. Calculate the observed and expected Fisher information for µ.
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The Cramér-Rao Lower Bound

Theorem 2.8 (Cramér-Rao Lower Bound): Let X = (X1, . . . , Xn) ≥ f◊,
and let T (X) be any estimator such that

Var◊ (T (X)) < Œ and d

d◊
E◊ [T (X)] =

⁄

X

ˆ

ˆ◊
[T (x)f◊(x)] dx.

Then

Var◊ (T (X)) Ø
!

d
d◊E◊ [T (X)]

"2

In(◊) .

In particular, if T (X) is unbiased for ·(◊) and ·(·) is di�erentiable on �, then

Var◊ (T (X)) Ø (· Õ(◊))2

In(◊) .

Proof.
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The Cramér-Rao Lower Bound
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The Cramér-Rao Lower Bound Conditions

Unfortunately, the conditions of the Cramér-Rao Lower Bound don’t always
hold

The first says that our estimator must actually have a variance to minimize,
which seems reasonable

Example 2.27:

The second says that we need to be able to push a derivative inside an
integral, which is more subtle

When would this condition fail to hold?

Example 2.28:
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Easing the Computation

Theorem 2.9: Under the conditions of Theorem 2.8,

In(◊) = E◊

#
S(◊ | X)2$

.

Proof.

Theorem 2.10: If X1, X2, . . . , Xn
iid≥ f◊ and conditions of Theorem 2.8 hold,

In(◊) = nE◊

#
S(◊ | X)2$

.
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More Easing

Theorem 2.11 (Second Bartlett Identity): If X ≥ f◊ and f◊ satisfies

d

d◊
E◊ [S(◊ | X)] =

⁄

X

ˆ

ˆ◊
[S(◊ | x)f◊(x)] dx,

(which is true when f◊ is in an exponential family) then

E◊

#
S(◊ | X)2$

= ≠E◊

5
ˆ

ˆ◊
S(◊ | X)

6
.

Proof.
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E�ciency

Definition 2.12: An estimator T (X) of ·(◊) that attains the Cramér-Rao
Lower Bound is called an e�cient estimator of · (◊).

What’s the connection between UMVUEs and e�cient estimators?

If an e�cient estimator exists, then it must be the UMVUE

But an e�cient estimator doesn’t always exist, as we’ll soon see
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E�ciency: Examples

Example 2.29: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

with µ œ R and ‡2 > 0.
Show that T (X) = X̄n is an e�cient estimator for µ.
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A Criterion for E�ciency

Is there a better way to find e�cient estimators than simply making an
educated guess?

Theorem 2.12: Let X1, X2, . . . , Xn
iid≥ f◊ satisfy the conditions of Theorem

2.8. An unbiased estimator T (X) of ·(◊) is e�cient if and only if there exists
some function a : � æ R such that

S(◊ | x) = a(◊)[T (x) ≠ ·(◊)].

Proof.
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E�ciency: Examples

Example 2.30: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

with µ œ R and ‡2 > 0.
Show that there exists no e�cient estimator of ‡2.
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E�ciency: Examples

If an unbiased point estimator is e�cient, then it’s the UMVUE – but the
converse is not true in general

Example 2.31: Let X1, X2, . . . , Xn
iid≥ Poisson (⁄), where ⁄ > 0. Show that

an e�cient estimator of ·(⁄) = P⁄(X = 0) does not exist, and find its
UMVUE.
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