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Extracting Information

@ In Module 1, we learned about how a statistic can capture (or not capture)
the information provided by our data sample X = (X1,..., X,,) ~ fo about
the unknown parameter 6 € ©

@ For the remainder of the course, our focus will be on how to extract that
information

@ In Module 2, we have one goal: to estimate the parameter § — or some
function of the parameter 7(0) — as best we can (whatever that means)

o Example 2.1:
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Point Estimation
@ How do we estimate 6 from the observed data x?
o Ideally, we want some statistic T'(X) such that T'(x) will be close to

@ Definition 2.1: Suppose X1, Xo,..., X, s fo. A point estimator 0

is a statistic used to estimate 6.

0(X)

@ How do we find good point estimators?
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Poll Time!

On Quercus: Module 2 - Poll 1
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Choosing “Good"” Point Estimators

@ A point estimator é(X) is a random variable, so it has its own distribution
(as does any statistic)

@ Definition aside, it would seem that the best point estimator is the constant
6(X) = 6, but of course this is unattainable

@ The constant 6 has Eg [#] = 6 and Varg (6) =0

@ It would be nice if the distribution of é(X) got close to these properties:
Eg [é(X)} ~ 6 and Varg (é(X)) ~0

@ It would also be good if Vary (é(X)) got lower as the sample size n got

bigger (if we're willing to pay good money for more samples, we should
demand a higher precision in return)

Rob Zimmerman (University of Toronto) July 9-11, 2024 5/66



Moments Are (Often) Functions of Parameters

@ Here's one approach to choosing 0

@ In parametric families, it is often the case that the parameters are functions
of the moments (i.e., Eg [X], Eg [X?], E [X?], and so on)

o Example 2.2:
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Towards the Method of Moments

@ Suppose X1, Xo,..., X, N (;L, 02) and we want to estimate p

o We know that E[X;] = y and E [X}] — E[X;]* = 02
@ So if we took i(X) = X7, then we'd have

Can we do better?

Now suppose we want to estimate both x and o2

o Ifwelet mi(X)=21%" X, and ma(X)=23", X2, then
ma (X) i) and mg(X) i)

o Therefore my(X) — my(X)? 2>
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The Method of Moments

o Effectively, we're replacing the true moments with the sample moments

@ Definition 2.2: Suppose we have k parameters 61,05, ..., 0 to estimate in a
paremetric model, and each one is some function of the first k& moments:

65 =3 (B0 X1 B0 [X?] ... B0 [X¥] ). 1k
The Method of Moments (MOM) estimator for 6; is defined by choosing
05000 = b5 (ma (X0, (X, ma (X)), 15 <y

where m;(X) = S0, X7
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Method of Moments: Examples

MOM estimator for \.

@ Example 2.3: Suppose X1, Xa,..., X, Y Poisson (M), where X\ > 0. Find the

=] 5 = £ DA
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Method of Moments: Examples

@ Example 2.4: Suppose X1, Xo,..., X, “ Bin (k,8), where k € N and 0 is

known. Find the MOM estimator for k.

@ Could this be a problem?
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Poll Time!

On Quercus: Module 1 - Poll 2
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Method of Moments: Examples

o Example 2.5: Let Xy, Xo,..., X, -~ fa(x) = (14 ax)/2 - 1ye[—1,1), Where
o € [—1,1]. Find the MOM estimator for a.

o = = = 9acn
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Method of Moments: Examples

@ Example 2.6: Suppose X1, Xo,..., X, % Gamma (o, B), where o, 8 > 0.
Find the MOM estimators for o and f3.
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The Likelihood Function

@ Definition 2.3: Let X ~ fp, where fy is a pdf or pmf in a parametric family.
Given the observation X = x, the likelihood function for 0 is the function
L(-|x):© — [0,00) given by L(6 | x) = fo(x).

@ Interpret this as the “probability” of observing the sample x, given that the
sample came from fy

@ So L(6y | x) > L(fs | x) says that the chance of observing X = x is more
likely under fp, than under fy,

@ It could be that the likelihood is very small for all § € ©, so knowing L(f | x)
for just a single 6 is useless

o Instead, we want to know how L(6 | x) compares to L(6’ | x) for other
0 co
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The Likelihood Principle

@ Much of modern statistics revolves around the likelihood function; it will be
with us in some form or another for the rest of our course

@ The likelihood principle states that if two model and data combinations
L1(0] x) and Ly(0 | y) are such that L1(0 | x) = ¢(x,y) - L2(0 | y), then
the conclusions about 6 drawn from x and y should be identical

@ In other words, the likelihood principle says that anything we want to say
about 6 should be based solely on L(- | x), regardless of how x was actually
obtained

@ Is this requirement too strong?

o Example 2.7:
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Maximizing the Likelihood

e Suppose there were some § € © which makes L(0 | x) the highest; would it
be sensible to use that 6 as an estimator?

o If we can maximize L(f | x) with respect to 6, the resulting maximizer 6 will
be a function of the sample x

@ Example 2.8: Let X1, Xo,..., X, % Bernoulli (0), where 6 € (0,1).
Maximize the likelihood with respect to 6.
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Maximum Likelihood Estimation

@ Definition 2.4: Let X = (X3,...,X,) ~ fo. Let L(6 | x) be the likelihood
function based on observing X = x. The maximum likelihood estimate of
0 is given by
0(x) = argmax L(6 | x),
9co
and the maximum likelihood estimator (MLE) for 6 is the point estimator

given by OmLE = é(X)
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Maximum Likelihood: Examples

@ Nothing says the distribution needs to have a “nice” functional form

@ Example 2.9: Suppose X = {1,2,3} and © = {a, b}, and a parametric family

is given by the following table:

r=1

=2

rz=3

fa(z)

0.3

0.4

0.3

fo(x)

0.1

0.7

0.2

Suppose we observe X ~ fy. Find the MLE of 6.
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Maximum Likelihood: Examples

@ But when fy does have a nice form and is continuously differentiable for
6 € ©, we can use calculus to find the MLE

o Example 2.10: Let X1, Xo,..., X, “d Bernoulli (0), where 6 € (0,1). Find
the MLE of 6.
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Maximum Likelihood: Examples

@ Suppose that Xy, Xo,..., X, irivd./\/(u, 02), where 11 € R and o2 is known

@ What happens if we try to find the MLE of x in the same fashion?
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The Log-Likelihood

@ Definition 2.5: Given data x and a parametric model with likelihood function
L(0 | x), the log-likelihood function is defined as by

(0| %) = log (L(0 | x))
@ Maximizing the log-likelihood is equivalent to maximizing the likelihood

@ ...but usually way easier
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The Score Function

@ Definition 2.6: Given data x and a parametric model with log-likelihood
function £(0 | x), the score function is defined as

S(01%) = 0] %),

when it exists.

@ When 6 = (64, ...,0) is a vector, this is interpreted as the gradient

S(6 | x) = VO | x) = <£le(a %), ..., a%e(a | x)>

o If the likelihood function is nice enough, then any extremum 6 will satisfy the
score equation S(6 | x) =0

e So finding the MLE amounts to finding @ such that S( | x) = 0 and then
checking that 6 is a global maximum
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Maximum Likelihood: More Examples
o Example 2.11: Let X1, Xo,..., X, “d
Find the MLE of y.

N(/L,O’Q) with 1 € R and o known.

o = = = 9acn
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Maximum Likelihood: More Examples
A

@ Example 2.12: Let X1, X5,..., X, . Exp (A) with A > 0. Find the MLE of

- = T 9ac
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Maximum Likelihood: More Examples

@ Even if the likelihood is smooth and well-behaved, this method doesn’t
always work

e Example 2.13: Let X1, Xo,..., X, ud Gamma(q, 2) with a > 0. Try to find
the MLE of a.
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Maximum Likelihood: More Examples

@ What about when 6 is multidimensional? We need to bring out our
multivariate calculus

@ Example 2.14: Let X1, Xo,..., X, “
Find the MLE of 6 = (u,0?).

N (w,0%) with € R and o2 > 0.
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Maximum Likelihood: More Examples

@ The likelihood may not be differentiable, but that doesn’'t mean it can't be

maximized
@ Example 2.15: Let X1, Xa,..., X, “ Unif (0, ) with 8 > 0. Find the MLE
of 6.
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Regression Through the Origin

@ Example 2.16: Let Y1,Y5,...,Y, be independent where Y; ~ N/ (ﬂxi,a2)
with 3 € R and 02 > 0, where each z; € R is known. Find the MLE of 3.

@ This is a particular case of linear regression; see Assignment 2 for more
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Reparameterization

@ Instead of @ itself, what if we want to find the MLE of some one-to-one
function of the parameter 7(6)?

o Let X1, Xs, ..., X, 4 Bernoulli (6), where 6 € (0,1). Find the MLE of 2.
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Reparameterization

@ That wasn't a coincidence

o Theorem 2.1 (Invariance Property): If (X) is an MLE of § € © and 7(-)

A

is a bijection, then the MLE of 7(0) is given by 7(0(X)).

Proof.
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Reparameterization

o Example 2.17: Let X1, Xo,..., X, “ Bernoulli (p) where p € (0,1). Find
the MLE of (p) = log (12} ).

o = = = 9acn
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MOMs versus MLEs

@ Maximum likelihood is by far the most common method that statisticians use
to find point estimates®; when in doubt, it's usually a good idea to use
maximum likelihood if you can

@ How do MOMs compare to MLEs?

I Assuming those statisticians aren't Bayesians — more on that:in Module 6
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Evaluating Estimators

@ Back to the idea of what makes a point estimator “good”
@ From now on, we focus on point estimators of 7(6), rather than 6

@ It turns out there’'s a much more convenient way to assess the quality of a
point estimator estimator than our earlier thoughts

o Consider the error (or absolute deviation) of an estimator |T'(X) — 7(0)],
which is of course a random variable

@ It's too much to ask for this to always be small; some random sample X;
may be an “outlier”, so that T'(X;) is far from 7(6)

@ But we can ask for it to be small on average
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Mean-Squared Error

@ In other words, it's reasonable to ask for Egy [|T(X) — 7(6)|] to be small

@ That's fine, but it turns out that for mathematical reasons, it's much more
convenient to ask for the squared error (T'(X) —7(6))? to be small on average

@ Definition 2.7: Let T'(X) be an estimator for 7(6). The mean-squared error
(MSE) is defined as

MSE, (T(X)) = Eo [(T(X) — 7(0))*] -
@ So why not look for the T'(X) that minimizes the MSE for all § € ©7
@ Because unfortunately, such a T'(X) almost never exists

@ Let's try to restrict the class of estimators under consideration to one where
minimizers of the MSE are easier to find
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Bias
@ Definition 2.8: The bias of a point estimator T'(X) is defined as
Biasy (T'(X)) = Ep [T(X)] — 7(0).

If Biasp (T'(X)) = 0, then T'(X) is said to be an unbiased estimator of ().

@ Example 2.18:

o Example 2.19:
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Unbiased Estimators Don't Always Exist

@ Example 2.20: Let X ~ Bernoulli (8), where 8 € (0,1). There exists no

unbiased estimator of 7(0) = .
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The Bias-Variance Tradeoff

@ Theorem 2.2 (Bias-Variance Tradeoff): If a point estimator T'(X) has a
finite second moment, then

MSEy (T'(X)) = Biasy (T'(X))? + Varg (T(X)) .

Proof.
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Best Unbiased Estimation

@ So let's restrict our attention to the class of unbiased estimators, and then
choose the one (or ones?) with the lowest MSE

@ Equivalently, choose the unbiased estimator (or estimators?) with the lowest
variance

o Definition 2.9: An unbiased estimator T*(X) of 7(#) is a best unbiased
estimator of 7(0) if

Varg (T*(X)) < Varg (T'(X)) forall € ©

where T'(X) is any other unbiased estimator of 7(#). A best unbiased
estimator is also called a uniform minimum variance unbiased estimator
(UMVUE) of 7(0).
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Questions That We Will Answer

@ How do we know whether or not an estimator T'(X) is a UMVUE for 7(6)?
@ How do we find a UMVUE for 7(6)?

o Are UMVUEs unique?
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An Ubiquitous Inequality in Mathematics

@ Recall (from Assignment 0)

@ Theorem 2.3 (Cauchy-Schwarz Inequality): Let X and Y be random
variables, each having finite, nonzero variance. Then

|Cov (X,Y)| < /Var(X)Var (Y).

Furthermore, if Var (Y') > 0, then equality is attained if and only if
X =t*Y + s*, where

*

_ Cov(X,Y)
~ Var(Y)

Cov (X,Y)

and s"=E[X]|-E[Y]- Var (V)
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UMVUEs Are Unique

@ Theorem 2.4: If a UMVUE exists for 7(6), then it is unique.
Proof.
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The Rao-Blackwell Theorem

@ It turns out that sufficiency can help us in our search for the UMVUE in
powerful ways

@ Theorem 2.5 (Rao-Blackwell): Let W(X) be unbiased for 7(¢), and let
T(X) be sufficient for 6. Define W (X) = Ey [W(X) | T(X)]. Then W (X)
is also an unbiased point estimator of 7(#), and moreoever,

Varg (Wr(X)) < Varg (W(X)).

Proof.
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Interpreting Rao-Blackwellization

@ The process of replacing an estimator with its conditional expectation (with
respect to a sufficient statistic) is called Rao-Blackwellization

@ Theorem 2.5 says that we can always improve on (or at least make no worse)
any unbiased estimator W (X) with a second moment by Rao-Blackwellizing
it

o Example 2.21:
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Rao-Blackwell: Examples

o Example 2.22: Let X1, Xo,..., X, “ Bin (k,8), where 8 € (0,1) and k is
known. Let 7(6) = k(1 — 0)*~1. Show that W (X) = 1x,—1 is unbiased for

7(#), and then Rao-Blackwellize it.
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The Lehmann-Scheffé Theorem

@ Theorem 2.6 (Lehmann-Scheffé Theorem): Let W (X) be unbiased for
7(6) and let T(X) be a complete sufficient statistic, for all 6 € ©. Then
Wr(X) =E[W(X) | T(X)] is the unique UMVUE.

Proof.
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More On Lehmann-Scheffé

@ This is a bit startling

o If we take some unbiased estimator and condition it on a complete sufficient
statistic, then the resulting estimator is the UMVUE

@ As such, if we find an unbiased estimator T'(X) of 7(#) which is also a
complete sufficient statistic, then we're done

@ However, Lehmann-Scheffé assumes that a complete sufficient statistic exists
(which isn't always the case, as we know from Module 1), so it doesn't
subsume Theorem 2.4

@ In fact, there do exist models where UMVUEs exist but complete sufficient
statistics don't
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Lehmann-Scheffé: Examples

o Example 2.23: Let X1, Xo,..., X, %

Find the UMVUE of (y1,02)

N (p,0?%) with p € R and 0% > 0

o = = = 9acn
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Lehmann-Scheffé: Examples
UMVUE of A.

@ Example 2.24: Let X1, X5,..., X, “ Poisson (M), where A > 0. Find the
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What About the Likelihood?

Rao-Blackwellization and Lehmann-Scheffé tell us how to get the unique
UMVUE (if it exists) via complete sufficient statistics

The likelihood wasn't involved

It turns out there exists a very helpful tool that helps us with finding the
UMVUE (if it exists) by exploiting the likelihood

It doesn't always work...
But when it does, it works like a charm

But we need several auxiliary results to produce it
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The Covariance Inequality

@ Theorem 2.7 (Covariance Inequality): Let T'(X) and U(X) be two
statistics such that 0 < Eg [T(X)?] ,Eg [U(X)?] < oo for all § € ©. Then

Covy (T(X), U(X))*

> .

Varg (T'(X)) > Vary (U(X)) for all 6 € ©
Equality holds if and only if

Covy (T'(X),U (X))
Varg (U(X))

T(X) =Eo [T(X)] + (U(X) = Eo [UX)])
with probability 1.

Proof.
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The Fisher Information

@ Definition 2.10: Let X = (X1,...,X,) ~ fo, and let S(0 | x) be the score
function for the parametric model. The (expected) Fisher information is
the function I, : © — [0, 00) defined by

In(0) = Varg (S(0 | X))

@ Definition 2.11: Let X = (X1,...,X,) ~ fo, and let S(0 | x) be the score
function for the parametric model. The observed Fisher information is the
function J,, : X™ — [0, 00) defined by

0

00 ) ’9:éMLE ’
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The Fisher Information: Examples

@ Example 2.25: Let X1, Xo,..., X, “ Poisson (M), where A > 0. Calculate
the observed and expected Fisher information for A.

Rob Zimmerman (University of Toronto) July 9-11, 2024 55 /66



The Fisher Information: Examples
@ Example 2.26: Let X1, Xa,..., X, if@N(u,a2), where 1 € R and o2 is
known. Calculate the observed and expected Fisher information for .
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The Cramér-Rao Lower Bound

@ Theorem 2.8 (Cramér-Rao Lower Bound): Let X = (Xy,...,X,) ~ fo.
and let T'(X) be any estimator such that

Varg (T(X)) < oo and —]Eg /80 x)] dx

Then )
(d%Ee [T(X)])
1,(0) '

In particular, if T'(X) is unbiased for 7(#) and 7(-) is differentiable on ©, then

Varg (T'(X)) >

Y

Varg (T(X))

Proof.
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The Cramér-Rao Lower Bound
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The Cramér-Rao Lower Bound Conditions

Unfortunately, the conditions of the Cramér-Rao Lower Bound don’t always
hold

The first says that our estimator must actually have a variance to minimize,
which seems reasonable

Example 2.27:

The second says that we need to be able to push a derivative inside an
integral, which is more subtle

When would this condition fail to hold?

Example 2.28:
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Easing the Computation
@ Theorem 2.9: Under the conditions of Theorem 2.8,

I,(0) = Eqg [S(0 | X)?].

Proof.

@ Theorem 2.10: If X1, Xs,..., X, ud fo and conditions of Theorem 2.8 hold,

I,(0) = nEq [S(0 | X)?].
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More Easing

@ Theorem 2.11 (Second Bartlett Identity): If X ~ fy and fy satisfies

Tro5001 X)) = /X D150 2)fo(a)] .

(which is true when fy is in an exponential family) then

B 500 | X)) = —Eo | 501 0)].

Proof.
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Efficiency

@ Definition 2.12: An estimator T'(X) of 7(f) that attains the Cramér-Rao
Lower Bound is called an efficient estimator of 7(0).

@ What's the connection between UMVUEs and efficient estimators?
o If an efficient estimator exists, then it must be the UMVUE

@ But an efficient estimator doesn't always exist, as we'll soon see
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Efficiency: Examples

o Example 2.29: Let Xy, Xa, ..., X, Y N (1, 02) with p1 € R and 02 > 0.

Show that T'(X) = X, is an efficient estimator for p.
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A Criterion for Efficiency

@ Is there a better way to find efficient estimators than simply making an
educated guess?

@ Theorem 2.12: Let X1, Xo,..., X, i fo satisfy the conditions of Theorem
2.8. An unbiased estimator T'(X) of 7(#) is efficient if and only if there exists
some function a : © — R such that

S(0]x) = a(@)[T(x) —7(0)]-

Proof.
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Efficiency: Examples
o Example 2.30: Let X1, Xa, ..., X, Y N (1, 02) with p1 € R and 02 > 0.
Show that there exists no efficient estimator of o2.
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Efficiency: Examples

o If an unbiased point estimator is efficient, then it's the UMVUE - but the
converse is not true in general

o Example 2.31: Let X1, Xo,..., X, “ Poisson (M), where A > 0. Show that
an efficient estimator of 7(\) = P»(X = 0) does not exist, and find its
UMVUE.
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