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Data and samples

Data is factual information collected for the purposes of inference
(Merriam-Webster)

Inference is the act of passing from statistical sample data to generalizations
(as of the value of population parameters) usually with calculated degrees of
certainty (also Merriam-Webster)

We collect a sample of data from a population associated with some
probability distribution, and we would like to infer unknown properties of that
distribution

Example 1.1:
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Random variables versus observed data (this is really

important)

Our data sample goes through two phases of life: first as a random sample,
and then as observed data

A random sample is a set of random variables; observed data is a set of
constants; the same goes for functions thereof

We denote random variables using uppercase letters, and constants using
lowercase letters:

Example 1.2:

It is very important to clearly distinguish between the two quantities. But
why?
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iid-ness

“iid” stands for “independent and identically distributed”

This term is used everywhere in statistics, because it saves a lot of time
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Statistics

Definition 1.1: A statistic T (X) is a function of the random data sample X
which is free of any unknown constants. If we observe X = x, then T (x) is
the observed value of T .

Example 1.3:

A statistic is useful when it allows us to summarize the data sample in ways
that helps us with inference

Di�erent statistics are useful for di�erent models

Example 1.4:
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Slightabuseofnotation for iid sampleswe'll usually write to E forthejoint
Pdf pmfof X1 Xn and folx forthe pdfpmfofeach i
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Parameters and Statistical Models

Many classical probability distributions have parameters associated with them

Example 1.5:

Definition 1.2: A statistical model is a set of pdfs/pmfs {f◊(·) : ◊ œ �}
defined on the same sample space, where each ◊ is a fixed parameter in a
known parameter space �. When � ™ Rk for some k œ N, the set is also
called a parametric model (or parametric family).

Example 1.6:

Statistical inference is classically concerned with figuring out which one of
those distributions generated the data, based on the data sample we have
available

This amounts to inferring the particular parameter ◊
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Parameters and Statistical Models: More Examples

Example 1.7:
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Important Parametric Families: Location-Scale Families

Definition 1.3: A location family is a family of pdfs/pmfs
{fµ(·) = f(· ≠ µ) : µ œ R} formed by translating a “standard” family
member f(·) := f0(·).

Example 1.8:

Definition 1.4: A scale family is a family of pdfs/pmfs
{f‡(·) = f(·/‡)/‡ : ‡ > 0} formed by rescaling a “standard” family member
f(·) := f1(·).

Example 1.9:

Definition 1.5: A location-scale family is a family of pdfs/pmfs
{fµ,‡(·) = f

! ·≠µ
‡

"
/‡ : µ œ R, ‡ > 0} formed by translating and rescaling a

“standard” family member f(·) := f0,1(·).

Example 1.10:
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Poll Time!

On Quercus: Module 1 - Poll 1
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Important Parametric Families: Exponential Families

Definition 1.6: An exponential family is a parametric family of pdfs/pmfs of
the form

f◊(x) = h(x) · g(◊) · exp

Q

a
kÿ

j=1
÷j(◊) · Tj(x)

R

b ,

for some k œ N, where all functions of x and ◊ are known and the support of
f◊ does not depend on ◊.

Lots of theory simplifies considerably if we assume our random sample comes
from an exponential family

Many of your favourite distributions are included

Example 1.11:
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A Quick Review of Conditional Distributions

Remember Bayes’ rule:

Conditional distributions and expectations

For any fixed y, E [X|Y = y] is a constant

But E [X|Y ] is a random variable

Example 1.12:

Example 1.13:
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A Quick Review of Functions

Let f : A æ B be a function

If f is one-to-one, then

If f is onto, then

If f is a bijection, then

Example 1.14:
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Freedom From ◊

Most of the functions f◊(x) we will deal with have parameters involved in
addition to the “independent variable”

If the parameter ◊ can vary too, then f◊(x) is really a function of both x and
◊

If f◊(x) is actually not a function of ◊ (i.e., it’s constant with respect to ◊),
we might also say that it’s “free of ◊” or that it “does not depend on ◊”

Example 1.15:

So if we say that the distribution of X is free of ◊, we mean that the cdf of
X (and hence the pdf/pmf) is the same for all ◊ œ �

Example 1.16:
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Data Reduction: A Thought Experiment

Is there a such thing as “more data than necessary”?

Suppose that field researchers collect a sample X = (X1, X2, . . . , Xn) iid≥ f◊,
where n is astronomically large; they want us statisticians to do inference on
◊, but sending us X would take weeks

Wouldn’t it be great if we didn’t need the entire sample X to make inferences
about ◊, but rather a much smaller statistic T (X) – perhaps just a single
number – that still contained as much information about ◊ as X itself did?

The researchers observe X = x, calculate T (x) = t on their end, and then
text t over to us

Example 1.17:
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Su�ciency

How do we “encode” this idea?

If we know that T (X) = t, then there should be nothing else to glean from
the data about ◊

Definition 1.7: A statistic T (X) is a su�cient statistic for a parameter ◊ if
the conditional distribution of X | T (X) = t does not depend on ◊.

An interpretation: if the conditional distribution

P(X = x | T (X) = T (x)) = P◊ (X = x and T (X) = T (x))
P◊ (T (X) = T (x))

is really free of ◊, then the information about ◊ in X and the information
about ◊ in T (X) and “cancel each other out” (heavy quotes here)

Example 1.18:
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Su�ciency

Example 1.19: Let X1, X2, . . . , Xn
iid≥ Bernoulli (◊), where ◊ œ (0, 1). Show

that T (X) =
qn

i=1 Xi is su�cient for ◊.
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Su�ciency

Example 1.20: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

, where µ œ R and ‡2 is
known. Show that the sample mean T (X) = X̄n := 1

n

qn
i=1 Xi is su�cient

for µ.
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The Factorization Theorem

Theorem 1.1 (Factorization theorem): Let X = (X1, . . . , Xn) ≥ f◊(x),
where f◊(x) is a joint pdf/pmf. A statistic T (X) is su�cient for ◊ if and only
if there exist functions g◊(t) and h(x) such that

f◊(x) = h(x) · g◊(T (x)) for all ◊ œ �,

where h(x) is free of ◊ and g◊(T (x)) only depends on x through T (x).

In other words, T (X) is su�cient whenever the “part” of f◊(x) that actually
depends on ◊ is a function of T (x), rather than x itself

Proof.
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The Factorization Theorem
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Poll Time!

On Quercus: Module 1 - Poll 2
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The Factorization Theorem: Examples

Example 1.21: Let X1, X2, . . . , Xn
iid≥ Bernoulli (◊), where ◊ œ (0, 1). Show

that T (X) =
qn

i=1 Xi is su�cient for ◊.

Example 1.22: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

, where µ œ R and ‡2 is
known. Show that the sample mean T (X) = X̄n := 1

n

qn
i=1 Xi is su�cient

for µ.
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The Factorization Theorem: Examples

Example 1.23: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

, where µ œ R and ‡2 > 0.
Show that T (X) = (X̄n, S2

n) is su�cient for (µ, ‡2).

Example 1.24: Let X1, X2, . . . , Xn
iid≥ Unif (0, ◊) where ◊ > 0. Show that X̄n

is not su�cient for ◊, and find a statistic that is.
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The Factorization Theorem: Examples

Theorem 1.2: Let X1, . . . , Xn
iid≥ f◊ be a random sample from an

exponential family, where

f◊(x) = h(x) · g(◊) · exp

Q

a
kÿ

j=1
÷j(◊) · Tj(x)

R

b .

Then T (X) =
A

nÿ

i=1
T1(Xi), . . . ,

nÿ

i=1
Tk(Xi)

B
is su�cient for ◊.

Proof.
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The Factorization Theorem: Examples

Example 1.25: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

, where µ œ R and ‡2 > 0.
Show that T (X) = (

qn
i=1 X2

i ,
qn

i=1 Xi) is su�cient for (µ, ‡2).
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The Factorization Theorem: Examples

Example 1.26: Let X1, X2, . . . , Xn
iid≥ Unif ({1, 2, . . . , ◊}), where ◊ œ N.

Show that T (X) = X(n) is su�cient for ◊.
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If There’s One, There’s More...

If we have some su�cient statistic, we can always come up with (infinitely)
many others...

Theorem 1.3: Let T (X) be su�cient for ◊ and suppose that r(·) is a
bijection. Then r(T (X)) is also su�cient for ◊.

Proof.
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Too Many Su�cient Statistics

So there are lots of su�cient statistics out there

We saw that T (X) = X is always su�cient – it’s also pretty useless as far as
data reduction goes

There are usually “better” ones out there – how do we get the best bang for
our buck?

Another issue: the factorization theorem makes it easy to show that a
statistic is su�cient (if it actually is), but less so to show that a statistic is
not su�cient

We will develop theory that takes care of both of these issues at once
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Minimal Su�ciency

Definition 1.8: A su�cient statistic T (X) is called a minimal su�cient
statistic if, for any other su�cient statistic U(X), there exists a function h
such that T (X) = h(U(X)).

In other words, a minimal su�cient statistic is some function of any other
su�cient statistic

A minimal su�cient statistic achieves the greatest reduction of data possible
(while still maintaining su�ciency)

Example 1.27: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

, where µ œ R and ‡2 is
known. Show that T (X) = (X̄n, S2

n) is not minimal su�cient for µ.
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Poll Time!

On Quercus: Module 1 - Poll 3
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A Criterion For Minimal Su�ciency

It’s usually not that hard to show that a statistic is not minimal su�cient

But how can we possibly show that a statistic is minimal?

Theorem 1.4: Let f◊(x) be the pdf/pmf of a sample X. Suppose there exists
a function T (·) such that for any x, y œ X n, T (x) = T (y) if and only if the
ratio f◊(x)/f◊(y) is free of ◊. Then T (X) is minimal su�cient for ◊.

This criterion is easier to apply than it looks

Example 1.28: Let X1, X2, . . . , Xn
iid≥ iid≥ Bernoulli (◊), where ◊ œ (0, 1).

Show that T (X) =
qn

i=1 Xi is minimal su�cient for ◊.
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Minimal Su�ciency: Examples

Example 1.29: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

, where µ œ R and ‡2 > 0.
Show that T (X) = (X̄n, S2

n) is minimal su�cient for (µ, ‡2).
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Minimal Su�ciency: Examples

Example 1.30: Let X1, X2, . . . , Xn
iid≥ Poisson (⁄), where ⁄ > 0. Find a

minimal su�cient statistic for ⁄.
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Minimal Su�ciency: Examples

A minimal su�cient statistic isn’t always as minimal as you would expect...

Example 1.31: Let X1, X2, . . . , Xn
iid≥ Unif ([◊, ◊ + 1]), where ◊ œ R. Show

that T (X) = (X(1), X(n)) is minimal su�cient for ◊.
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Poll Time!

On Quercus: Module 1 - Poll 4
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The “Opposite” of Su�ciency?

We know that a su�cient statistic contains all the information about ◊ that
the original sample has

What about a statistic that contains no information about ◊?

Why would such a thing be useful?
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Ancillarity

Definition 1.9: A statistic D(X) is an ancillary statistic for a parameter ◊ if
the distribution of D(X) does not depend on ◊

Example 1.32: Let X1, X2, . . . , Xn
iid≥ Unif ([◊, ◊ + 1]), where ◊ œ R. Show

that the range statistic R(X) := X(n) ≠ X(1) is ancillary for ◊.
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Ancillarity: Examples

Did we actually use the uniform distribution anywhere in the previous
example?

Theorem 1.5: Let X1, . . . , Xn be a random sample from a location family
with cdf F (· ≠ ◊), for ◊ œ R. Then the range statistic is ancillary for ◊.

Proof.
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Ancillarity: Examples

Example 1.33: Let X1, X2, . . . , Xn
iid≥ N

!
0, ‡2"

. Show that
D(X) = X1+···+Xn≠1

Xn
is ancillary for ‡2.

Theorem 1.6: Let X1, . . . , Xn be a random sample from a scale family with
cdf F (·/‡), for ‡ > 0. Then any statistic which is a function of the ratios
X1/Xn, . . . , Xn≠1/Xn is ancillary for ‡.
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Ancillarity: Examples

Recall that if Z1, . . . , Zn
iid≥ N (0, 1), then the distribution of Y =

qn
i=1 Z2

i

is called a chi-squared distribution with n degrees of freedom, which we
write as Y ≥ ‰2

(n).

Theorem 1.7: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

with µ œ R and ‡2 > 0.
Then n≠1

‡2 S2 ≥ ‰2
(n≠1).

Proof (n = 2).

Example 1.34: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

with µ œ R and ‡2 > 0.
Show that the sample variance S2

n is ancillary for µ.
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Poll Time!

On Quercus: Module 1 - Poll 5
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Completeness: An Abstract Definition

Everything so far has been about ways to reduce the amount of data we need
while still retaining all information about ◊

We’ve seen that ancillary statistics are bad at it, su�cient statistics are good
at it, and minimal su�cient statistics are very good at it

We will study one more kind of statistic, but the definition isn’t pretty

Definition 1.10: A statistic U(X) is complete if any function h(·) which
satisfies E◊ [h(U(X))] = 0 for all ◊ œ � must also satisfy
P◊ (h(U(X)) = 0) = 1 for all ◊ œ �.
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Completeness: An Abstract Definition

The concept of completeness is notoriously unintuitive – probably the most
abstract one in our course – but it will pay o� later

For now, you can think about the finite case a bit like a finite-dimensional
basis from linear algebra

If v1, . . . , vn span Rn, then
qn

i=1 aivi = 0 implies ai = 0 for all i

If U(X) is complete and supported on {u1, . . . , un}, thenqn
i=1 h(ui) · P◊ (U(X) = ui) = 0 implies h(ui) = 0 for all i

The meaning will become clearer at the end of Module 2

So why bring it up now?
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Showing Completeness is Very Di�cult In General...

Example 1.35: Let X1, X2, . . . , Xn
iid≥ Bernoulli (◊) with ◊ œ (0, 1). Show

that U(X) =
qn

i=1 Xi is complete.

Rob Zimmerman (University of Toronto) STA261 - Module 1 July 2-4, 2024 43 / 54

U Bink
Supposethathe issomefunctionsuchthat IEo h Ux ̅ 0 0 0 1

Then 0 Nj Po U j
Hj j O

GIFT

O

0 hg f Let r 040,0 P.o 0 0

and h hlj Y L E

ñ ri eCon UX iscomplete
rt 0,0

Sowe have apolynomial iv r whichis 0 faradr
Sothatpolynomialis thezero polynomial hi O j



...But for Exponential Families, There’s Nothing To It

Theorem 1.8: Let X1, . . . , Xn
iid≥ f◊ be a random sample from an

exponential family, where

f◊(x) = h(x) · g(◊) · exp

Q

a
kÿ

j=1
÷j(◊) · Tj(x)

R

b ,

where each ÷j(·) is continuous on � and each component of � contains an

open interval in R.1 Then T (X) =
A

nÿ

i=1
T1(Xi), . . . ,

nÿ

i=1
Tk(Xi)

B
is a

complete statistic.

Recall from Theorem 1.2 that in this case, T (X) is also su�cient for ◊

So it’s really easy to find complete su�cient statistics for exponential families

1More generally, � must contain an open set in Rk – this requirement is sometimes called the
“open set condition”.
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Completeness: Examples

Example 1.36: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

, where µ œ R and ‡2 is
known. Show that X̄n is complete for µ.
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Completeness: Examples

Example 1.37: Let X1, X2, . . . , Xn
iid≥ Poisson (⁄), where ⁄ > 0. Show that

X̄n is complete for ⁄.

Rob Zimmerman (University of Toronto) STA261 - Module 1 July 2-4, 2024 46 / 54

0 A

f x e exp x log x

e exp Ix nlog x

I lain
next

y x
n log x is continueson o o Also contains an openinterval

ByTheorem 1.8 TCR X is complete



Completeness: Examples

Example 1.38: Let X1, X2, . . . , Xn
iid≥ fµ,‡ where

fµ,‡(x) = 1
2‡

exp
3

≠ |x ≠ µ|
‡

4
, x œ R,

where ‡ > 0 and µ is known. Find a complete statistic for ‡.
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Complete Statistics Are Minimal Su�cient!

There is nothing resembling su�ciency in the definition of completeness; the
two concepts seem completely unrelated

And yet, Theorem 1.8 says that for exponential families, certain complete
statistics are su�cient

What about in general? The answer might surprise you...

Theorem 1.9 (Bahadur’s theorem): A complete su�cient statistic is a
minimal su�cient statistic.

That’s not the same as saying that all minimal su�cient statistics are
complete (which is unfortunately not true)
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Minimal Su�cient Statistics Are Not Always Complete

Bahadur implies that if a minimal su�cient statistic exists and it’s not
complete, then no complete su�cient statistic exists

This is probably the simplest example of a minimal su�cient statistic that is
not complete

Example 1.39: Let X1 ≥ Unif (◊, ◊ + 1), where ◊ œ R. Show that
T (X1) = X1 is minimal su�cient for ◊, but not complete.
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The Amazingly Useful Basu’s Theorem

Theorem 1.10 (Basu’s theorem): Complete su�cient statistics are
independent of all ancillary statistics.

Proof.
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Poll Time!

On Quercus: Module 1 - Poll 6
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Basu’s Theorem: Examples

Example 1.40: Let X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"

where µ œ R and ‡2 > 0.
Show that the sample mean X̄n is independent of the sample variance S2

n.

This is actually a characterizing property of the Normal distribution:
X̄n ‹ S2

n if and only if X1, X2, . . . , Xn
iid≥ N

!
µ, ‡2"
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Basu’s Theorem: Examples

Example 1.41: Let X1, X2, . . . , Xn
iid≥ Exp (◊), where ◊ > 0. Use Basu’s

theorem to find E◊

Ë
X1

X1+···+Xn

È
.
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Basu’s Theorem: Examples

Example 1.42: Let X1, X2, . . . , Xn
iid≥ fµ,‡ where

fµ,‡(x) = 1
2‡

exp
3

≠ |x ≠ µ|
‡

4
, x œ R,

where ‡ > 0 and µ is known. Show that X1/Xn is independent ofqn
i=1 |Xi ≠ µ|.
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From Slide 49 wtf

Why Supposethat a completesufficientstatistic UID Id exist

ByBahadur UCI must be minimalsufficient But then
UX and TX must be one to one functionsof eachother since they're
bothminimalsufficient But then TCx ̅ is a one to one functionof

a complete statistic andhenceitself complete Assignment 1

Contradiction So UCD cannot exist afterall


