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Data and samples

@ Data is factual information collected for the purposes of inference
(Merriam-Webster)

of
@ Inference is the act of passing from statistical sample¥data to generalizations

(as of the value of population parameters) usually with calculated degrees of
certainty (also Merriam-Webster)

@ We collect a sample of data from a population associated with some
probability distribution, and we would like to infer unknown properties of that

distribution

@ Example 1.1: mNAbQ
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Random variables versus observed data (this is really
important)

@ Our data sample goes through two phases of life: first as a random sample,
and then as observed data

@ A random sample is a set of random variables;, observed data is a set of
constants; the same goes for functions thereof (€ 2~ Noy), tre P 0):Y,
\€ pe dbsapne Z=2, thn P=0)1,., < {003,

@ We denote random variables using uppercase letters, and constants using
lowercase letters:

—_—
@ Example 1.2: Xhz()(\,...,)(,) = veckr & \r\e‘\jkkcf STR2G| shudonty Dekre messuring
(‘fuvdmwc\'or‘)

Xo® (7“/ -y Q = vector & measuned N;\jk\; (cms’m\'b

@ It is very important to clearly distinguish between the two quantities. But
why?
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lid-ness

@ “iid" stands for “independent and identically distributed”

@ This term is used everywhere in statistics, because it saves a lot of time
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Statistics

@ Definition 1.1: A statistic 7'(X) is a function of the random data sample X
which is free of any unknown constants. If we observe X = x, then T'(x) is

the observed value of T'. L ‘ Soy Xy, X ¢ NC/.D/eR
m=k= -;‘\-2 X —“DQ) = Lo T D= X, Yoy s
@ Example 1.3: ' (@’(.XMSE) NOT o0 chokistic Checoce
Tb'a-’ 24' X?:), WAN\“‘\‘W

@ A statistic is useful when it allows us to summarize the'data sample |n ways
that helps us with inference

o Different statistics are useful for different models
@ Example 1.4: 508 Ki—Kn S N(/,q*') SR, @20
ot bivaly, X =% Z X, Gold help s "nderstond /
G exonge, XA o Moo, K =2 p loy e UK.
Gipaty, G2 = W7 2% - K s Uatp s wib ™ B[ SL0= 02, e
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Parameters and Statistical Models
AR parometers

utions have parameters associated with them

@ Many classical probability distri

@ Example 1.5: N(}/‘c"’ , Q\v(v\,ib, Forsgn N)

Copfd ©
@ Definition 1.2: A statistical modelis a set of pdfs/pmfs {fy(:) : 6 € ©}
defined on the same sample space, where each 6 is a fixed parameter in a
known parameter space ©. When © C R” for some k € N, the set is also
called a parametric model (or parametric family).

Jim UEED): pe@} | Sopdoice Komp

¢ “NF (F e foao ®=?3.,9> -
l )\e f . %762 We Wy El i}":ee‘@,’e,}l

@ Statistical inference is classically concerned with figuring out which one of
those distributions generated the data, based on the data sample we have
available

@ Example 1.6:

@ This amounts to inferring the particular parameter 6
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Parameters and Statistical Models: More Examples

@ Example 1.7:  (Ne 527\2/0“3 wrete B for Re unknamn Poravete & inkorest
L\)Jhldf\ V“ﬂg EQ&WdoPB

: N (0"'}. c2 6"’753 = N(|2§: 6=(,¢°>c—. @-"(0,“32
o NG pe®, YNGye oo

W\mah we Yrow i cA\lau'\%k)pO. “Then "‘%\zw Wﬁm% s
N> rede (o
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Important Parametric Families: Location-Scale Families

@ Definition 1.3: A location family is a family of pdfs/pmfs
{f.(:) = f(- —p) : p € R} formed by translating a “standard” family

member f(-) = fo("). _ 2o

@ Example 1.8: iN[//d\)le(P]?

o Definition 1.4: A scale family is a fafily of pdes/pmfs A
{fo(:) = f(-/o)/o : 0 > 0} formed by rescaling a “standard” family member

fC) = f1().

® Example 1.9:5NC°1¢L>" e >D§

@ Definition 1.5: A location-scale family is a family of pdfs/pmfs
{fuo()=Ff (=) /o:peR,0 >0} formed by translating and rescaling a
“standard” family member f(-) := fo.1(+).

@ Example 1.10: EW(/!.G:L» //e@-, GJ)O%
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Important Parametric Families: Exponential Families

@ Definition 1.6: An exponential family is a parametric family of pdfs/pmfs of

the form k » o
folw) = h(x) - 9(0) - exp | Do, (0) - Ty(x) | 2 O™
" %‘:\aw-&(b\- O T

for some k € N, where all functions of £ and 6 are known anjéi the support of
fo does not depend on 6.

@ Lots of theory simplifies considerably if we assume our random sample comes

from an exponential family B’w&c?;:'\“““" 3‘2(»
N, * WY
@ Many of your favourite distributions are included q%,’mto.@ M"“'"Ni(w"’?‘b
Bete(n ) EvERise: how!
@ Example 1.11: Y~ B enodl:(0) (). .
ﬂ\
K~BpON), 820 1 oy P .
N2 e J%-S ey (S = [ (- exgx- 8
A= e ™ = 13 ep(-a5) e
'Q‘ ()\\ W) &(93 Tx)
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A Quick Review of Conditional Distributions

o Remember Bayes' rule:  P(piR)= M)

D)
@ Conditional distributions and expectations jm(x\33= f“;"(‘(ﬁp_ J'c%70
(33:
h 1

@ For any fixed y, E | X|Y = y] is a constant

[ “Yad Yoo
e But E [X|Y] is a random variable X mams X idepondont *

@ Example 1.12: [ED(()Q= X. lES)(H(—)D'—’ %
Soyp KLY, X\ = BHD = EXiv=y]

@ Example 1.13:

Touer pregerty” [ “loo € tetol erpedppn: E| ) = B0
" 50 € el v+ L M) e (B =)

EXERCSE: prove Nase # yoo hovadt
SaonYrom |
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A Quick Review of Functions
Judin _ colore
@ Let f: £~ B be a function

o If fis one-to-one, then  f(D=AB e>a=5
"ir“ecﬁvc"
o If fisonto, then Jbe®, o e st b= JWD
rS L e

@ If f is a bijection, then j'(s one.-To-are oy_ﬁ orstO (m\

borce odmeks i inveze 7R DA whida

\S al¢e e o Ay
@ Example 1.14: TR 06

/
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Freedom From 6

@ Most of the functions fy(x) we will deal with have parameters involved in
addition to the “independent variable”

o If the parameter 6 can vary too, then fy(x) is really a function of both x and
6
e, doe ohets SO R [0 awhiret g6, = AR VOB, xex

o If fy(x) is actually not a function of  (i.e., it's constant with respect to 6),
we might also say that it's “free of 8" or that it “does not depend on 6"

SR =5 s Sk ]
@ Example 1.15; JolR2X b facd © Q“A ) N(/.B.TN«
A0 0 O nob S 8. g)( fop R)= ey ‘Pj’-

@ So if we say that the distribution of X is free of #, we mean that the cdf of
X (and hence the pdf/pmf) is the same for all 6 € ©

o Example 116 i X ~Erp(N) | run Ko Stk & XK ic fino & X.
EYensE!
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Data Reduction: A Thought Experiment

@ Is there a such thing as “more data than necessary”?

@ Suppose that field researchers collect a sample X = (X7, X5, ..., X},) % fo,

where n is astronomically large; they want us statisticians to do inference on
6, but sending us X would take weeks

@ Wouldn't it be great if we didn't need the entire sample X to make inferences
about 6, but rather a much smaller statistic 7'(X) — perhaps just a single
number — that still contained as much information about 6 as X itself did?

@ The researchers observe X = x, calculate T'(x) = t on their end, and then
text ¢ over to us

@ Example 1.17: \(\/-_.i XK 3 N(/J,D, J:e\]z. Instzad £ Pe experimantery
Seding 1S Xn=(x),-, R @, what ey yust st us %=k x @ 2
(on e <t &em\somz%a ebm}/ﬂ
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Sufficiency

@ How do we “encode” this idea?

o If we know that T'(X) = t, then there should be nothing else to glean from
the data about 0

@ Definition 1.7: A statistic T'(X) is a sufficient statistic for a parameter 6 if
the conditional distribution of X | T'(X) = ¢ does not depend on 6.

- (%3

N
Py (X = x and T(X) = T(x))
Py (T'(X) =T'(x))

@ An interpretation: if the conditional distribution

PX=x|T(X)=T(x)) =

is really free of 6, then the information about # in X and the information
about ¢ in T'(X) and “cancel each other out” (heavy quotes here)

o Example 1.18: TR)= ¥ is odwoys Sulicied fur whoteie- pamnater,
Wy, Qecose Q(X=21TR = TW) = RLR=2(R=D) 7 4, which s fe £©
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Sufficiency

o Example 1.19: Let X1, Xo, ..., X, ~ Bernoulli (0), where 6 € (0,1). Show

that T(X) = >0 | X, is suff|C|ent for 0. TR~ R Riv(n .
Lek £=T0D. Then P =0 = (B,

R(F=2 AT =4) teldns.

) Fe(.\iﬁy. Kz 57(- oy Go Bl 2% (TR =0
LU gx © - ol

"R (ox, 0 Yar k- 260 (H B‘CW)”*

=Rt Bt 2 T T s e 0
T Pt (4 9\

= ' (1-ey* ;TR e sulficent 6 B
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Sufficiency

@ Example 1.20: Let X4, Xo,..., X, Zisl/\/’(,u, ) where 1t € R and 02 is
) n ==y X; is sufficient

for pu. '\'C)ad Ngu e¥/n) hat ?é{' J(E= mq_ QR’(~ h(.‘f-;_b’ ‘
202
LQ" { 2)( 'Kv' w

known. Show that the sample mean T'(X

\/
\ﬁ ><'

) . So
é(x ) i é(sc t ’i/bz ‘B 21
2 [ty 20000 ) 1B
= Sty + nliy? T i)
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S HDA] 5, o052 et of LY
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The Factorization Theorem
‘/F’\sht—Ncam
@ Theorem 1.1 (Factorization theorem): Let X = (X1,...,X,,) ~ fo(x),
where fy(x) is a joint pdf/pmf. A statistic T'(X) is sufficient for 6 if and only
if there exist functions gy(t) and h(x) such that

fo(x) = h(x)-go(T(x)) forall e 0O,

where h(x) is free of 8 and go(T'(x)) only depends on x through T'(x).

@ In other words, T'(X) is sufficient whenever the “part” of fy(x) that actually

depends on @ is a function of T'(x), rather than x itself
. (ondinvous Cece neals

ch&k«a
Proof. (D\chde 0D ot £ T,

We wonk 4o shey (X =% A T(RD=O

i fred B L
W&T(f\% ?9(3’(.;;;5 =\ - Yo (D),

for sore L), 4o,
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The Factorization Theorem
=) Asswme Tis sdficiont for B, f & =T, Yo

Po (2.=R) = Bo(Z-2 A Y=
TROCR TR 6 RER=D = Ry gy,
" —~——

= W) hide t¢ Grna = 99(‘0
& © ble Tic ulfiaat

(&) - Assuna Bo (K= = W o6 foc care WED, go0). Then, 1f A; 12Tt}
RET=8) = é P(R=3 A TR)=£) byte wéiod probeblrl
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Poll Time!

On Quercus: Module 1 - Poll 2

2T . elTD)
fe,,(ub hxY ﬂaﬂ&’b 3&('-@) Aepends 0 3 "y Wm
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The Factorization Theorem: Examples

@ Example 1.21: Let X4, Xo,..., X, ¢ Bernoulli (0), where 8 € (0,1). Show

that T(X) = >0 | X, is suff|C|ent for 6.

Lz\' t ;Té)‘;. M Jb(-): - ﬁen (‘(9)"";
=% (e

= € €
4. B0y

=: W) Qo> %‘A Ire. factorization Yrentom, TIR) s axficient fir O.

o Example 1.22: Let X1, Xo,..., X, Zfz\fij\/’(,uj, c?), where i € R and o2
known. Show that the sample mean T(X) = X,, := 2 3" | X, is sufficient

for L. ..}/'l(-;\ :f‘:} ‘é,(“)

- ALY, )") % tre. foctoriaadion *\'@m
'(Z\W'ﬁl 2.*5?( s '
- s o nlest TR sufiiod € o
'er"> “eR ( ey 20,_ R
() ()
=:h(®) = &,’({\
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The Factorization Theorem: Examples

@ Example 1.23: Let X4, Xo,..., X, Zisl/\/‘(,u, 02), where 1 € R and o2 > 0.

Show that T(X) = (X,,, S%) is sufficient for (u,0?)=8,
et 4= % od o= 75 Zw-6). Thon

JoG) = C?rta') e\c\)(éc""“" '\(tr‘f)"{)

20

(oa "y [ (nei) et —n ({‘ % "‘»’Q. fodm%ﬂ\m ‘“@M"\,
10 ( 2 1> Q=(T, (), \z&)‘> S
kZﬁ 39[{1\ ,‘bb S"@\C\ﬂ'\'t '((f B.

@ Example 1.24: Let X1, Xo,..., X, g Unif (0, 6) where 6 > 0. Show that X,

is not sufficient for 6, and flnd a statistic that is.
_ 4
f@@)‘g © “-ocme

- ﬁ_osy:ee ¢

= 6"'4-,““-;5,&%90 .
= &‘ * e-'\ .'X\-Kc..\ﬁe . %a M fmﬁ“"‘\ m,—‘(i)f: Ktﬂ s QUQ\(,\QTE

_Teze for © land Ko nob),

= WK \e(¥Xeo)
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The Factorization Theorem: Examples

@ Theorem 1.2: Let Xq,...,X, g fo be a random sample from an

exponential family, where

k
fo(z) = h(z) - g(0) - exp Zme) - T ()

Then T'(X) = (Z T (X5),. .., ZTK(X,L)> is sufficient for 6.
i=1 i=1

Proof. \\Y\QO/&O(\'& EXEQ[_\S c \~

Rob Zimmerman (University of Toronto)
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The Factorization Theorem: Examples

@ Example 1.25: Let X4, X9, ..., X, Zisl/\/‘(,u, 02), where 1 € R and o2 > 0.
Show that T'(X) = (>, X 27,21 X;) is sufficient for (u,0?)=@.

? 27" ”l'(/"'% T

Br) Tharem 1.2, T(*\z\=(§Tb(\ \CK\)

=)

) (.‘ZX;‘Z | %XB 15 Sufficient fur (j),o-"').
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The Factorization Theorem: Examples

@ Example 1.26: Let X1, Xo,..., X, g Unif ({1,2,...,0}), where § € N.

Show that T'(X) = X, is sufficient for 6. |k ge efporantol &"‘[ﬁ\
Ao =\ Fod = ﬁ*\é A

=

X.eiy,...0%

t=|

07 A et 03 v

= é\:‘\cﬂ 5’“4%‘9 By e facriantion trenrem, T()
k/—\\) e S\&\L’Mﬁf@

= h(x = Q%o
Indicsto acrlometic: let B, 0d ®, b duo popeciins be, ek To ©). Lot A, A, be ois.
.= 00, P's 4 - -
ORI TR P PR TG LA RN
L=y eh Lin® = Le4,0 7 4,0 =4,m48-1,04,
ﬂ'ﬂﬂ'? =1- 1\.? Q“'C, et
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If There's One, There's More...

o If we have some sufficient statistic, we can always come up with (infinitely)
many others...

@ Theorem 1.3: Let T'(X) be sufficient for 6 and suppose that r(-) is a
bijection. Then r(T'(X)) is also sufficient for 6.

Proof. 2 ua Hot T “hicat ' e.

Ry e forturinatin theoam, folE7 Hi\‘()e(ﬂib Cor sona Sinchin (S gk 9ot

Lo WD % B
> PR gl e (r (TN )
=D 59(,{1—@\3' where :9"9 = 99 0 ¢! (ie, bye (6= 89((-“\%‘

D icaffcet fr®. O

Byte aciantion Hemrors, (T
( in Yo obor directin!
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Too Many Sufficient Statistics

@ So there are lots of sufficient statistics out there

o We saw that T'(X) = X is always sufficient — it's also pretty useless as far as
data reduction goes

@ There are usually “better” ones out there — how do we get the best bang for
our buck?

@ Another issue: the factorization theorem makes it easy to show that a
statistic is sufficient (if it actually is), but less so to show that a statistic is
not sufficient

@ We will develop theory that takes care of both of these issues at once
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Minimal Sufficiency

o Definition 1.8: A sufficient statistic T'(X) is called a minimal sufficient
statistic if, for any other sufficient statistic U(X), there exists a function h
such that T'(X) = h(U(X)).

@ In other words, a minimal sufficient statistic is some function of any other
sufficient statistic Eb" \L‘,,,yﬁg N(}‘h_ e Goo Yok T(&)* ¥ e auliciont for p.
So 'xeT,_(i):)_(n, T2 i< o fnetin & T, )

@ A minimal sufficient statistic achieves the greatest reduction of data possible
(while still maintaining sufficiency) bt ret fle dbtar way e |

o Example 1.27: Let X1, Xo,..., X, Z'ri\fi/\/'(,u,(ﬂ), where ;1 € R and o2 is

known. Show that T'(X) = (X,,, S?) is not minimal sufficient for .
e sw Kot ¥, e sl Qw/:. Ror TX) is ot o frckind X,
Co ™ cont s wwipol o Mrcrart e j)
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Poll Time!

On Quercus: Module 1 - Poll 3

@ Y, Fooor Yt Xag vivinel sofidant

= \L\ koo Kr.( NOT  mirwd W'};C‘W)ﬁ\'
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A Criterion For Minimal Sufficiency

@ It's usually not that hard to show that a statistic is not minimal sufficient
@ But how can we possibly show that a statistic is minimal?

@ Theorem 1.4: Let fy(x) be the pdf/pmf of a sample X. Suppose there exists
a function T'(+) such that for any x,y € X", T'(x) = T'(y) if and only if the
ratio fg(x)/fo(y) is free of 6. Then T'(X) is minimal sufficient for 6.

No Qrwg...

@ This criterion is easier to apply than it looks

@ Example 1.28: Let X1, Xo,..., X, MUBernoull (0), where 8 € (0,1).
Show that T'(X) = >""_, X; is minimal sufficient for 6.

[et i'§*%h= ?0@“. Then...
h-ix':
F(D _ e2% (1-6) _ eéf;"fg\_ (‘_6)45"5"" Ohidn i (e £ O

}T(g-\ ) 6‘5’0 U"e)"“ﬂ'- é.\(-‘ .‘-‘é‘(b-‘ (.(-P, T(,'z} :T@.
Ry Thawun 1.4, T(X) 1g mivimel ¢ufficent for O.
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Minimal Sufficiency: Examples

@ Example 1.29: Let X4, Xo,..., X, Zifl/\f(,u, 02), where 1 € R and o2 > 0.
Show that T'(X) = (X, SQ) is minimal sufficient for (i, 0?)= 6.

bet ¢% '/?(x—x) md Ga n-|é((j -
P €123, 4+ (ngy™ e 220, Tho
AB _ oY ep( *25E)
9 . - (n-DSY - N(G-P*
P e (DS rGA)

_ ~ (o (A -¢id - n(g*-g* 2/&;-)3
) QK?( 20t )

e fuae & (/.0’5 s =3 A <l = 5.
By Thoren 4, TCRD 6 nivinel cofcont b (p
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Minimal Sufficiency: Examples

@ Example 1.30: Let X1, Xo,..., X, 'Y Poisson (A\), where A > 0. Find a
minimal sufficient statistic for \.

EXERCSE |
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Minimal Sufficiency: Examples

@ A minimal sufficient statistic isn't always as minimal as you would expect...

o Example 1.31: Let X1, Xa,..., X, & Unif ([0, 60 + 1]), where § € R. Show

that T'(X) = (X(1), X(y)) is minimal sufficient for 6.
AGE ije(A Let ggeX = [o,041) Than..
i={

- ﬁ '_(_L f_e(i\ - ﬂ.xc..,..\c.-eétm
I 0<x; ¢ Jeoa‘) ’ij‘ (@< Y

“}% Yom =Yoo oS Ken = Yed.

8 free £ ©

= ﬂ- 0¢X,,...., %604

L3
-

1"9“‘(-) A Xene 64|

= 4 QSW 4, T © mnrd sffcet @ 8.
K-t € O € Koy -
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Poll Time!

On Quercus: Module 1 - Poll 4
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The “Opposite” of Sufficiency?

@ We know that a sufficient statistic contains all the information about 6 that
the original sample has

@ What about a statistic that contains no information about 67

@ Why would such a thing be useful?

vl

%1 Xu,K,_‘J N(/’«D /)er\z
TR= (%, - Ko Yar o) syt nk cqend o
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Ancillarity

@ Definition 1.9: A statistic D(X) is an ancillary statistic for a parameter 6 if
the distribution of D(X) does not depend on ¢

o Example 1.32: Let X1, Xo,..., Xn < Unif ([0, 60 + 1]), where 6 € R. Show
that the range statistic R(X) := X,y — X(1) is ancillary for 6.

i C e v
=Y.~ ‘ i (04 bt dicivos o
Lc{- Y‘ \(’ G. Thon &\)'/"'IY" ~ UN( |3 'C'(‘m o3 kem Cre éﬂz& 0.

Then (@D D
= Vo ([ Keam X €9
= B (KO (w8 0
= B (T =T 60
= P Rewlad) - Rekolld ¢0)
doot ok depard o O

: etk O
o G P
. PRV e oncllomy for O
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Ancillarity: Examples

@ Did we actually use the uniform distribution anywhere in the previous
example?

@ Theorem 1.5: Let X4,...,X,, be a random sample from a location family
with cdf F'(- — 0), for 6 € R. Then the range statistic is ancillary for 6.

Proof. et Y:= ¥, =B R F(). & Gt

Tkm \Qe( Z(QB £ h
- @a( wa\- X(«\ éh

ol Van- T €7, which s froe £ 0 ecorse de Sickdokes
& Yy m e fedd T
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Ancillarity: Examples 259

q
o Example 1.33: Let X1, Xy,..., X, ~ N (0,02), Show that

D(X) = X1+'3;;X”‘1 is ancillary for o2.

\ek 2= X.'/q-_ Thn 2‘, o) 2»“ N(olw-
CARNCRTRY

— I;P‘L( %(. *\Snx_\h ‘%

= E}.(E‘I/o- oo Xh'\lr 4‘)5

)(;-lQ' \ﬁhld

= Pﬂ‘"(% Eoeox 225'-: g% &39,9 vot A@M on G 2.
¢, DK) ¢ mcl\\oa e 2.

@ Theorem 1.6: Let X4,...,X,, be a random sample from a scale family with
cdf F'(-/o), for o > 0. Then any statistic which is a function of the ratios
X1/Xp, ..., Xn_1/X, is ancillary for o.

EXERCSE |
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Ancillarity: Examples

o Recall that if Z1,..., 2, Zr%\fl/\/(O, 1), then the distribution of Y = >"" . 7?2
is called a chi-squared distribution with n degrees of freedom, which we

write as Y ~ X?n)'

@ Theorem 1.7: Let X1, Xo,..., X, Zrfigij\/'(,u, 02) with 1 € R and o2 > 0.

Then 25152 ~ x? ... Y y
: M @6 = SR (e Bl (e 5k 1)
= (5% -5 (5% -5 )

Proof (n = 2). . N
Y- Yo ~ N(O, 269) 2

2 Jz0-N(O)D). =526 Xy EYRGE:

= % G[‘e"efd Cos?

= (Yl-x‘l)‘ . (EW.N(O'DY‘ ” bice inducbon!
=) - %:) %Cz y. 0O

@ Example 1.34: Let X4, Xo,..., X, %l/\/’(,u, 02) with 1 € R and o2 > 0.
Show that the sample variance SZ is ancillary for p.

Ffwf\ Obm ShN nel xc»»), o ks é\?\wrbd('m is free rf/
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Poll Time!

On Quercus: Module 1 - Poll 5
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Completeness: An Abstract Definition

@ Everything so far has been about ways to reduce the amount of data we need
while still retaining all information about 6

@ We've seen that ancillary statistics are bad at it, sufficient statistics are good
at it, and minimal sufficient statistics are very good at it

@ We will study one more kind of statistic, but the definition isn't pretty

@ Definition 1.10: A statistic U(X) is complete if any function h(:) which
satisfies Ey [A(U(X))] = 0 for all # € ® must also satisfy 'L(_ﬂ‘wae&" ey
Py (R(U(X)) =0) =1 for all 8 € ©.

Corttnaos: qu\(tb'f,(tb&u:D uhre UL~ o \ VXYY,
dierate : é (e \Pe( b&i\ﬂ@ ) O

el

10 R e comlete, K (Eg{\n(u@& =0 = B[ HU)=0) ~( YY) & TRUE,
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Completeness: An Abstract Definition

@ The concept of completeness is notoriously unintuitive — probably the most
abstract one in our course — but it will pay off later

@ For now, you can think about the finite case a bit like a finite-dimensional
basis from linear algebra

e If vi,...,v, span R", then Z?’:l%w = 0 implies a; = 0 for all ¢
oll & frese spon R Q«mﬁ‘m
o If U(X) is complete and supported on {uy,...,u,}, then
S h(ug) - P (U(X) = u;) = 0 implies w =0 for all 4
\/\f\—J “ . "
Ol & Hese oddup o 4. — (Coefliciont

@ The meaning will become clearer at the end of Module 2

@ So why bring it up now?
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Showing Completeness is Very Difficult In General...

@ Example 1.35: Let X1, Xo,..., X, 9 Bernoulli (0) with 8 € (0,1). Show
that U(X) = Y1 | X; is complete. A\~ Rinl,0).

Suggese trat W0 T some funckon qudn fat L IWURXY)=O ¥Oe(o).

= . ‘\(3 P [b' n .
Then O é - B W (=0 8
- W) =0 V¢
= B (W wW=0)
- WQLCVO)

] ot T = 4. \Nee®,
= ST et YOelon . WA ¢ onglete.
60 SN¢ Ho,#)

So wz Vow "'?43““"““"'“" ¢ wwidne O Hroll ¢
Go Kok leio\\s e 200 WG\ => k;"O Y-
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...But for Exponential Families, There's Nothing To It

@ Theorem 1.8: Let X4,...,X, g fo be a random sample from an

exponential family, where

k
fo(x) = h(z) - g(0) - exp an(e)-Tj(a:) ,

where each 7;(-) is continuous on © and each component of © contains an

open interval in R.! Then T'(X) = <Z T1(X;), .. .,ZTMXQ) is a
i=1 i=1

complete statistic.  |Ng M

@ Recall from Theorem 1.2 that in this case, T'(X) is also sufficient for 8

@ So it's really easy to find complete sufficient statistics for exponential families

1More generally, ® must contain an open set in R¥ — this requirement is sometimes called the
“open set condition”.
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Completeness: Examples

e Example 1.36: Let X1, Xo, ..., X, %l/\f(,u, c?), where € R and o2 is
known. Show that X, is complete for L.

f )QS (2‘1@5 C}Q( (- 26-.-*-}?3> /J/,,lg‘»
=L en[E)- ; R
wj iﬂvz\ﬂ Qw)

W 2

7(};3: Y < c\uha cobnos. Pleo @ = ¥ Contdin O open Mel\n.\)
TR® Aﬁéx‘, is Cm?\zte ¥3 Thesrem (3.
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Completeness: Examples

o Example 1.37: Let X1, Xo,..., X, 'Y Poisson (M), where A > 0. Show that

X,, is complete for \.

® = (o,2)
Jt (x) = >f e,sc?(x XO&(&

= —,‘(— e\cg(—x v‘\/ﬁdw
/ T =G

Gy 9 ™

'7 (%) =""e'°(7(>§ 1S conhingS OA @-’CO 2). Al ® cortcie on cpen wenbl.
Ry Tresem 1.3, T = ¥, i cagete.
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Completeness: Examples

o Example 1.38: Let X1, Xo,...,Xn < fu.o where

]_ _
fu,(,(zrj):—exp(—‘glj M'), r e R,

20 o

where o > 0 and u is known. Find a complete statistic for o.

twerpcist !

Rob Zimmerman (University of Toronto)
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Complete Statistics Are Minimal Sufficient!

There is nothing resembling sufficiency in the definition of completeness; the
two concepts seem completely unrelated

And yet, Theorem 1.8 says that for exponential families, certain complete
statistics are sufficient

What about in general? The answer might surprise you...

Theorem 1.9 (Bahadur’s theorem): A complete sufficient statistic is a
minimal sufficient statistic. No ...

That's not the same as saying that all minimal sufficient statistics are
complete (which is unfortunately not true)
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Minimal Sufficient Statistics Are Not Always Complete

@ Bahadur implies that if a minimal sufficient statistic exists and it's not
complete, then no complete sufficient statistic exists

Whyy’ Sez e rote. Eowing Stide 54
@ This is probably the simplest example of a minimal sufficient statistic that is
not complete

o Example 1.39: Let X7 ~ Unif (0,0 4+ 1), where 8§ € R. Show that
T(X1) = X7 is minimal sufficient for 6, but not complete.

fe(% il '&\'Gsxsau. \v(ww. (onsider WG C‘\n@.\tb. Thaw for oll Oe®, welose
L2t x.geZ. Tron E LT = B WxS)
‘7_‘:9_(9 - .1‘-04%-‘94 = E;S'\v\('l\zxsx
Jé% '19‘34“ O«
=S s 2xx) Ax
dees 1k dponl n© ®
e x=y. By Tharen 4 = (D P -e2ele) « ol
K ! 2n ® i 2w .
TR ¢ minind (ficient. Rt h"gr rot tdodedly O on (0,04D), 62 R Wx)=0) £ 1
= | 6t :
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The Amazingly Useful Basu's Theorem

@ Theorem 1.10 (Basu’s theorem): Complete sufficient statistics are
independent of all ancillary statistics.

(—®
Proof. Disrete (). Lt T= TR be o confere. sHicenk dtichic. Lot S=SR) be

ey skebstic B 0. & alfioar %0 do0 R(S=sI T=6) =P (&9,
Bﬁ Yre \ow £ folal Qr&)cb\\c’cg,
Fe-)= 2 Bles -0 T O

teT
N, 1= g\)e(T#)' §0 Ke’gr(é\)e(\?{%?@*) ®
S 0=0-® = z [ Rlo=s(T=H - \?(5?3-1‘ Po(T=6

et —
= W Sie T t¢ Gonglete, w2 mst o

- Z h(6)- [ (T=©) fﬁ(@; s|T=6) = P (9.
“ELhCD) Voel.
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Poll Time!

On Quercus: Module 1 - Poll 6
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Basu's Theorem: Examples

@ Example 1.40: Let X4, Xo,..., X, Z'isl/\/‘(,u, 02) where 1 € R and o2 > 0.

Show that the sample mean X, is independent of the sample variance S2.

'\7>t5 ﬁxwv‘ie, \36, ve kaw X, i¢ o Conglete sfiicient stotietic. for .
By Erongle |34, Suis ooy fr o
Ry Rasvs dreaom, Ko 1L S

L.

@ This is actually a characterizing property of the Normal distribution:
X,, L S? if and only if X1, X5,..., X, N (1, 0?)
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Basu's Theorem: Examples

@ Example 1.41: Let X1, Xo,..., X, g Exp (#), where # > 0. Use Basu's

theorem to find [Eg [Xﬁ)f_lJrX ]

X,
Z 6\?(63: 9’02 (¢ a. Scde \:omnlg =3 X 4 Kn S Onc'\\\qa fer © bﬂ Thewom |.0.

Klso, s in on exporent Gl i TOY= 6 = TR R 64 X s

e sBeant st b ©. By Bacls tharum K‘ff"m L Kot X
=) Kf (KD = \E‘x* .&‘3 LR e
> Bl = | o B )
=@&M&Y%

& X, ‘5:5_
= oo Ko n .
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Basu's Theorem: Examples

@ Example 1.42: Let X4, Xo,..., X, g Ju,o where
1 |z — pf
o — 5 — ) < Ra
Jeo () o eXP( - > x
where o > 0 and p is known. Show that X;/X,, is independent of
TL_ Xz — . \ -|x~p\-L
2 i—1 | pl EIE "i"ld" Q*?( \xff\ A

.  oof — BT = 2l Q=15 conimay an (0, P
G - S e 4} 0 |
jﬁ'(Ka N 26 ?( T @:(Dlﬁ) Contams MW‘MJ‘. %

T g e[ ) Trenwn (8, T00)= Z1,-p)
SO Were. i o. qede }o,,;\l,‘. e soliiont fr -
‘gﬁ Thesrom \.bl Kc/n‘.\g W\\\U\G T o @5 Racot ‘Weuvm’
X,

' independant & 2\*‘.‘}’\,
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Tom Slde, 49- 90/310‘0

@ Bahadur implies that if a minimal sufficient statistic exists and it's not
complete, then no complete sufficient statistic exists

Why? Sopee drek o compde. oSficort. <iotietic. UW(E) 3id exst.

By Rolodor; UCK) mist: be. minmal Suficiont. Bt Han

AR ad T(R) mst be me-to-ome fnctins § each ofter, Since Reye
bolln winwol glicent,. Ruk Hlon TOD'E on tne-4o-ae. Gucton &

O onqlete shuehic, and hee 1iedk comgdie (Pesigmont 1),
Cotrodictin| S, UG comot et offer ol
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