STA261 - Module 1 Statistics

Rob Zimmerman

University of Toronto

July 2-4, 2024

メロト イヨト イヨト

Data and samples

- *Data* is factual information collected for the purposes of inference (Merriam-Webster)
- Inference is the act of passing from statistical sample data to generalizations (as of the value of population parameters) usually with calculated degrees of certainty (also Merriam-Webster)
- We collect a *sample* of data from a *population* associated with some probability distribution, and we would like to infer unknown properties of that distribution
- Example 1.1:

イロト イヨト イヨト

Random variables versus observed data (this is really important)

- Our data sample goes through two phases of life: first as a *random sample*, and then as *observed data*
- A random sample is a set of *random variables*; observed data is a set of *constants*; the same goes for functions thereof
- We denote random variables using uppercase letters, and constants using lowercase letters:

• Example 1.2:

• It is **very** important to clearly distinguish between the two quantities. But why?

iid-ness

۰

- "iid" stands for "independent and identically distributed"
- This term is used everywhere in statistics, because it saves a lot of time

Statistics

- Definition 1.1: A statistic $T(\mathbf{X})$ is a function of the random data sample \mathbf{X} which is free of any unknown constants. If we observe $\mathbf{X} = \mathbf{x}$, then $T(\mathbf{x})$ is the observed value of T.
- Example 1.3:
- A statistic is useful when it allows us to summarize the data sample in ways that helps us with inference
- Different statistics are useful for different models
- Example 1.4:

Parameters and Statistical Models

- Many classical probability distributions have parameters associated with them
- Example 1.5:
- Definition 1.2: A statistical model is a set of pdfs/pmfs {f_θ(·) : θ ∈ Θ} defined on the same sample space, where each θ is a fixed parameter in a known parameter space Θ. When Θ ⊆ ℝ^k for some k ∈ N, the set is also called a parametric model (or parametric family).
- Example 1.6:
- Statistical inference is classically concerned with figuring out which one of those distributions generated the data, based on the data sample we have available
- $\bullet\,$ This amounts to inferring the particular parameter $\theta\,$

Parameters and Statistical Models: More Examples

• Example 1.7:

Rob Zimmerman (University of Toronto)

STA261 - Module 1

July 2-4, 2024 7 / 54

Important Parametric Families: Location-Scale Families

- Definition 1.3: A location family is a family of pdfs/pmfs
 {f_μ(·) = f(· − μ) : μ ∈ ℝ} formed by translating a "standard" family
 member f(·) := f₀(·).
- Example 1.8:
- Definition 1.4: A scale family is a family of pdfs/pmfs $\{f_{\sigma}(\cdot) = f(\cdot/\sigma)/\sigma : \sigma > 0\}$ formed by rescaling a "standard" family member $f(\cdot) := f_1(\cdot)$.
- Example 1.9:
- Definition 1.5: A location-scale family is a family of pdfs/pmfs $\{f_{\mu,\sigma}(\cdot) = f\left(\frac{\cdot-\mu}{\sigma}\right)/\sigma: \mu \in \mathbb{R}, \sigma > 0\}$ formed by translating and rescaling a "standard" family member $f(\cdot) := f_{0,1}(\cdot)$.
- Example 1.10:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

On Quercus: Module 1 - Poll 1

メロト メタト メヨト メヨト

Important Parametric Families: Exponential Families

• Definition 1.6: An exponential family is a parametric family of pdfs/pmfs of the form

$$f_{\theta}(x) = h(x) \cdot g(\theta) \cdot \exp\left(\sum_{j=1}^{k} \eta_j(\theta) \cdot T_j(x)\right),$$

for some $k \in \mathbb{N}$, where all functions of x and θ are *known* and the support of f_{θ} does not depend on θ .

- Lots of theory simplifies considerably if we assume our random sample comes from an exponential family
- Many of your favourite distributions are included
- Example 1.11:

イロト イヨト イヨト

A Quick Review of Conditional Distributions

- Remember Bayes' rule:
- Conditional distributions and expectations
- For any fixed y, $\mathbb{E}[X|Y = y]$ is a constant
- But $\mathbb{E}\left[X|Y\right]$ is a random variable
- Example 1.12:
- Example 1.13:

A Quick Review of Functions

- $\bullet~ {\rm Let}~ f: A \to B$ be a function
- If f is one-to-one, then

• If f is onto, then

• If f is a bijection, then

• Example 1.14:

Freedom From $\boldsymbol{\theta}$

- Most of the functions $f_{\theta}(x)$ we will deal with have parameters involved in addition to the "independent variable"
- If the parameter θ can vary too, then $f_{\theta}(x)$ is really a function of both x and θ
- If $f_{\theta}(x)$ is actually *not* a function of θ (i.e., it's constant with respect to θ), we might also say that it's "free of θ " or that it "does not depend on θ "
- Example 1.15:
- So if we say that the distribution of X is free of θ , we mean that the cdf of X (and hence the pdf/pmf) is the same for all $\theta \in \Theta$
- Example 1.16:

Data Reduction: A Thought Experiment

- Is there a such thing as "more data than necessary"?
- Suppose that field researchers collect a sample $\mathbf{X} = (X_1, X_2, \dots, X_n) \stackrel{iid}{\sim} f_{\theta}$, where n is astronomically large; they want us statisticians to do inference on θ , but sending us \mathbf{X} would take weeks
- Wouldn't it be great if we didn't need the entire sample X to make inferences about θ , but rather a much smaller statistic $T(\mathbf{X})$ perhaps just a single number that still contained as much information about θ as X itself did?
- The researchers observe $\mathbf{X} = \mathbf{x}$, calculate $T(\mathbf{x}) = t$ on their end, and then text t over to us
- Example 1.17:

Sufficiency

- How do we "encode" this idea?
- If we know that $T(\mathbf{X})=t,$ then there should be nothing else to glean from the data about θ
- Definition 1.7: A statistic $T(\mathbf{X})$ is a sufficient statistic for a parameter θ if the conditional distribution of $\mathbf{X} \mid T(\mathbf{X}) = t$ does not depend on θ .
- An interpretation: if the conditional distribution

$$\mathbb{P}(\mathbf{X} = \mathbf{x} \mid T(\mathbf{X}) = T(\mathbf{x})) = \frac{\mathbb{P}_{\theta} \left(\mathbf{X} = \mathbf{x} \text{ and } T(\mathbf{X}) = T(\mathbf{x})\right)}{\mathbb{P}_{\theta} \left(T(\mathbf{X}) = T(\mathbf{x})\right)}$$

is really free of θ , then the information about θ in X and the information about θ in T(X) and "cancel each other out" (heavy quotes here)

• Example 1.18:

Sufficiency

• Example 1.19: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Bernoulli (θ) , where $\theta \in (0, 1)$. Show that $T(\mathbf{X}) = \sum_{i=1}^n X_i$ is sufficient for θ .

Sufficiency

• Example 1.20: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and σ^2 is known. Show that the sample mean $T(\mathbf{X}) = \overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$ is sufficient for μ .

The Factorization Theorem

• Theorem 1.1 (Factorization theorem): Let $\mathbf{X} = (X_1, \ldots, X_n) \sim f_{\theta}(\mathbf{x})$, where $f_{\theta}(\mathbf{x})$ is a joint pdf/pmf. A statistic $T(\mathbf{X})$ is sufficient for θ if and only if there exist functions $g_{\theta}(t)$ and $h(\mathbf{x})$ such that

$$f_{\theta}(\mathbf{x}) = h(\mathbf{x}) \cdot g_{\theta}(T(\mathbf{x})) \quad \text{for all } \theta \in \Theta,$$

where $h(\mathbf{x})$ is free of θ and $g_{\theta}(T(\mathbf{x}))$ only depends on \mathbf{x} through $T(\mathbf{x})$.

• In other words, $T(\mathbf{X})$ is sufficient whenever the "part" of $f_{\theta}(\mathbf{x})$ that actually depends on θ is a function of $T(\mathbf{x})$, rather than \mathbf{x} itself

Proof.

The Factorization Theorem

Rob Zimmerman (University of Toronto)

STA261 - Module 1

■ ト 4 ■ ト ■ ク ۹ (~ July 2-4, 2024 <u>19 / 54</u>

メロト メタト メヨト メヨト

On Quercus: Module 1 - Poll 2

メロト メタト メヨト メヨト

• Example 1.21: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Bernoulli (θ) , where $\theta \in (0, 1)$. Show that $T(\mathbf{X}) = \sum_{i=1}^n X_i$ is sufficient for θ .

• Example 1.22: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and σ^2 is known. Show that the sample mean $T(\mathbf{X}) = \overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$ is sufficient for μ .

• Example 1.23: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Show that $T(\mathbf{X}) = (\bar{X}_n, S_n^2)$ is sufficient for (μ, σ^2) .

• Example 1.24: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Unif}(0, \theta)$ where $\theta > 0$. Show that \bar{X}_n is *not* sufficient for θ , and find a statistic that is.

< □ > < 同 > < 回 > < 回 >

• Theorem 1.2: Let $X_1, \ldots, X_n \stackrel{iid}{\sim} f_{\theta}$ be a random sample from an exponential family, where

$$f_{\theta}(x) = h(x) \cdot g(\theta) \cdot \exp\left(\sum_{j=1}^{k} \eta_j(\theta) \cdot T_j(x)\right).$$

Then
$$T(\mathbf{X}) = \left(\sum_{i=1}^{n} T_1(X_i), \dots, \sum_{i=1}^{n} T_k(X_i)\right)$$
 is sufficient for θ .

Proof.

• Example 1.25: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Show that $T(\mathbf{X}) = (\sum_{i=1}^n X_i^2, \sum_{i=1}^n X_i)$ is sufficient for (μ, σ^2) .

• Example 1.26: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Unif}(\{1, 2, \ldots, \theta\})$, where $\theta \in \mathbb{N}$. Show that $T(\mathbf{X}) = X_{(n)}$ is sufficient for θ .

If There's One, There's More...

- If we have some sufficient statistic, we can always come up with (infinitely) many others...
- Theorem 1.3: Let $T(\mathbf{X})$ be sufficient for θ and suppose that $r(\cdot)$ is a bijection. Then $r(T(\mathbf{X}))$ is also sufficient for θ .

Proof.

Too Many Sufficient Statistics

- So there are lots of sufficient statistics out there
- We saw that $T({\bf X})={\bf X}$ is always sufficient it's also pretty useless as far as data reduction goes
- There are usually "better" ones out there how do we get the best bang for our buck?
- Another issue: the factorization theorem makes it easy to show that a statistic is sufficient (if it actually is), but less so to show that a statistic is *not* sufficient
- We will develop theory that takes care of both of these issues at once

Minimal Sufficiency

- Definition 1.8: A sufficient statistic $T(\mathbf{X})$ is called a minimal sufficient statistic if, for any other sufficient statistic $U(\mathbf{X})$, there exists a function h such that $T(\mathbf{X}) = h(U(\mathbf{X}))$.
- In other words, a minimal sufficient statistic is some function of *any other sufficient statistic*
- A minimal sufficient statistic achieves the greatest reduction of data possible (while still maintaining sufficiency)
- Example 1.27: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and σ^2 is known. Show that $T(\mathbf{X}) = (\bar{X}_n, S_n^2)$ is not minimal sufficient for μ .

On Quercus: Module 1 - Poll 3

メロト メタト メヨト メヨト

A Criterion For Minimal Sufficiency

- It's usually not that hard to show that a statistic is not minimal sufficient
- But how can we possibly show that a statistic is minimal?
- Theorem 1.4: Let $f_{\theta}(\mathbf{x})$ be the pdf/pmf of a sample \mathbf{X} . Suppose there exists a function $T(\cdot)$ such that for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}^n$, $T(\mathbf{x}) = T(\mathbf{y})$ if and only if the ratio $f_{\theta}(\mathbf{x})/f_{\theta}(\mathbf{y})$ is free of θ . Then $T(\mathbf{X})$ is minimal sufficient for θ .
- This criterion is easier to apply than it looks
- Example 1.28: Let $X_1, X_2, \ldots, X_n \stackrel{iidiid}{\sim}$ Bernoulli (θ) , where $\theta \in (0, 1)$. Show that $T(\mathbf{X}) = \sum_{i=1}^n X_i$ is minimal sufficient for θ .

Minimal Sufficiency: Examples

• Example 1.29: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Show that $T(\mathbf{X}) = (\bar{X}_n, S_n^2)$ is minimal sufficient for (μ, σ^2) .

< □ > < 同 > < 回 > < 回 >

Minimal Sufficiency: Examples

• Example 1.30: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Poisson}(\lambda)$, where $\lambda > 0$. Find a minimal sufficient statistic for λ .

Minimal Sufficiency: Examples

- A minimal sufficient statistic isn't always as minimal as you would expect...
- Example 1.31: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Unif}([\theta, \theta + 1])$, where $\theta \in \mathbb{R}$. Show that $T(\mathbf{X}) = (X_{(1)}, X_{(n)})$ is minimal sufficient for θ .

On Quercus: Module 1 - Poll 4

メロト メタト メヨト メヨト

The "Opposite" of Sufficiency?

- We know that a sufficient statistic contains all the information about θ that the original sample has
- What about a statistic that contains *no* information about θ ?
- Why would such a thing be useful?

Ancillarity

- Definition 1.9: A statistic D(X) is an ancillary statistic for a parameter θ if the distribution of D(X) does not depend on θ
- Example 1.32: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Unif}([\theta, \theta + 1])$, where $\theta \in \mathbb{R}$. Show that the range statistic $R(\mathbf{X}) := X_{(n)} X_{(1)}$ is ancillary for θ .

Ancillarity: Examples

- Did we actually use the uniform distribution anywhere in the previous example?
- Theorem 1.5: Let X_1, \ldots, X_n be a random sample from a location family with cdf $F(\cdot \theta)$, for $\theta \in \mathbb{R}$. Then the range statistic is ancillary for θ .

Proof.

Ancillarity: Examples

• Example 1.33: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$. Show that $D(\mathbf{X}) = \frac{X_1 + \cdots + X_{n-1}}{X_n}$ is ancillary for σ^2 .

• Theorem 1.6: Let X_1, \ldots, X_n be a random sample from a scale family with cdf $F(\cdot/\sigma)$, for $\sigma > 0$. Then any statistic which is a function of the ratios $X_1/X_n, \ldots, X_{n-1}/X_n$ is ancillary for σ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ancillarity: Examples

- Recall that if $Z_1, \ldots, Z_n \stackrel{iid}{\sim} \mathcal{N}(0, 1)$, then the distribution of $Y = \sum_{i=1}^n Z_i^2$ is called a **chi-squared distribution with** n degrees of freedom, which we write as $Y \sim \chi^2_{(n)}$.
- Theorem 1.7: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Then $\frac{n-1}{\sigma^2}S^2 \sim \chi^2_{(n-1)}$.

Proof (n = 2).

• Example 1.34: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Show that the sample variance S_n^2 is ancillary for μ .

イロト イヨト イヨト

On Quercus: Module 1 - Poll 5

メロト メタト メヨト メヨト

Completeness: An Abstract Definition

- Everything so far has been about ways to reduce the amount of data we need while still retaining all information about θ
- We've seen that ancillary statistics are bad at it, sufficient statistics are good at it, and minimal sufficient statistics are very good at it
- We will study one more kind of statistic, but the definition isn't pretty
- Definition 1.10: A statistic $U(\mathbf{X})$ is complete if any function $h(\cdot)$ which satisfies $\mathbb{E}_{\theta} [h(U(\mathbf{X}))] = 0$ for all $\theta \in \Theta$ must also satisfy $\mathbb{P}_{\theta} (h(U(\mathbf{X})) = 0) = 1$ for all $\theta \in \Theta$.

Completeness: An Abstract Definition

- The concept of completeness is notoriously unintuitive probably the most abstract one in our course but it will pay off later
- For now, you can think about the finite case a bit like a finite-dimensional basis from linear algebra
- If $\mathbf{v}_1,\ldots,\mathbf{v}_n$ span \mathbb{R}^n , then $\sum_{i=1}^n a_i \mathbf{v}_i = \mathbf{0}$ implies $a_i = 0$ for all i
- If $U(\mathbf{X})$ is complete and supported on $\{u_1, \ldots, u_n\}$, then $\sum_{i=1}^n h(u_i) \cdot \mathbb{P}_{\theta} (U(\mathbf{X}) = u_i) = 0$ implies $h(u_i) = 0$ for all i
- The meaning will become clearer at the end of Module 2
- So why bring it up now?

Showing Completeness is Very Difficult In General...

• Example 1.35: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Bernoulli (θ) with $\theta \in (0, 1)$. Show that $U(\mathbf{X}) = \sum_{i=1}^n X_i$ is complete.

...But for Exponential Families, There's Nothing To It

• Theorem 1.8: Let $X_1, \ldots, X_n \stackrel{iid}{\sim} f_{\theta}$ be a random sample from an exponential family, where

$$f_{\theta}(x) = h(x) \cdot g(\theta) \cdot \exp\left(\sum_{j=1}^{k} \eta_j(\theta) \cdot T_j(x)\right),$$

where each $\eta_j(\cdot)$ is continuous on Θ and each component of Θ contains an open interval in \mathbb{R}^1 . Then $T(\mathbf{X}) = \left(\sum_{i=1}^n T_1(X_i), \dots, \sum_{i=1}^n T_k(X_i)\right)$ is a complete statistic.

- Recall from Theorem 1.2 that in this case, $T(\mathbf{X})$ is also sufficient for θ
- So it's really easy to find complete sufficient statistics for exponential families

¹More generally, Θ must contain an open set in \mathbb{R}^k – this requirement is sometimes called the "open set condition".

Completeness: Examples

• Example 1.36: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and σ^2 is known. Show that \overline{X}_n is complete for μ .

Completeness: Examples

• Example 1.37: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Poisson}(\lambda)$, where $\lambda > 0$. Show that \bar{X}_n is complete for λ .

Completeness: Examples

• Example 1.38: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} f_{\mu,\sigma}$ where

$$f_{\mu,\sigma}(x) = \frac{1}{2\sigma} \exp\left(-\frac{|x-\mu|}{\sigma}\right), \quad x \in \mathbb{R},$$

where $\sigma > 0$ and μ is known. Find a complete statistic for σ .

Complete Statistics Are Minimal Sufficient!

- There is nothing resembling sufficiency in the definition of completeness; the two concepts seem completely unrelated
- And yet, Theorem 1.8 says that for exponential families, certain complete statistics are sufficient
- What about in general? The answer might surprise you...
- Theorem 1.9 (**Bahadur's theorem**): A complete sufficient statistic is a minimal sufficient statistic.
- That's *not* the same as saying that all minimal sufficient statistics are complete (which is unfortunately not true)

Minimal Sufficient Statistics Are Not Always Complete

- Bahadur implies that if a minimal sufficient statistic exists and it's not complete, then no complete sufficient statistic exists
- This is probably the simplest example of a minimal sufficient statistic that is not complete
- Example 1.39: Let $X_1 \sim \text{Unif}(\theta, \theta + 1)$, where $\theta \in \mathbb{R}$. Show that $T(X_1) = X_1$ is minimal sufficient for θ , but not complete.

The Amazingly Useful Basu's Theorem

• Theorem 1.10 (**Basu's theorem**): Complete sufficient statistics are independent of *all* ancillary statistics.

Proof.

On Quercus: Module 1 - Poll 6

メロト メタト メヨト メヨト

Basu's Theorem: Examples

• Example 1.40: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Show that the sample mean \bar{X}_n is independent of the sample variance S_n^2 .

• This is actually a characterizing property of the Normal distribution: $\bar{X}_n \perp S_n^2$ if and only if $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}\left(\mu, \sigma^2\right)$

< □ > < 同 > < 回 > < 回 >

Basu's Theorem: Examples

• Example 1.41: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \operatorname{Exp}(\theta)$, where $\theta > 0$. Use Basu's theorem to find $\mathbb{E}_{\theta}\left[\frac{X_1}{X_1 + \cdots + X_n}\right]$.

Basu's Theorem: Examples

• Example 1.42: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} f_{\mu,\sigma}$ where

$$f_{\mu,\sigma}(x) = rac{1}{2\sigma} \exp\left(-rac{|x-\mu|}{\sigma}
ight), \quad x \in \mathbb{R},$$

where $\sigma>0$ and μ is known. Show that X_1/X_n is independent of $\sum_{i=1}^n |X_i-\mu|.$