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Data and samples
Data is factual information collected for the purposes of inference
(Merriam-Webster)

Inference is the act of passing from statistical sample data to generalizations
(as of the value of population parameters) usually with calculated degrees of
certainty (also Merriam-Webster)

We collect a sample of data from a population associated with some
probability distribution, and we would like to infer unknown properties of that
distribution

Example 1.1:
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Random variables versus observed data (this is really
important)

Our data sample goes through two phases of life: first as a random sample,
and then as observed data

A random sample is a set of random variables; observed data is a set of
constants; the same goes for functions thereof

We denote random variables using uppercase letters, and constants using
lowercase letters:

Example 1.2:

It is very important to clearly distinguish between the two quantities. But
why?
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iid-ness
“iid” stands for “independent and identically distributed”

This term is used everywhere in statistics, because it saves a lot of time

Rob Zimmerman (University of Toronto) STA261 - Module 1 July 2-4, 2024 4 / 54



Statistics
Definition 1.1: A statistic T (X) is a function of the random data sample X
which is free of any unknown constants. If we observe X = x, then T (x) is
the observed value of T .

Example 1.3:

A statistic is useful when it allows us to summarize the data sample in ways
that helps us with inference

Different statistics are useful for different models

Example 1.4:
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Parameters and Statistical Models
Many classical probability distributions have parameters associated with them

Example 1.5:

Definition 1.2: A statistical model is a set of pdfs/pmfs {fθ(·) : θ ∈ Θ}
defined on the same sample space, where each θ is a fixed parameter in a
known parameter space Θ. When Θ ⊆ Rk for some k ∈ N, the set is also
called a parametric model (or parametric family).

Example 1.6:

Statistical inference is classically concerned with figuring out which one of
those distributions generated the data, based on the data sample we have
available

This amounts to inferring the particular parameter θ
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Parameters and Statistical Models: More Examples
Example 1.7:
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Important Parametric Families: Location-Scale Families
Definition 1.3: A location family is a family of pdfs/pmfs
{fµ(·) = f(· − µ) : µ ∈ R} formed by translating a “standard” family
member f(·) := f0(·).

Example 1.8:

Definition 1.4: A scale family is a family of pdfs/pmfs
{fσ(·) = f(·/σ)/σ : σ > 0} formed by rescaling a “standard” family member
f(·) := f1(·).

Example 1.9:

Definition 1.5: A location-scale family is a family of pdfs/pmfs
{fµ,σ(·) = f

( ·−µ
σ

)
/σ : µ ∈ R, σ > 0} formed by translating and rescaling a

“standard” family member f(·) := f0,1(·).

Example 1.10:
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Poll Time!

On Quercus: Module 1 - Poll 1
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Important Parametric Families: Exponential Families
Definition 1.6: An exponential family is a parametric family of pdfs/pmfs of
the form

fθ(x) = h(x) · g(θ) · exp

 k∑
j=1

ηj(θ) · Tj(x)

 ,

for some k ∈ N, where all functions of x and θ are known and the support of
fθ does not depend on θ.

Lots of theory simplifies considerably if we assume our random sample comes
from an exponential family

Many of your favourite distributions are included

Example 1.11:
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A Quick Review of Conditional Distributions
Remember Bayes’ rule:

Conditional distributions and expectations

For any fixed y, E [X|Y = y] is a constant

But E [X|Y ] is a random variable

Example 1.12:

Example 1.13:
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A Quick Review of Functions
Let f : A→ B be a function

If f is one-to-one, then

If f is onto, then

If f is a bijection, then

Example 1.14:
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Freedom From θ

Most of the functions fθ(x) we will deal with have parameters involved in
addition to the “independent variable”

If the parameter θ can vary too, then fθ(x) is really a function of both x and
θ

If fθ(x) is actually not a function of θ (i.e., it’s constant with respect to θ),
we might also say that it’s “free of θ” or that it “does not depend on θ”

Example 1.15:

So if we say that the distribution of X is free of θ, we mean that the cdf of
X (and hence the pdf/pmf) is the same for all θ ∈ Θ

Example 1.16:
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Data Reduction: A Thought Experiment
Is there a such thing as “more data than necessary”?

Suppose that field researchers collect a sample X = (X1, X2, . . . , Xn) iid∼ fθ,
where n is astronomically large; they want us statisticians to do inference on
θ, but sending us X would take weeks

Wouldn’t it be great if we didn’t need the entire sample X to make inferences
about θ, but rather a much smaller statistic T (X) – perhaps just a single
number – that still contained as much information about θ as X itself did?

The researchers observe X = x, calculate T (x) = t on their end, and then
text t over to us

Example 1.17:
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Sufficiency
How do we “encode” this idea?

If we know that T (X) = t, then there should be nothing else to glean from
the data about θ

Definition 1.7: A statistic T (X) is a sufficient statistic for a parameter θ if
the conditional distribution of X | T (X) = t does not depend on θ.

An interpretation: if the conditional distribution

P(X = x | T (X) = T (x)) = Pθ (X = x and T (X) = T (x))
Pθ (T (X) = T (x))

is really free of θ, then the information about θ in X and the information
about θ in T (X) and “cancel each other out” (heavy quotes here)

Example 1.18:
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Sufficiency
Example 1.19: Let X1, X2, . . . , Xn

iid∼ Bernoulli (θ), where θ ∈ (0, 1). Show
that T (X) =

∑n
i=1 Xi is sufficient for θ.
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Sufficiency
Example 1.20: Let X1, X2, . . . , Xn

iid∼ N
(
µ, σ2), where µ ∈ R and σ2 is

known. Show that the sample mean T (X) = X̄n := 1
n

∑n
i=1 Xi is sufficient

for µ.
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The Factorization Theorem
Theorem 1.1 (Factorization theorem): Let X = (X1, . . . , Xn) ∼ fθ(x),
where fθ(x) is a joint pdf/pmf. A statistic T (X) is sufficient for θ if and only
if there exist functions gθ(t) and h(x) such that

fθ(x) = h(x) · gθ(T (x)) for all θ ∈ Θ,

where h(x) is free of θ and gθ(T (x)) only depends on x through T (x).

In other words, T (X) is sufficient whenever the “part” of fθ(x) that actually
depends on θ is a function of T (x), rather than x itself

Proof.
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The Factorization Theorem
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Poll Time!

On Quercus: Module 1 - Poll 2
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The Factorization Theorem: Examples
Example 1.21: Let X1, X2, . . . , Xn

iid∼ Bernoulli (θ), where θ ∈ (0, 1). Show
that T (X) =

∑n
i=1 Xi is sufficient for θ.

Example 1.22: Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2), where µ ∈ R and σ2 is

known. Show that the sample mean T (X) = X̄n := 1
n

∑n
i=1 Xi is sufficient

for µ.
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The Factorization Theorem: Examples
Example 1.23: Let X1, X2, . . . , Xn

iid∼ N
(
µ, σ2), where µ ∈ R and σ2 > 0.

Show that T (X) = (X̄n, S
2
n) is sufficient for (µ, σ2).

Example 1.24: Let X1, X2, . . . , Xn
iid∼ Unif (0, θ) where θ > 0. Show that X̄n

is not sufficient for θ, and find a statistic that is.
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The Factorization Theorem: Examples
Theorem 1.2: Let X1, . . . , Xn

iid∼ fθ be a random sample from an
exponential family, where

fθ(x) = h(x) · g(θ) · exp

 k∑
j=1

ηj(θ) · Tj(x)

 .

Then T (X) =
(

n∑
i=1

T1(Xi), . . . ,
n∑
i=1

Tk(Xi)
)

is sufficient for θ.

Proof.
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The Factorization Theorem: Examples
Example 1.25: Let X1, X2, . . . , Xn

iid∼ N
(
µ, σ2), where µ ∈ R and σ2 > 0.

Show that T (X) = (
∑n
i=1 X

2
i ,
∑n
i=1 Xi) is sufficient for (µ, σ2).
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The Factorization Theorem: Examples
Example 1.26: Let X1, X2, . . . , Xn

iid∼ Unif ({1, 2, . . . , θ}), where θ ∈ N.
Show that T (X) = X(n) is sufficient for θ.
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If There’s One, There’s More...
If we have some sufficient statistic, we can always come up with (infinitely)
many others...

Theorem 1.3: Let T (X) be sufficient for θ and suppose that r(·) is a
bijection. Then r(T (X)) is also sufficient for θ.

Proof.
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Too Many Sufficient Statistics
So there are lots of sufficient statistics out there

We saw that T (X) = X is always sufficient – it’s also pretty useless as far as
data reduction goes

There are usually “better” ones out there – how do we get the best bang for
our buck?

Another issue: the factorization theorem makes it easy to show that a
statistic is sufficient (if it actually is), but less so to show that a statistic is
not sufficient

We will develop theory that takes care of both of these issues at once
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Minimal Sufficiency
Definition 1.8: A sufficient statistic T (X) is called a minimal sufficient
statistic if, for any other sufficient statistic U(X), there exists a function h
such that T (X) = h(U(X)).

In other words, a minimal sufficient statistic is some function of any other
sufficient statistic

A minimal sufficient statistic achieves the greatest reduction of data possible
(while still maintaining sufficiency)

Example 1.27: Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2), where µ ∈ R and σ2 is

known. Show that T (X) = (X̄n, S
2
n) is not minimal sufficient for µ.
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Poll Time!

On Quercus: Module 1 - Poll 3

Rob Zimmerman (University of Toronto) STA261 - Module 1 July 2-4, 2024 29 / 54



A Criterion For Minimal Sufficiency
It’s usually not that hard to show that a statistic is not minimal sufficient

But how can we possibly show that a statistic is minimal?

Theorem 1.4: Let fθ(x) be the pdf/pmf of a sample X. Suppose there exists
a function T (·) such that for any x,y ∈ Xn, T (x) = T (y) if and only if the
ratio fθ(x)/fθ(y) is free of θ. Then T (X) is minimal sufficient for θ.

This criterion is easier to apply than it looks

Example 1.28: Let X1, X2, . . . , Xn
iid∼ iid∼ Bernoulli (θ), where θ ∈ (0, 1).

Show that T (X) =
∑n
i=1 Xi is minimal sufficient for θ.
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Minimal Sufficiency: Examples
Example 1.29: Let X1, X2, . . . , Xn

iid∼ N
(
µ, σ2), where µ ∈ R and σ2 > 0.

Show that T (X) = (X̄n, S
2
n) is minimal sufficient for (µ, σ2).
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Minimal Sufficiency: Examples
Example 1.30: Let X1, X2, . . . , Xn

iid∼ Poisson (λ), where λ > 0. Find a
minimal sufficient statistic for λ.
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Minimal Sufficiency: Examples
A minimal sufficient statistic isn’t always as minimal as you would expect...

Example 1.31: Let X1, X2, . . . , Xn
iid∼ Unif ([θ, θ + 1]), where θ ∈ R. Show

that T (X) = (X(1), X(n)) is minimal sufficient for θ.
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Poll Time!

On Quercus: Module 1 - Poll 4
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The “Opposite” of Sufficiency?
We know that a sufficient statistic contains all the information about θ that
the original sample has

What about a statistic that contains no information about θ?

Why would such a thing be useful?
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Ancillarity
Definition 1.9: A statistic D(X) is an ancillary statistic for a parameter θ if
the distribution of D(X) does not depend on θ

Example 1.32: Let X1, X2, . . . , Xn
iid∼ Unif ([θ, θ + 1]), where θ ∈ R. Show

that the range statistic R(X) := X(n) −X(1) is ancillary for θ.
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Ancillarity: Examples
Did we actually use the uniform distribution anywhere in the previous
example?

Theorem 1.5: Let X1, . . . , Xn be a random sample from a location family
with cdf F (· − θ), for θ ∈ R. Then the range statistic is ancillary for θ.

Proof.
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Ancillarity: Examples
Example 1.33: Let X1, X2, . . . , Xn

iid∼ N
(
0, σ2). Show that

D(X) = X1+···+Xn−1
Xn

is ancillary for σ2.

Theorem 1.6: Let X1, . . . , Xn be a random sample from a scale family with
cdf F (·/σ), for σ > 0. Then any statistic which is a function of the ratios
X1/Xn, . . . , Xn−1/Xn is ancillary for σ.
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Ancillarity: Examples
Recall that if Z1, . . . , Zn

iid∼ N (0, 1), then the distribution of Y =
∑n
i=1 Z

2
i

is called a chi-squared distribution with n degrees of freedom, which we
write as Y ∼ χ2

(n).

Theorem 1.7: Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2) with µ ∈ R and σ2 > 0.

Then n−1
σ2 S

2 ∼ χ2
(n−1).

Proof (n = 2).

Example 1.34: Let X1, X2, . . . , Xn
iid∼ N

(
µ, σ2) with µ ∈ R and σ2 > 0.

Show that the sample variance S2
n is ancillary for µ.
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Poll Time!

On Quercus: Module 1 - Poll 5
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Completeness: An Abstract Definition
Everything so far has been about ways to reduce the amount of data we need
while still retaining all information about θ

We’ve seen that ancillary statistics are bad at it, sufficient statistics are good
at it, and minimal sufficient statistics are very good at it

We will study one more kind of statistic, but the definition isn’t pretty

Definition 1.10: A statistic U(X) is complete if any function h(·) which
satisfies Eθ [h(U(X))] = 0 for all θ ∈ Θ must also satisfy
Pθ (h(U(X)) = 0) = 1 for all θ ∈ Θ.
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Completeness: An Abstract Definition
The concept of completeness is notoriously unintuitive – probably the most
abstract one in our course – but it will pay off later

For now, you can think about the finite case a bit like a finite-dimensional
basis from linear algebra

If v1, . . . ,vn span Rn, then
∑n
i=1 aivi = 0 implies ai = 0 for all i

If U(X) is complete and supported on {u1, . . . , un}, then∑n
i=1 h(ui) · Pθ (U(X) = ui) = 0 implies h(ui) = 0 for all i

The meaning will become clearer at the end of Module 2

So why bring it up now?
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Showing Completeness is Very Difficult In General...
Example 1.35: Let X1, X2, . . . , Xn

iid∼ Bernoulli (θ) with θ ∈ (0, 1). Show
that U(X) =

∑n
i=1 Xi is complete.
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...But for Exponential Families, There’s Nothing To It
Theorem 1.8: Let X1, . . . , Xn

iid∼ fθ be a random sample from an
exponential family, where

fθ(x) = h(x) · g(θ) · exp

 k∑
j=1

ηj(θ) · Tj(x)

 ,

where each ηj(·) is continuous on Θ and each component of Θ contains an

open interval in R.1 Then T (X) =
(

n∑
i=1

T1(Xi), . . . ,
n∑
i=1

Tk(Xi)
)

is a

complete statistic.

Recall from Theorem 1.2 that in this case, T (X) is also sufficient for θ

So it’s really easy to find complete sufficient statistics for exponential families

1More generally, Θ must contain an open set in Rk – this requirement is sometimes called the
“open set condition”.
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Completeness: Examples
Example 1.36: Let X1, X2, . . . , Xn

iid∼ N
(
µ, σ2), where µ ∈ R and σ2 is

known. Show that X̄n is complete for µ.
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Completeness: Examples
Example 1.37: Let X1, X2, . . . , Xn

iid∼ Poisson (λ), where λ > 0. Show that
X̄n is complete for λ.
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Completeness: Examples
Example 1.38: Let X1, X2, . . . , Xn

iid∼ fµ,σ where

fµ,σ(x) = 1
2σ exp

(
−|x− µ|

σ

)
, x ∈ R,

where σ > 0 and µ is known. Find a complete statistic for σ.
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Complete Statistics Are Minimal Sufficient!
There is nothing resembling sufficiency in the definition of completeness; the
two concepts seem completely unrelated

And yet, Theorem 1.8 says that for exponential families, certain complete
statistics are sufficient

What about in general? The answer might surprise you...

Theorem 1.9 (Bahadur’s theorem): A complete sufficient statistic is a
minimal sufficient statistic.

That’s not the same as saying that all minimal sufficient statistics are
complete (which is unfortunately not true)
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Minimal Sufficient Statistics Are Not Always Complete
Bahadur implies that if a minimal sufficient statistic exists and it’s not
complete, then no complete sufficient statistic exists

This is probably the simplest example of a minimal sufficient statistic that is
not complete

Example 1.39: Let X1 ∼ Unif (θ, θ + 1), where θ ∈ R. Show that
T (X1) = X1 is minimal sufficient for θ, but not complete.
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The Amazingly Useful Basu’s Theorem
Theorem 1.10 (Basu’s theorem): Complete sufficient statistics are
independent of all ancillary statistics.

Proof.
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Poll Time!

On Quercus: Module 1 - Poll 6
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Basu’s Theorem: Examples
Example 1.40: Let X1, X2, . . . , Xn

iid∼ N
(
µ, σ2) where µ ∈ R and σ2 > 0.

Show that the sample mean X̄n is independent of the sample variance S2
n.

This is actually a characterizing property of the Normal distribution:
X̄n ⊥ S2

n if and only if X1, X2, . . . , Xn
iid∼ N

(
µ, σ2)

Rob Zimmerman (University of Toronto) STA261 - Module 1 July 2-4, 2024 52 / 54



Basu’s Theorem: Examples
Example 1.41: Let X1, X2, . . . , Xn

iid∼ Exp (θ), where θ > 0. Use Basu’s
theorem to find Eθ

[
X1

X1+···+Xn

]
.
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Basu’s Theorem: Examples
Example 1.42: Let X1, X2, . . . , Xn

iid∼ fµ,σ where

fµ,σ(x) = 1
2σ exp

(
−|x− µ|

σ

)
, x ∈ R,

where σ > 0 and µ is known. Show that X1/Xn is independent of∑n
i=1 |Xi − µ|.
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