UNIVERSITY OF TORONTO Faculty of Arts and Science

STA261H1: Probability and Statistics II Midterm 2 July 30, 2024

Instructor: Robert Zimmerman

- Do not open this test until you are told to begin.
- Midterm 2 is closed-book; no aids are allowed.
- Whatever you write on the backs of these pages will not be graded, so you can use them for scratch work.
- There are six questions (worth a total of 30 points) on the midterm, plus one bonus question (worth five additional points). Take a quick scan through the questions first and prioritize your time accordingly.
- Show all of your work for full marks, and ensure your notation is legible, correct, and consistent with that used in the course. Use \vec{X} and \vec{x} to denote vectors.
- If you need to use a result from lecture, either refer to it by its name (if it is a named theorem), or briefly describe it.

Good luck!

- 1. (5 points) Answer the following.
 - (a) (1 point) State the definition of a **pivotal quantity**.

(b) (1 point) State the Neyman-Pearson lemma.

(c) (2 point) Describe what is meant by a **goodness of fit test**, and give an example of one.

(d) (1 point) State what is meant by a type II error.

- 2. (5 points) Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Unif}(-\theta, \theta)$, where $\theta \in \mathbb{R}^{1}$ Suppose we want to test $H_0: \theta = \theta_0$ versus $H_A: \theta \neq \theta_0$ using a test characterized by the rejection region $R = \{\mathbf{x} \in \mathcal{X}^n : x_{(n)} > c\}$ for some c > 0.
 - (a) (2.5 points) Compute the power function of the test.

(b) (2.5 points) Find the c that makes this a size- α test.

 $[\]overline{ ^{1}\text{Recall that when } a < b, \text{ the general Unif}(a, b) \text{ distribution has cdf given by } F_{a,b}(x) = \frac{b-x}{b-a} \cdot \mathbb{1}_{x \in (a,b)} + \mathbb{1}_{x \ge b}. \text{ Also, if } X_1, \ldots, X_n \text{ are iid and continuous with cdf } F_X, \text{ then } X_{(n)} \text{ has cdf } F_{X_{(n)}}(x) = (F_X(x))^n. }$

- 3. (5 points) Assume that $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \ge 1$ and σ^2 is known.²
 - (a) (2.5 points) Find the value of $b \in \mathbb{R} \setminus \{0\}$ that makes $(\bar{X}_n/b, \infty)$ into a lower one-sided (1α) confidence interval for μ .

(b) (2.5 points) Even though we don't know μ , explain how we might use a visual diagnostic to assess the assumption that the data is $\mathcal{N}(\mu, \sigma^2)$ -distributed to begin with.

²Recall that the $\mathcal{N}(\mu, \sigma^2)$ distribution has pdf given by $f_{\mu}(x) = \exp\left(-(x-\mu)^2/2\sigma^2\right)/\sqrt{2\pi\sigma^2}$, where $x \in \mathbb{R}$.

- 4. (5 points) Answer each of the following questions by writing YES or NO (1 point), and justify your answer in *at most* three sentences (1.5 points).
 - (a) Suppose we calculate a 95%-confidence interval $(L(\mathbf{X}), U(\mathbf{X}))$ for an unknown parameter $\theta \in \Theta$, and we observe $L(\mathbf{X}) = -10$ and $U(\mathbf{X}) = 7$. Is it true that $\mathbb{P}_{\theta}(-10 \le \theta \le 7) = 0.95$?

(b) Let $T(\mathbf{X})$ be sufficient for θ and let $\lambda(\mathbf{X})$ and $\lambda^*(T(\mathbf{X}))$ be the LRT statistics based on \mathbf{X} and $T(\mathbf{X})$, respectively. If a size- α LRT rejects H_0 when $\lambda(\mathbf{X}) \leq 0.261$, will a test that rejects H_0 when $\lambda^*(T(\mathbf{X})) \leq 0.261$ also be a size- α LRT?

- 5. (5 points) Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ Bernoulli (θ) , where $\theta \in (0, 1)$.³ Suppose we want a level- α test of the hypothesis $H_0: \theta \leq \theta_0$ versus $H_A: \theta > \theta_0$.
 - (a) (4 points) Using the Karlin-Rubin theorem, show that for some $c_0 > 0$, the test with rejection region $R = \{ \mathbf{x} \in \mathcal{X}^n : \sum_{i=1}^n x_i > c_0 \}$ is a UMP level- α test.

(b) (1 point) How might you find an appropriate c_0 for the test above?

³Recall that the Bernoulli (θ) distribution has pmf given by $f_{\theta}(x) = \theta^x (1-\theta)^{1-x}$ for $x \in \{0,1\}$. It might also help to recall that the Bin (n, θ) distribution has pmf given by $\binom{n}{x} \theta^x (1-\theta)^{n-x}$ for $x \in \{0, 1, \ldots, n\}$.

6. (5 points) Suppose $\boldsymbol{\theta} = (\theta_1, \dots, \theta_k) \in \mathbb{R}^k$ and that we can produce a $(1 - \alpha_j)$ -confidence interval $(L_j(\mathbf{X}), U_j(\mathbf{X}))$ for each θ_j . Prove that if we choose $\alpha_1 = \dots = \alpha_k = \alpha/k$, then

$$C(\mathbf{X}) = (L_1(\mathbf{X}), U_1(\mathbf{X})) \times \cdots \times (L_k(\mathbf{X}), U_k(\mathbf{X}))$$

is a $(1 - \alpha)$ -confidence region for $\boldsymbol{\theta}$, in the sense that $\mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{\theta} \in C(\mathbf{X})) \geq 1 - \alpha$.

Hint: One of De Morgan's laws implies that for any sets A_1, \ldots, A_n , we have $\bigcap_{i=1}^n A_i = (\bigcup_{i=1}^n A_i^c)^c$.

7. (BONUS: 5 points) Suppose that $X_1, \ldots, X_n \stackrel{iid}{\sim} F_{\theta}$ are continuous and that θ is the median of F_{θ} : that is, $\mathbb{P}_{\theta} (X_i \leq \theta) = 1/2$. Find the smallest sample size n such that $(X_{(1)}, X_{(n)})$ is a $(1 - \alpha)$ confidence interval for θ .