UNIVERSITY OF TORONTO Faculty of Arts and Science

STA261H1: Probability and Statistics II Midterm 1 July 19, 2022

Instructor: Robert Zimmerman

- Do not open this test until you are told to begin.
- Midterm 1 is closed-book; no aids are allowed.
- There are five questions (worth a total of 25 points) on the midterm, plus one bonus question (worth five additional points). Take a quick scan through the questions first and prioritize your time accordingly.
- Show all of your work for full marks, and ensure your notation is legible, correct, and consistent with that used in the course.
- If you need to use a result from lecture, either refer to it by its name (if it is a named theorem), or briefly describe it.

Good luck!

- 1. (5 points) Answer the following.
 - (a) (1 point) State the definition of a sufficient statistic.

(b) (2 points) State the definition of a **UMVUE** (including what the abbreviation stands for).

(c) (1 point) State the factorization theorem.

(d) (1 point) State the **Rao-Blackwell theorem**.

2. (5 points) Let X₁, X₂,..., X_n ^{iid} Bin (k, θ), where θ ∈ (0, 1) and k is known.¹ Let τ(θ) = log (θ).
(a) (2.5 points) Find the MLE of τ(θ). You can skip the second derivative test.

(b) (2.5 points) Compute the Cramér-Rao Lower Bound for unbiased estimators of $\tau(\theta)$.

¹Each X_i has pmf given by $f_{\theta}(x) = {k \choose x} \theta^x (1-\theta)^{k-x}$ and satisfies $\mathbb{E}_{\theta}[X_i] = k\theta$ and $\operatorname{Var}_{\theta}(X_i) = k\theta(1-\theta)$.

3. (5 points) Let X_1, X_2, \ldots, X_n be a random sample from a continuous distribution with pdf

$$f_{\theta}(x) = \frac{\log(\theta)}{\theta - 1} \theta^x, \quad x \in (0, 1), \quad \theta > 1.$$

Let $T(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} X_i$.

(a) (2.5 points) Without referring to completeness, show that $T(\mathbf{X})$ is minimal sufficient for θ .

(b) (2.5 points) Show that $T(\mathbf{X})$ is a complete sufficient statistic θ .

- 4. (5 points) Answer each of the following questions by writing YES or NO (1 point), and justify your answer in *at most* three sentences (1.5 points).
 - (a) Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} f_{\theta}$, where f_{θ} is in a location family with location parameter $\theta \in \mathbb{R}$. Can the range statistic $R(\mathbf{X}) = X_{(n)} - X_{(1)}$ ever be a complete sufficient statistic for θ ?

(b) A non-statistician friend of yours collects a data sample \mathbf{x} generated by some pdf f_{θ} and calculates $L(261 | \mathbf{x}) = 10000$. Thinking this number to be very high, your friend concludes that $\theta = 261$ must a very plausible value of the true parameter. Is this reasoning sound?

5. (5 points) Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} f_{\theta}$ be a random sample from an exponential family, where

$$f_{\theta}(x) = h(x) \cdot g(\theta) \cdot \exp\left(\sum_{j=1}^{k} w_j(\theta) \cdot T_j(x)\right).$$

Prove that

$$T(\mathbf{X}) = \left(\sum_{i=1}^{n} T_1(X_i), \dots, \sum_{i=1}^{n} T_k(X_i)\right)$$

is sufficient for θ .

6. (5 points) Let $\mathbf{X} \sim f_{\theta}$, and suppose $T(\mathbf{X})$ is an unbiased point estimator of $\tau(\theta)$ which is uncorrelated with *all* unbiased estimators of 0. Prove that $T(\mathbf{X})$ must be the UMVUE of $\tau(\theta)$.

Hint: let $V(\mathbf{X})$ be unbiased for $\tau(\theta)$ and write $V(\mathbf{X}) = T(\mathbf{X}) + (V(\mathbf{X}) - T(\mathbf{X}))$.

7. (BONUS: 5 points) Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Unif}(0, \theta)$, where $\theta > 0.^2$ Prove that $T(\mathbf{X}) = X_{(n)}$ is a complete statistic.

²Each X_i has pdf given by $f_{\theta}(x) = \theta^{-1} \cdot \mathbb{1}_{0 < x < \theta}$.