
STA2311 (Fall 2023) - Homework 2

Due December 19, 2023

Instructions: This homework is to be completed using R Markdown. Each question is worth
100/3 marks and includes both theoretical and coding aspects. For each question, you must first de-
rive the relevant mathematical formulas and typeset them in LATEX using notation consistent with that
from lecture, carefully justifying all of your steps (using complete sentences) and making references
to relevant material from lecture or elsewhere (with appropriate citations). You must then implement
your work in R in order to numerically solve the specific problem asked in the question, thoroughly
commenting your code and formatting it with appropriate indentations and whitespace. Aside from
base packages, you must not use any R packages except for the Tidyverse package (which is optional).

Formatting and Submission: In R Markdown, your output must be in .pdf format, rather
than HTML or Microsoft Word (ugh). While the numerical inputs and outputs of your code should
appear within the main text of your paper (i.e., the main text should include sentences along the lines
of “We initialize the algorithm at α(0) = 0.5” and “The algorithm converges after 39493 iterations,
yielding the final estimate α̂ = 0.043”), your code should appear in an appendix at the end of your
paper; see here for instructions. You must submit a hard copy of your .pdf to Rob, and you must
submit the .Rmd file which generates your paper using the virtual assignment dropbox on Quercus.
Someone running your .Rmd on another machine should be able to reproduce your document exactly,
so remember to set seeds whenever they are appropriate.

Collaboration: While you may discuss the homework with your peers, the work you submit
should be entirely your own.

1. Consider a cubic spline regression model: for i = 1, . . . , n, given a covariate xi ∈ R, we observe

Yi = η(xi) + εi,

where ε1, . . . , εn
iid∼ N (0, σ2) and

η(x) =
3∑
j=0

αjx
j +

K∑
k=1

ψk(x− γk)3+

for some fixed K ∈ N, where (a)+ := max(0, a). Here the αj and ψk are R-valued coefficients,
and the γk are R-valued parameters called knots. We divide the range spanned by the observed
values of x into K intervals of equal length, I1, . . . , IK , and assume that each interval Ik contains
at most one knot. We impose the following priors on the parameters in the model:

σ2 ∼ InvGamma(0.1, 0.1)

αj ∼ N (0, 10), 0 ≤ j ≤ 3

ψk ∼ N (0, 10), 0 ≤ j ≤ K
γj ∼ Unif(Ij), 0 ≤ j ≤ K.

Using the data in spline.txt, design and implement an MCMC sampler to sample from the
joint posterior. Compare and contrast the results for K ∈ {2, . . . , 5}.1

1Alternatively, if you are feeling adventurous, you can make K a “parameter” itself and design your own reversible
jump MCMC algorithm to sample from the joint posterior that includes K.

https://bookdown.org/yihui/rmarkdown-cookbook/code-appendix.html


2. Consider a probit regression model: for i = 1, . . . , n, given a vector of covariates xi ∈ Rp, we
observe

Yi ∼ Bernoulli(Φ(x>i β)),

for some vector of coefficients β ∈ Rp. Consider augmented data Ỹaug = {(Yi, φi)}ni=1, where
φi ∼ N (x>i β, 1) is a latent variable and we only observe Yi = 1φi>0. We impose a non-
informative prior on β: p(β) ∝ 1. Some data is provided in probitDA.txt.

(a) Implement a Gibbs sampler (not a Metropolis-within-Gibbs sampler) to sample from the
posterior distribution of β | Y by sampling from the conditional distributions of β and
each φi using the augmented data Ỹaug.

(b) Consider “parameter-expanded” augmented data Yaug = {(Yi, ξi)}ni=1, where ξi = σφi and
σ2 is given the improper prior p(σ2) ∝ σ−2. Implement a Gibbs sampler (not a Metropolis-
within-Gibbs sampler) to sample from the posterior distribution of β | Y by sampling from
the conditional distributions of (β, σ2) and each ξi. To sample (β, σ2), first sample from
σ2 | Yaug and then sample from β | σ2,Yaug.

(c) Compare the performance of the two samplers using visual and statistical diagnostics.

3. Consider a simplified version of sparse linear regression: for i = 1, . . . , n, we observe

Yi
iid∼ Np(β, σ2I)

for some vector of coefficients β ∈ Rp that is assumed to be sparse. Our aim is to reduce the
dimensionality of the model by removing the elements of β which we believe are 0. We place a
prior on β = (β1, . . . , βp) as follows:

βi | λi, τ ∼ N (0, λ2i τ
2)

λi ∼ Cauchy+(0, 1),

where Cauchy+(µ, σ) is the half-Cauchy distribution with location parameter µ and scale param-
eter σ. We also impose the priors τ ∼ Cauchy+(0, 1) and p(σ) ∝ 1/σ. Using the data provided
in horse.txt (with p = 20 and n = 100), implement an MCMC sampler to sample from the
posterior distribution of β | (Y1, . . . ,Yn). Based on the results of your sampler, decide which
covariates should remain in the model.


