STA2311 (Fall 2023) - Practice Problems for Class 8 (MCMC Tuning and Diagnostics)

- 1. Show that from a Metropolis-Hastings sampler which samples from a *d*-dimensional target $\pi(\boldsymbol{x})$, one can obtain samples from the *j*'th marginal component of π by extracting the x_j -subchain of the original samples.
- 2. Show that the random scan version of the Gibbs sampler is reversible.
- 3. Let $(X, Y, Z) \sim \pi$. We saw in Class 7 that a blocked Gibbs sampler allows us to sample $(X, Y) \mid Z$ and then $Z \mid (X, Y)$, since the stationary distribution π is preserved.
 - (a) Consider the following alternative update scheme:
 - i. Draw $(X', Z') | Y \sim \pi(x, z | Y)$ ii. Draw $Y' | (X', Z') \sim \pi(y | X', Z')$ iii. Draw $(Y'', Z'') | X' \sim \pi(y, z | X')$ Show that the update $(X, Y, Z) \rightarrow (X', Y'', Z'')$ also preserves the stationary distribution π .
 - (b) Consider the update scheme obtained by simply skipping the second step above:
 i. Draw (X', Z') | Y ~ π(x, z | Y)
 ii. Draw (Y'', Z'') | X' ~ π(y, z | X')
 Show that the update (X, Y, Z) → (X', Y'', Z'') is still valid.
- 4. Consider a 4-component Gibbs sampler for sampling $(X, Y, Z, W) \sim \pi$. Suppose it is possible to sample from $\pi(y \mid X, Z)$ and $\pi(Z \mid X, Y)$.
 - (a) Consider the following update scheme:
 - i. Draw $W' \mid (X,Y,Z) \sim \pi(w \mid X,Y,Z)$
 - ii. Draw $X' \mid (Y,Z,W') \sim \pi(x \mid Y,Z,W')$
 - iii. Draw $Y' \mid (X', Z) \sim \pi(y \mid X', Z)$
 - iv. Draw $Z' \mid (X', Y') \sim \pi(z \mid X', Y')$

Show that the update $(X, Y, Z, W) \to (X', Y', Z', W')$ does not preserve the stationary distribution π .

- (b) Consider the following update scheme:
 - i. Draw $W' \mid (X, Y, Z) \sim \pi(w \mid X, Y, Z)$
 - ii. Draw $X' \mid (Y, Z, W') \sim \pi(x \mid Y, Z, W')$
 - iii. Draw $(W'', Y') \mid (X', Z) \sim \pi(y, w \mid X', Z)$
 - iv. Draw $(W''', Z') \mid (X', Y') \sim \pi(w, z \mid X', Y')$

Show that the update $(X, Y, Z, W) \to (X', Y', Z', W''')$ does preserve the stationary distribution π .

5. Consider the 2-dimensional target distribution

$$\pi(x,y) \propto \frac{1}{2}f(x,y) + \frac{1}{2}f(-x,-y),$$

where

$$f(x,y) \propto \exp\left(-\frac{1}{2}\left(8x^2y^2 + x^2 + y^2 + 40xy - 8x - 8y\right)\right)$$

- (a) Construct an MCMC algorithm to sample from π .
- (b) Estimate $\mathbb{E}_{\pi}[\sin(X) \cdot \cos(Y)]$ and construct a 95% confidence interval for your estimator.