
STA2311 (Fall 2023) - Practice Problems for Class 3 (The EM
Algorithm)

1. Consider again the mining town example from Class 2, where we assume the observed data is
generated by a zero-inflated Poisson model.

(a) By defining the indicators

Zi =

{
1, observation i comes from a subpopulation of families with children

0, observation i comes from a subpopulation of families without children
,

formulate this as a missing data problem.

(b) Devise an EM algorithm for estimating (λ, ξ).

2. Consider again the allele example from Class 2, in which we seek to estimate the true frequencies
(pa, pb, po) of alleles a, b, and o in the population based on observed blood type counts nA, nB,
nAB, and nO out of a total sample of size n. Let Nxy be the number of samples with genotype
(i.e., allele pair) xy, for x, y ∈ {a, b, o}. Then nA = Naa + Nao and nB = Nbb + Nbo, where
Naa, Nao, Nbb, Nbo are unknown.

(a) By defining the indicators

Zi =

{
1, subject i has genotype aa

0, subject i has genotype ao
and Wj =

{
1, subject j has genotype bb

0, subject j has genotype bo

for appropriate i and j, formulate this as a missing data problem.

(b) Devise an EM algorithm for estimating (pa, pb, po).

3. Let X1, . . . , Xn
iid∼ Exp(λ) so that P (Xi ≤ t) = 1 − e−λt for all 1 ≤ i ≤ n. Suppose we do not

observe the Xi values, but only observe whether they fall within three intervals. Let Z1i = 1Xi<a,
Z2i = 1a≤Xi<b, and Z3i = 1b≤Xi

. Based on observed data {(Z1i, Z2i, Z3i) : 1 ≤ i ≤ n} devise an
EM algorithm for estimating λ.

4. The file em-regress.txt contains measurements on n = 50 units. Each unit provides a response
Yi and two covariate values, X1i and X2i. For ten of the units, the response variable has been
lost so only the covariate values are available.

Assume a linear regression model in which

Yi = β0 + β1X1i + β2X2i + εi, 1 ≤ i ≤ n

and ε1, . . . , εn
iid∼ N (0, σ2).

(a) Find the MLE for β0, β1, β2 and σ using all of the available data.

(b) Find the variance of the MLE using an EM-related method of your choice.

5. Let S(θ | yobs) be the score function of the observed-data log-likelihood, and let Sc(θ | ycom) be
the score function of the complete-data log-likelihood. Assuming the operations of integration
and differentiation can be swapped, prove that

S(θ | yobs) = Eθ[Sc(θ | Ycom) | Yobs = yobs].



6. Assuming the operations of integration and differentiation can be swapped, prove the identity
shown on the bottom of Slide 33:
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