
STA2311 (Fall 2023) - Practice Problems for Class 2 (Classical
Optimization Methods)

1. Recall the Newton-Raphson Example 1 from Class 2: we have iid observations {Y1, . . . , Yn} ∈ Nn

from the mass function

f(y | θ) =
θy

−y · log(1− θ)
, θ ∈ (0, 1).

Derive both the Newton-Raphson and the Fisher Scoring update rules for estimating the MLE
of θ. Remember that the original parameter space is constrained — you’ll have to do something
about that.

2. Consider standard logistic regression, in which we have {0, 1}-valued observations Y1, . . . , Yn
and covariates x1, . . . ,xn ∈ Rp such that Yi | xi ∼ Bernoulli(πi) independently, with πi =

1/(1 + e−β
>xi). The unknown parameter here is β ∈ Rp.

(a) Derive the Newton-Raphson update for estimating the MLE of β, and show that it’s equiv-
alent to the Fisher scoring update.

(b) Show also that we can write the update in the form

β(t+1) =
(
X>W (t)X

)−1
X>W (t)z(t),

where X =
[
x>1 · · · x>n

]>
, W (t) is a diagonal matrix with i’th diagonal entry equal to

π
(t)
i (1− π(t)i ), and z(t) = Xβ(t) + (W (t))−1(y − π(t)). Thus, this case of Newton-Raphson

is an instance of an iteratively reweighted least squares (IRLS) procedure.

3. Consider the locations of 10 hotels scattered around a hilly alpine village with the following
geographical coordinates:

Hotel x-coordinate y-coordinate z-coordinate

1 3.92 6.10 1.87
2 5.57 6.55 1.26
3 7.88 -2.48 0.05
4 -4.20 -1.02 1.73
5 -1.87 6.59 0.10
6 -0.66 6.23 0.17
7 2.11 5.53 2.30
8 -1.40 2.34 0.08
9 -2.36 4.47 0.20
10 5.26 0.31 0.63

Note that the z-coordinate represents altitude and is never negative. The village wants to build
a new hospital for its tourists that minimizes the average squared distance to the hotels; we
want to find the coordinates of such a location (which are hopefully not inside of a hill). That
is, we want to find

(x∗, y∗, z∗) = argmin
x,y∈R;z≥0

(
10∑
i=1

(x− xi)2 + (y − yi)2 + (z − zi)2
)
.

(a) Solve for (x∗, y∗, z∗) analytically.



(b) Derive the Gauss-Newton update rule for estimating (x∗, y∗, z∗).

(c) Derive the Newton-Raphson update rule for estimating (x∗, y∗, z∗). How would things
change if instead we wanted to find

argmin
x,y∈R;z≥0

(
10∑
i=1

√
(x− xi)2 + (y − yi)2 + (z − zi)2

)
?

4. Derive the Newton-Raphson update rule for estimating (pa, pb, po) in the Newton-Raphson Ex-
ample 2 on blood types from Class 2, where pa is the true frequency of allele a in the population,
pb is the true frequency of allele b, and po is the true frequency of allele o. You can assume that
P(allele pair xy) = pxpy, where x, y ∈ {a, b, o}. Remember that pa + pb + po = 1.

5. Let g : Rd → R be a C2 function and set

Q(x,y) = g(x) + 〈∇g(x),y − x〉+
1

2
〈∇2g(x)(y − x),y − x〉.

Show that

g(y) = Q(x,y) +

∫ 1

0

∫ t

0

〈(
∇2g(x+ s(y − x))−∇2g(x)

)
(y − x),y − x

〉
ds dt.

6. A function g : E ⊆ R→ R is convex if it satisfies

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y)

for all x, y ∈ E and λ ∈ [0, 1].

(a) Suppose g ∈ C1. Show that g is convex if and only if

g(y) ≥ g(x) + 〈∇g(x), y − x〉

for all x, y ∈ E.

(b) Suppose g ∈ C1. Show that g is convex if and only if

〈∇g(y)−∇g(x), y − x〉 ≥ 0

for all x, y ∈ E.

7. A function g : E ⊆ R→ R is α-strongly convex if

g(y) ≥ g(x) + 〈∇g(x), y − x〉+
α

2
||y − x||2

for all x, y ∈ E. Show that g is α-strongly convex if and only if

f(x) = g(x)− α

2
||x||2

is convex.

8. Consider the functions g and mk defined in Class 2, where the gradient descent update rule was
derived for the L-Lipschitz C2 function g. Let x∗ = argmin g(x).

(a) Show that if g is convex, then mk is L-strongly convex.

(b) Show that

g(xk+1) ≤ mk(x∗)− L

2
||xk+1 − x∗||2.

(c) Show that

argmin
1≤j≤M

g(xj)− g(x∗) ≤ L

2M
||x0 − x∗||2.

(d) (Tougher) Combine these with results proven in class to further show that

min
1≤j≤M

||∇g(xj)|| ≤
2L

M
||x0 − x∗||.


