STA2311: Advanced Computational Methods for
Statistics |
Class 8: MCMC Tuning and Diagnostics

Radu Craiu  Robert Zimmerman

University of Toronto

November 7, 2023

Radu Craiu, Robert Zimmerman (UofT) November 7, 2023 1/39



@ Introduction

© AR(1) Processes

© Variance Calculations

@ Convergence Analysis

© Code Analysis

Radu Craiu, Robert Zimmerman (UofT)

November 7, 2023

2/39



Section 1

Introduction

Radu Craiu, Robert Zimmerman (UofT)



Gibbs Sampling

@ Gibbs sampling is a popular MCMC algorithm for sampling from a
complex probability distribution w

@ One essential property in reversible MCMC is detailed balance

@ The systematic scan Gibbs sampler does not satisfy the detailed
balance condition

» Recall that detailed balance condition means that reversibility holds
> Reversibility essentially means that the distributions of
(Xey Xet1y - oy Xets) and (Xeps, Xegs—1, ..., X¢) are the same
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Detailed Balance Condition

@ The detailed balance condition states that
m(x) Q(x — X’) = 7r(x’) . Q(X/ — X)

where 7 is the target distribution and Q is the proposal distribution

@ Detailed balance simplifies the conditions for a CLT for 1, where
I = [ h(x)m(x)dx

o The CLT says that vVM(lp, — 1) - N(0,02)

@ This is the same as we would have in the classical iid setup
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Gibbs Sampler

@ In Gibbs sampling, we update one variable at a time while keeping the
others fixed

@ At each step, a single variable is sampled from its conditional
distribution

@ The choice of the next variable to update is deterministic
@ The update rule for the i'th component is

x,-(H_l) ~ m(x; | xl(t+1),x2(t+1), .. ,X,-(i_l),xi(i)l, o ,x‘gt))
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Systematic Scan Gibbs Sampling Does Not Have Detailed
Balance

@ The random scan Gibbs sampler satisfies detailed balance
@ However, the systematic scan Gibbs sampler does not
@ We show this for a 2-component Gibbs sampler

@ The deterministic order in which the variables are updated is central to
this result
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Systematic Scan Gibbs Sampling Does Not Have Detailed
Balance (Continued)

@ At iteration t, the systematic scan Gibbs sampler samples
Xegr ~ (| Vi) and Yepr ~ (- | Xeqa)

o We have K(x¢t1,Ye41 | Xeo ¥t) = m(Xex1 | ye) - 7(Veg1 | x¢) and
similarly, K(Xta)/t \ Xt+17}/t+1) = 7T(Xt ’ }/t+1) : TF(}/t ’ Xt)

e But

m(xe, ye) m(xe1 | ye) (Ve | xe) # m(xer1, yerr) m(xe | yer1) m(yve | xe)
@ Thus

m(xe ye) - K(Xed1, Ve | Xe, ye) # m(Xe1s yerr) - K(xe ve | Xed1, Yetr)

@ So detailed balance fails
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Random Scan Gibbs Sampling Does Have Detailed Balance

@ However, suppose we implement a random scan Gibbs sampler, in
which at each step we update X with probability 1/2 and Y with
probability 1/2

@ Then

K(Xt—i-l: Yt+1 \ Xt»)’t)
1

1
= EW(XH-l | ve) - m(yesr | xev1) + §7T(yt+1 | xt) - m(Xev1 | Yer1)

and

K(Xta Yt | Xt+17)/t+1)
1

1
= §7r(xt | yev1) - m(ye | xe) + §7T(Yt | Xe1) - m(xe | yt)
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Random Scan Gibbs Sampling Does Have Detailed Balance
(Continued)

@ With a tedious calculation, one can then check that

1 1
7(xt, Yt) [§7T(Xt+1 | ye) - (e | xe1) + EW(YH—I | xt) - m(xet | yt+1)]

is equal to

7T(Xt+1, Yt+1) 5

1 1
570 | yern) w0 | ) + 5m(ye [ xesn) - mlox | o)

@ So detailed balance is satisfied
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Distributions of Subchains

o Let X € RY be a Markov chain with stationary distribution 7

o If XM ..., XM) are M MCMC samples from =, then Xj(l), . ,XJ.(M)
are MCMC samples from the j'th marginal distribution

mj(x) = [ m(x)dx;
@ We demonstrate this for the 2-component Gibbs sampler

Suppose (x, y) is the current value of the chain and (x’,y’) is the next
value, K(x',y" [ x,y) = m(y" | x) - m(x" | ¥')

@ We want to show that 7(x) is stationary for the x-component; i.e.,

/ K(x' | x) - 7(x) dx = 7(x)
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Distributions of Subchains (Continued)

@ Indeed, since K(x' | x) = [#(y' | x) - 7(x" | y')dy’, we get that
/K(X' | x) - 7(x) dx = //W(y’ | x)-7(x' | y)dy' - m(x) dx
_// 2(y', x) - 7(x"midy") dx dy/
/ 7(x'midy’) dy’

7T

/

m(x")

@ The same result holds for the Metropolis-Hastings algorithm (exercise!)
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Aside: Functions of Markov Chains are Not Markov Chains

e If (X,) is a Markov chain and f is some function, does it follow that
(f(Xpn)) is also a Markov chain?

@ Not if f is not injective!

e For a counterexample, consider X = {x1, x2, x3} and suppose a Markov
chain on X has initial distribution §(x) = % and transition kernel
satisfying K(x1 | x3) = K(x3 | x1) =1 and K(x | x) =1 for x € X

e Now, for any y # z, let f(x1) = f(x2) =y and f(x3) = z, and define
the process Y, = f(X,) with state-space ) = {y, z}

@ Then, since Yo =z & Xo = x3 & X1 = x3 & Xo = x3, Bayes rule
gives

1
]P’(Y2:z|ley)zi;él:]P’(Yg:z|ley,Yozz),

so (Yy) does not satisfy the Markov property
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AR(1) Processes

@ An AR(1) process is defined as
Xe = ¢Xe—1 + €1,

where X; is the value of the process at time t, ¢ is the autoregressive
coefficient, and e; ~ N(0,0?) is white noise

@ The process depends on the previous value X;_1 and a random
disturbance ¢;

e Since X; | Xi—1 ~ N(¢X¢_1,02), the process (X;) is a Markov chain
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AR(1) Stationary Distribution

@ For the AR(1) process to have a stationary distribution, [¢| < 1is a
necessary condition

@ When |¢| < 1, the process converges to a stationary distribution as
t— o0

@ The stationary distribution is Gaussian, and its mean and variance can
be determined

e Put Xp = ¢ (i.e., Xp is drawn from the noise population) and
X1 = ¢Xp + €1 with €1 ~ N(H070'2)
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AR(1) Stationary Distribution (Continued)
@ Then

E[X1] = E[E[X1 | Xo]] = E[¢Xo + 1o] = oo + po = po(1 + @)

and
Var(X1) = ¢?Var(Xp) + 02 = 02(1 + ¢?)

@ Similarly,
E[X] = E[E[pX1 + e1 | Xi]] = E[¢X1 + po] = po(L + ¢ + ¢7)

and
Var(Xz) = ¢?Var(X;) + Var(e;) = 0%(1 + ¢* + ¢*)

@ Proceed by inductions and take limits to get
E[Xa] = po(l+ o+ -+ 0") — I% and

Var(X,) = o2(1 + ¢ + -+ + ¢?") — 1522
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Variance for an MCMC Algorithm

We want Var (ﬁ M h(X,-)) = Var(ly)

If Xi ~ 7 (under the stationary regime), then the conditions for an
MCMC central limit theorem are satisfied:

@ A sufficient condition is geometric ergodicity, but for complex samplers,
we often do not know that this holds

@ The general CLT says

VM(y = 1) =L N(0, 02)

@ If we are under the classical Monte Carlo setup and X; i m, then
O’% = Var,(h(X))
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AR(1) Variance

@ In the AR(1) model, what is the correlation between X:is and X7

Cov(Xets, Xs) = Cov(dXers—1 + €rts, PXs—1 + €s)
= ¢2COV(X1'+5—17 Xs—l)
= $?*Cov (X, Xp)

@ Using the asymptotic variance for X;;+s and Xs, we get

¢*Cov(Xe, Xo)  ¢**

o?/(1-¢%)  J1-¢2

Corr(Xets, Xs) = Corr(Xe, Xo)

@ Then
Z Z Corr(Xets, Xs Z Corr(X¢, Xo) Z <l52s = ¢2 1 _ #2\3/2 Z Pt
t>05>0 t>0 s>0 t>0

where p; = Corr(Xt, Xp)
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Why Estimate MCMC Variance?

@ MCMC estimates often have autocorrelation, which affects the
effective sample size

@ Accurate variance estimation is crucial for hypothesis testing and
interval estimation

o Geyer's estimate provides an efficient way to estimate the variance of
MCMC estimates
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Autocorrelation in MCMC Chains

@ Autocorrelation refers to the correlation between a variable and its
lagged values in a time series

@ MCMC chains often exhibit high autocorrelation, which reduces the
effective sample size and increases uncertainty in parameter estimates
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Geyer's Estimate of Variance
o CLT: VM(Iy — 1) = N(0,07), where Ty = & M. h(X))

o Geyer's estimation of variance relies on the autocorrelation time 7 of
the chain

@ The formula for Geyer's estimate is given by

h

2
O’ _=
h="m

, M
1+ M/;(M_ k)Pk]

where M is the number of iterations, p; is the autocorrelation at lag t,
and 12 = Var,(h(X))

o If the p; are large and don't decay fast, then trouble!

@ In general the sum ends at 7 << M, so
-
1+2>° pk]
k=1
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Geyer's Estimate of Variance (Continued)

@ Assuming stationarity and time-homogeneity (in the sense that
Corr(h(X;), h(X;)) = Corr(h(Xo), h(Xj—i)) =: pj—i), then

M M-k
Var(ly) = %Var(h( 1+ = Z Z Corr(h h(X,Jrk))]
k 1i=1

_ h [1+2Z
<1+2Zpk> =

Corr (Xo),h(Xk))] =

i\m

2
@ Note that the classical Monte Carlo variance n—,\g is inflated due to
dependence within the samples
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Batch Means

@ In practice, let L be the maximum t for which p; > 0.1, then plug in
the estimators for p1,...,pL

o But we still need an estimate of 72
o Geyer's estimate is based on the idea of “batch means”

o It divides the MCMC chain into m non-overlapping batches of size b
and computes the batch means

@ The variance is then computed from the variances of these batch means

@ The goal is to assess the variability between batches rather than within
each batch
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Batch Variance Estimation

o For the jth batch, compute the sample mean, denoted as [i;

@ The overall sample mean [i and sample variance &
averages of the batch means:

i it _

. 1
T where [i; 5 Z ‘ h(X;)
{i:x;ebatch i}

2 are computed from

52 1 E’”: )
——=—) (pi—f)
b mi:l

where k is the number of batches and n; is the number of samples in
each batch

0 62 =L (i — i)? is Geyer's estimate

Radu Craiu, Robert Zimmerman (UofT)

November 7, 2023 26 /39



Applications and Considerations

@ Non-overlapping batch sampling is commonly used for estimating the
variance of MCMC estimates, especially in the context of Bayesian
analysis

@ Choosing an optimal batch size is a trade-off between reducing the
variance of the estimator and increasing the bias

@ Larger batch sizes tend to yield more precise variance estimates but
may introduce bias
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Effective Sample Size

e The effective sample size (ESS) measures the effective number of
independent samples in an MCMC chain, accounting for autocorrelation

@ It can be calculated as

M
14+23702 pi

where py is the autocorrelation at lag k

ESS =

@ A classical Monte Carlo sample of size ESS provides the same variance
as the MCMC sample of size M
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Visual Inspection

@ Visual inspection of trace plots is an initial step in convergence
assessment

@ Trace plots show the sampled values of parameters over time

@ A converged chain should exhibit stationary behavior with no
significant trends or oscillations
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Gelman-Rubin Diagnostic

o The Gelman-Rubin (GR) diagnostic, also known as R, compares the
variance between chains to within chains

® We run m chains in parallel, each for n iterations; write (X,-(k)) for the
kth chain, X(¥) for the average of the kth chain, and X() for the
overall average (averaging over chains and realizations)

@ To compute the GR diagnostic, let

n

m
W: 3 — Xx(K)y2
(n— 1 )mi= ,=1

and

B=_" i()?(k)—%'))z
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Gelman-Rubin Diagnostic (Continued)

@ When the chains behave well, we have "%IW + %B ~ W

@ The GR diagnostic is given by

n—1 1
N W+ 2B
R:g

w

@ Clearly, as n — oo and B i> 0, we have R i) 1

@ Gelman and Rubin suggest that stationarity has been reached when
R<1.1
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Geweke Diagnostic

@ The Geweke convergence diagnostic is based on the idea of comparing
means of two segments of the MCMC chain

@ It calculates a Z-score, comparing the mean of the early portion of the
chain to the mean of the late portion

@ The Z-score is then assessed to determine whether the chain has likely
reached convergence
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Calculating the Z-Score

@ The Geweke Z-score is computed as:
0_3 - éb

@ Here, 0, and 0}, are the means of the early and late portions of the
chain, and S, and S;, are their corresponding standard errors

/ =

@ A large magnitude Z-score suggests non-convergence
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Bimodal Distribution

o We consider first the bivariate distribution
(X1, X2) o< exp <—;(Ax12x22 + X2+ x5 — 2Bx;x2 — 2Cyx1 — 2C2x2)),
with A=8,B=2,(=40CG=4
@ The conditional distributions can be easily determined to be Gaussian:
m(x1|x2) = N((Bxa + C1)/(Ax3 +1),1/(Ax3 + 1))
m(xa|x1) = N((Bxa + G)/(Ax2 +1),1/(Ax3 + 1))

@ Incidentally, this is one example where the marginals are Gaussian but
the joint distribution is not Gaussian
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Logistic Regression with Random Intercept

@ Consider K clusters, each with N data points.

Yijlui, Xij, 8~ Bernoulli(pj;), where

logit(pij) = 1fijp":Ui+ﬂo+51Xij, I<i<K, 1<j<N
ij

ujp  ~ N(07772)7 1<i<K
5 ~ NQ(O,U%/z)
n ~ Gamma(a,b)
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Logistic Regression with Random Intercept (Continued)

@ Another parametrization:

Yijlui, Xij, 8~ Bernoulli(pjj), where
logit(p;) = TOi—=Ri+BiX; 1<i<K 1<j<N
s
RilBo ~ N(Bo,m?), 1<i<K
B~ Na(0,03h)

n ~ Gamma(a,b)
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