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Introduction
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Gibbs Sampling

Gibbs sampling is a popular MCMC algorithm for sampling from a
complex probability distribution π

One essential property in reversible MCMC is detailed balance

The systematic scan Gibbs sampler does not satisfy the detailed
balance condition

I Recall that detailed balance condition means that reversibility holds
I Reversibility essentially means that the distributions of

(Xt ,Xt+1, . . . ,Xt+s) and (Xt+s ,Xt+s−1, . . . ,Xt) are the same
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Detailed Balance Condition

The detailed balance condition states that

π(x) · Q(x → x ′) = π(x ′) · Q(x ′ → x)

where π is the target distribution and Q is the proposal distribution

Detailed balance simplifies the conditions for a CLT for Î, where
I =

∫
h(x)π(x) dx

The CLT says that
√
M(Im − I) d−→ N (0, σ2

h)

This is the same as we would have in the classical iid setup
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Gibbs Sampler

In Gibbs sampling, we update one variable at a time while keeping the
others fixed

At each step, a single variable is sampled from its conditional
distribution

The choice of the next variable to update is deterministic

The update rule for the i ’th component is

x (t+1)
i ∼ π(xi | x (t+1)

1 , x (t+1)
2 , . . . , x (t+1)

i−1 , x (t)
i+1, . . . , x

(t)
d )
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Systematic Scan Gibbs Sampling Does Not Have Detailed
Balance

The random scan Gibbs sampler satisfies detailed balance

However, the systematic scan Gibbs sampler does not

We show this for a 2-component Gibbs sampler

The deterministic order in which the variables are updated is central to
this result
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Systematic Scan Gibbs Sampling Does Not Have Detailed
Balance (Continued)

At iteration t, the systematic scan Gibbs sampler samples
Xt+1 ∼ π(· | Yt) and Yt+1 ∼ π(· | Xt+1)

We have K (xt+1, yt+1 | xt , yt) = π(xt+1 | yt) · π(yt+1 | xt) and
similarly, K (xt , yt | xt+1, yt+1) = π(xt | yt+1) · π(yt | xt)

But

π(xt , yt)·π(xt+1 | yt)·π(yt+1 | xt) 6= π(xt+1, yt+1)·π(xt | yt+1)·π(yt | xt)

Thus

π(xt , yt) · K (xt+1, yt+1 | xt , yt) 6= π(xt+1, yt+1) · K (xt , yt | xt+1, yt+1)

So detailed balance fails
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Random Scan Gibbs Sampling Does Have Detailed Balance

However, suppose we implement a random scan Gibbs sampler, in
which at each step we update X with probability 1/2 and Y with
probability 1/2

Then

K (xt+1, yt+1 | xt , yt)

= 1
2π(xt+1 | yt) · π(yt+1 | xt+1) + 1

2π(yt+1 | xt) · π(xt+1 | yt+1)

and

K (xt , yt | xt+1, yt+1)

= 1
2π(xt | yt+1) · π(yt | xt) + 1

2π(yt | xt+1) · π(xt | yt)
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Random Scan Gibbs Sampling Does Have Detailed Balance
(Continued)

With a tedious calculation, one can then check that

π(xt , yt)
[1
2π(xt+1 | yt) · π(yt+1 | xt+1) + 1

2π(yt+1 | xt) · π(xt+1 | yt+1)
]

is equal to

π(xt+1, yt+1)
[1
2π(xt | yt+1) · π(yt | xt) + 1

2π(yt | xt+1) · π(xt | yt)
]

So detailed balance is satisfied
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Distributions of Subchains

Let X ∈ Rd be a Markov chain with stationary distribution π

If X(1), . . . ,X(M) are M MCMC samples from π, then X(1)
j , . . . ,X(M)

j
are MCMC samples from the j ’th marginal distribution
πj(xj) =

∫
π(x) dx−j

We demonstrate this for the 2-component Gibbs sampler

Suppose (x , y) is the current value of the chain and (x ′, y ′) is the next
value, K (x ′, y ′ | x , y) = π(y ′ | x) · π(x ′ | y ′)

We want to show that π(x) is stationary for the x -component; i.e.,∫
K (x ′ | x) · π(x) dx = π(x ′)
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Distributions of Subchains (Continued)

Indeed, since K (x ′ | x) =
∫
π(y ′ | x) · π(x ′ | y ′) dy ′, we get that∫

K (x ′ | x) · π(x) dx =
∫∫

π(y ′ | x) · π(x ′ | y ′) dy ′ · π(x) dx

=
∫∫

π(y ′, x) · π(x ′midy ′) dx dy ′

=
∫
π(y ′) · π(x ′midy ′) dy ′

=
∫
π(x ′, y ′) dy ′

= π(x ′)

The same result holds for the Metropolis-Hastings algorithm (exercise!)
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Aside: Functions of Markov Chains are Not Markov Chains
If (Xn) is a Markov chain and f is some function, does it follow that
(f (Xn)) is also a Markov chain?

Not if f is not injective!

For a counterexample, consider X = {x1, x2, x3} and suppose a Markov
chain on X has initial distribution δ(x) = 1

3 and transition kernel
satisfying K (x1 | x3) = K (x3 | x1) = 1 and K (x | x) = 1 for x ∈ X

Now, for any y 6= z , let f (x1) = f (x2) = y and f (x3) = z , and define
the process Yn = f (Xn) with state-space Y = {y , z}

Then, since Y2 = z ⇔ X2 = x3 ⇔ X1 = x1 ⇔ X0 = x3, Bayes rule
gives

P(Y2 = z | Y1 = y) = 1
2 6= 1 = P(Y2 = z | Y1 = y ,Y0 = z),

so (Yn) does not satisfy the Markov property
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Section 2

AR(1) Processes
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AR(1) Processes

An AR(1) process is defined as

Xt = φXt−1 + εt ,

where Xt is the value of the process at time t, φ is the autoregressive
coefficient, and εt ∼ N (0, σ2) is white noise

The process depends on the previous value Xt−1 and a random
disturbance εt
Since Xt | Xt−1 ∼ N (φXt−1, σ

2), the process (Xt) is a Markov chain
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AR(1) Stationary Distribution

For the AR(1) process to have a stationary distribution, |φ| < 1 is a
necessary condition

When |φ| < 1, the process converges to a stationary distribution as
t →∞

The stationary distribution is Gaussian, and its mean and variance can
be determined

Put X0 = ε0 (i.e., X0 is drawn from the noise population) and
X1 = φX0 + ε1 with ε1 ∼ N (µ0, σ

2)
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AR(1) Stationary Distribution (Continued)
Then

E[X1] = E [E[X1 | X0]] = E[φX0 + µ0] = φµ0 + µ0 = µ0(1 + φ)

and
Var(X1) = φ2Var(X0) + σ2 = σ2(1 + φ2)

Similarly,

E[X2] = E [E[φX1 + ε1 | X1]] = E[φX1 + µ0] = µ0(1 + φ+ φ2)

and
Var(X2) = φ2Var(X1) + Var(ε1) = σ2(1 + φ2 + φ4)

Proceed by inductions and take limits to get
E[Xn] = µ0(1 + φ+ · · ·+ φn)→ µ0

1−φ and
Var(Xn) = σ2(1 + φ2 + · · ·+ φ2n)→ σ2

1−φ2
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Variance Calculations
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Variance for an MCMC Algorithm

We want Var
(

1
M
∑M

i=1 h(Xi )
)

= Var(̂IM)

If Xi ∼ π (under the stationary regime), then the conditions for an
MCMC central limit theorem are satisfied:

A sufficient condition is geometric ergodicity, but for complex samplers,
we often do not know that this holds

The general CLT says
√
M (̂IM − I) d−→ N (0, σ2

h)

If we are under the classical Monte Carlo setup and Xi
iid∼ π, then

σ2
h = Varπ(h(X ))
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AR(1) Variance
In the AR(1) model, what is the correlation between Xt+s and Xs?

Cov(Xt+s ,Xs) = Cov(φXt+s−1 + εt+s , φXs−1 + εs)
= φ2Cov(Xt+s−1,Xs−1)
= φ2sCov(Xt ,X0)

Using the asymptotic variance for Xt+s and Xs , we get

Corr(Xt+s ,Xs) = φ2sCov(Xt ,X0)
σ2/(1− φ2) = φ2s√

1− φ2 Corr(Xt ,X0)

Then∑
t>0

∑
s≥0

Corr(Xt+s ,Xs) =
∑
t>0

Corr(Xt ,X0)
∑
s≥0

φ2s = 1
(1− φ2)3/2

∑
t>0

ρt

where ρt = Corr(Xt ,X0)
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Why Estimate MCMC Variance?

MCMC estimates often have autocorrelation, which affects the
effective sample size

Accurate variance estimation is crucial for hypothesis testing and
interval estimation

Geyer’s estimate provides an efficient way to estimate the variance of
MCMC estimates
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Autocorrelation in MCMC Chains

Autocorrelation refers to the correlation between a variable and its
lagged values in a time series

MCMC chains often exhibit high autocorrelation, which reduces the
effective sample size and increases uncertainty in parameter estimates
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Geyer’s Estimate of Variance
CLT:

√
M (̂IM − I)→ N (0, σ2

h), where ÎM = 1
M
∑M

i=1 h(Xi )

Geyer’s estimation of variance relies on the autocorrelation time τ of
the chain

The formula for Geyer’s estimate is given by

σ2
h = η2

h
M

[
1 + 2

M

M∑
k=1

(M − k)ρk

]

where M is the number of iterations, ρt is the autocorrelation at lag t,
and η2

h = Varπ(h(X ))

If the ρt are large and don’t decay fast, then trouble!

In general the sum ends at τ << M, so

σ2
h = η2

h
M

[
1 + 2

τ∑
k=1

ρk

]
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Geyer’s Estimate of Variance (Continued)

Assuming stationarity and time-homogeneity (in the sense that
Corr(h(Xi ), h(Xj)) = Corr(h(X0), h(Xj−i )) =: ρj−i), then

Var(̂IM) = 1
MVar(h(X ))

[
1 + 2

M

M∑
k=1

M−k∑
i=1

Corr(h(Xi ), h(Xi+k))
]

= η2
h
M

[
1 + 2

M∑
k=1

M − k
M Corr(h(X0), h(Xk))

]
=

= η2
h
M

(
1 + 2

τ∑
k=1

ρk

)
= σ2

h

Note that the classical Monte Carlo variance η2
h

M is inflated due to
dependence within the samples
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Batch Means

In practice, let L be the maximum t for which ρt > 0.1, then plug in
the estimators for ρ1, . . . , ρL

But we still need an estimate of η2
h

Geyer’s estimate is based on the idea of “batch means”

It divides the MCMC chain into m non-overlapping batches of size b
and computes the batch means

The variance is then computed from the variances of these batch means

The goal is to assess the variability between batches rather than within
each batch
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Batch Variance Estimation

For the ith batch, compute the sample mean, denoted as µ̂i

The overall sample mean µ̂ and sample variance σ̂2 are computed from
averages of the batch means:

µ̂ =
∑m

i=1 µ̂i
m , where µ̂i = 1

b
∑

{j:Xj∈batch i}
h(Xj)

σ̂2

b = 1
m

m∑
i=1

(µ̂i − µ̂)2

where k is the number of batches and ni is the number of samples in
each batch

σ̂2 = b
m
∑m

i=1(µ̂i − µ̂)2 is Geyer’s estimate
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Applications and Considerations

Non-overlapping batch sampling is commonly used for estimating the
variance of MCMC estimates, especially in the context of Bayesian
analysis

Choosing an optimal batch size is a trade-off between reducing the
variance of the estimator and increasing the bias

Larger batch sizes tend to yield more precise variance estimates but
may introduce bias
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Effective Sample Size

The effective sample size (ESS) measures the effective number of
independent samples in an MCMC chain, accounting for autocorrelation

It can be calculated as

ESS = M
1 + 2

∑∞
k=1 ρk

where ρk is the autocorrelation at lag k

A classical Monte Carlo sample of size ESS provides the same variance
as the MCMC sample of size M

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I November 7, 2023 28 / 39



Section 4

Convergence Analysis
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Visual Inspection

Visual inspection of trace plots is an initial step in convergence
assessment

Trace plots show the sampled values of parameters over time

A converged chain should exhibit stationary behavior with no
significant trends or oscillations
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Gelman-Rubin Diagnostic

The Gelman-Rubin (GR) diagnostic, also known as R̂, compares the
variance between chains to within chains

We run m chains in parallel, each for n iterations; write (X (k)
i ) for the

kth chain, X̄ (k)
. for the average of the kth chain, and X̄ (·)

. for the
overall average (averaging over chains and realizations)

To compute the GR diagnostic, let

W = 1
(n − 1)m

m∑
k=1

n∑
i=1

(X (k)
i − X̄ (k)

. )2

and
B = n

m − 1

m∑
k=1

(X̄ (k)
. − X̄ (·)

. )2
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Gelman-Rubin Diagnostic (Continued)

When the chains behave well, we have n−1
n W + 1

nB ≈W

The GR diagnostic is given by

R̂ =
n−1

n W + 1
nB

W

Clearly, as n→∞ and B d−→ 0, we have R d−→ 1

Gelman and Rubin suggest that stationarity has been reached when
R ≤ 1.1
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Geweke Diagnostic

The Geweke convergence diagnostic is based on the idea of comparing
means of two segments of the MCMC chain

It calculates a Z-score, comparing the mean of the early portion of the
chain to the mean of the late portion

The Z-score is then assessed to determine whether the chain has likely
reached convergence
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Calculating the Z-Score

The Geweke Z-score is computed as:

Z = θ̄a − θ̄b√
S2

a + S2
b

Here, θ̄a and θ̄b are the means of the early and late portions of the
chain, and Sa and Sb are their corresponding standard errors

A large magnitude Z-score suggests non-convergence
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Section 5

Code Analysis
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Bimodal Distribution

We consider first the bivariate distribution

π(x1, x2) ∝ exp
(
−1
2(Ax2

1 x2
2 + x2

1 + x2
2 − 2Bx1x2− 2C1x1 − 2C2x2)

)
,

with A = 8,B = 2,C1 = 4,C2 = 4

The conditional distributions can be easily determined to be Gaussian:

π(x1|x2) = N ((Bx2 + C1)/(Ax2
2 + 1), 1/(Ax2

2 + 1))

π(x2|x1) = N ((Bx2 + C2)/(Ax2
2 + 1), 1/(Ax2

2 + 1))

Incidentally, this is one example where the marginals are Gaussian but
the joint distribution is not Gaussian
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Logistic Regression with Random Intercept

Consider K clusters, each with N data points.

Yij |ui ,Xij , β ∼ Bernoulli(pij), where

logit(pij) = pij
1− pij

= ui + β0 + β1Xij , 1 ≤ i ≤ K , 1 ≤ j ≤ N

ui ∼ N (0, η2), 1 ≤ i ≤ K
β ∼ N2(0, σ2

βI2)
η ∼ Gamma(a, b)
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Logistic Regression with Random Intercept (Continued)

Another parametrization:

Yij |ui ,Xij , β ∼ Bernoulli(pij), where

logit(pij) = pij
1− pij

= Ri + β1Xij , 1 ≤ i ≤ K , 1 ≤ j ≤ N

Ri |β0 ∼ N(β0, η
2), 1 ≤ i ≤ K

β ∼ N2(0, σ2
βI2)

η ∼ Gamma(a, b)
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