
STA2311: Advanced Computational Methods for
Statistics I

Class 7: MCMC Basics

Radu Craiu Robert Zimmerman

University of Toronto

October 31, 2023

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 1 / 43

1 Introduction

2 The Metropolis-Hastings Algorithm

3 Metropolis-Hastings: Variations

4 Gibbs Sampling

5 Gibbs Sampling: Variations

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 2 / 43

A Quick Review (?) of Markov Chains

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 3 / 43

Section 1

Introduction

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 4 / 43

The Need for MCMC
Recall the setup from Class 6: we have some target density f that we
wish to generate samples from, usually for the purpose of estimating
some Ef [h]

We learned several methods of generating exact samples from f
I e.g., rejection sampling, the inverse cdf method, distribution-specific

techniques

However, these techniques require relatively detailed knowledge about f

For example, the rejection sampler requires knowing some
easy-to-sample density g such that f ≤ c · g

I The bigger the “gap” between f and g , the more we reject (and the less
efficient the sampler is)

Thus, these only work for relatively simple targets

In particular, they fail miserably for high-dimensional targets!

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 5 / 43

When the Target Cannot be Sampled From Directly
For a simple example, consider Bayesian logistic regression: we have
independent observations Y1, . . . ,Yn and covariates x1, . . . , xn ∈ Rp

with Yi | xi ∼ Bernoulli(σ(β>xi)), where σ(x) = (1 + e−x)−1

We place a Np(m0,S0) prior on β

The posterior distribution satisfies

p(β | y) ∝ p(β) · p(y | β)

∝ exp
(
−1
2(β −m0)>S−1

0 (β −m0)
)
·

n∏
i=1

σ(β>xi)yi (1− σ(β>xi))1−yi

This is completely impossible to sample from directly, even if we could
calculate the normalizing constant (which we can’t)

Even if we could, for large p rejection sampling and importance
sampling will fail miserably!

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 6 / 43

Two Basic Algorithms

Markov chain Monte Carlo (MCMC) is, far and away, the most popular
method of generating a sample X = (X1, . . . ,Xd) from a complicated
d-dimensional target distribution f

For the two basic algorithms we will study today, very little is asked of
us

For the Metropolis-Hastings algorithm, we only need to know the
functional form of f up to a constant

I That is, we don’t need the normalizing constant
∫

f (x) dx

For the Gibbs sampler, we only need to know the conditional
distribution of Xh | X1, . . . ,Xh−1,Xh+1, . . . ,Xd for each h = 1, . . . , d

I We will see that even this can be relaxed

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 7 / 43

The Cost
Virtually all other MCMC algorithms in use are built upon either of
these two techniques

However, their relative ease of use comes at a cost

The samples X(1),X(2), . . . they generate are only approximately
distributed according to f

And they aren’t independent!

Fortunately, there are well-studied methods for minimizing these issues,
which we will see in Class 8

Moreover, the ergodic theorem still guarantees that when the simulated
chain is ergodic, the SLLN still holds:

1
T

T∑
t=0

h(X(t)) as−→ Ef [h]

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 8 / 43

The Idea Behind MCMC

The basic idea is straightforward

We will construct an (irreducible, aperiodic) Markov chain
X(1),X(2), . . . whose stationary distribution is f

The samples we actually use are the observed values of X(1),X(2), . . .

I Or some subset thereof — to be discussed in Class 8

Thus, the distribution of X(M) only approaches f as M →∞

But with a well-designed MCMC algorithm, we will get there tolerably
quickly

I More specifically, the chain will mix quickly — again, Class 8

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 9 / 43

Section 2

The Metropolis-Hastings Algorithm

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 10 / 43

Motivation

As always, we want to sample from a target density f

Assume we have at our disposal a conditional distribution q(· | x)
which is easy to simulate from, such that the ratio

f (y)
q(y | x)

is known up to a constant independent of x

The distribution q is called the proposal distribution

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 11 / 43

The Algorithm Itself
Then the Metropolis-Hastings algorithm proceeds as follows:

1 Start with an initial X (0) = x(0)

2 For each t ≥ 1, given X (t) = x(t),
a. Generate Y ∼ q(· | x(t))
b. Accept X (t+1) = Y with probability

min
{

f (Y)
q(Y | x(t)) ·

q(x(t) | Y)
f (x(t)) , 1

}
;

otherwise, take X (t+1) = x(t+1)

The function

ρ(x, y) = min
{ f (y)

q(y | x) ·
q(x | y)

f (x) , 1
}

is called the Metropolis-Hastings acceptance probability

Every variation/extension of the basic MH algorithm ultimately accepts
new proposals with some variation of this acceptance probability

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 12 / 43

This Does What We Want
To show that the Metropolis-Hastings algorithm has f as its stationary
distribution, it’s enough to show that its transition kernel satisfies the
detailed balance condition with f

Indeed, the transition kernel is

K (x, y) = ρ(x, y) · q(y | x) + (1− r(x)) · δx(y)

where r(x) =
∫
ρ(x, y) · q(y | x) dy

It is not hard to check that

ρ(x, y) · q(y | x) · f (x) = ρ(y , x) · q(x | y) · f (y)

and
(1− r(x)) · δx(y) · f (x) = (1− r(y)) · δy (x) · f (y)

which together establish the claim

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 13 / 43

Choosing a Proposal Distribution

A good proposal distribution will yield in a high acceptance rate, but
also explore the state space reasonably quickly

These two desiderata are fundamentally in opposition with each other

Thus, we must strike a balance
I We will see in Class 8 that certain proposals can be adaptive – i.e., they

can change at each iteration

For now, we will examine two special cases of Metropolis-Hastings
which correspond to particular kinds of proposals

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 14 / 43

Independence Sampler

One important special case of Metropolis-Hastings occurs when
q(y | x) = g(y) for some density g

That is, the proposal is independent of the current value of the chain

The resulting independence sampler proceeds as follows:
1 Start with an initial X (0) = x(0)

2 For each t ≥ 1, given X (t) = x(t),
a. Generate Y ∼ g(·)
b. Accept X (t+1) = Y with probability{

f (Y)
g(Y) ·

g(x(t))
f (x(t)) , 1

}
;

otherwise take X (t+1) = x(t)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 15 / 43

Random-Walk Metropolis
When d = 1, another important special case occurs when the proposal
can be written as q(y − x) = g(|y − x |) for some distribution g which
is symmetric around zero

I Classic examples include N (0, σ2) and Unif(−δ, δ) for some σ2, δ > 0

As the name suggests, we simply take a random step away from x (t) in
order to explore the state space

The resulting random-walk Metropolis algorithm proceeds as follows:
1 Start with an initial X (0) = x (0) and a symmetric proposal g
2 For each t ≥ 1, given X (t) = x (t),

a. Generate Y ∼ g(| · −x (t)|)
b. Accept X (t+1) = Yt with probability

{
f (Yt)

f (x(t)) , 1
}

; otherwise take

X (t+1) = x (t)

While the idea extends naturally to d > 1, it suffers heavily from the
curse of dimensionality

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 16 / 43

Example: Simulating from the Standard Normal
Distribution
set.seed(2311)

delta <- 0.5

TT <- 15000
x <- 0*1:TT
x[1] <- runif(n=1, -1, 1)

for (t in 1:TT) {
Yt <- runif(n=1, x[t]-delta, x[t]+delta)
if (runif(n=1) < dnorm(Yt)/dnorm(x[t])) {

x[t+1] <- Yt
} else {

x[t+1] <- x[t]
}

}

hist(x)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 17 / 43

Unconstrained Sampling

What happens if we want to run random-walk Metropolis (or more
general Metropolis-Hastings) on a target with bounded support?

I Or a support with constraints, such as the standard simplex?

We could simply reject proposals which fall outside the support, but
this is incredibly wasteful

Instead, it is usually a better idea to transform the target to an
unconstrained one (as in Class 2)

But this requires a bit of work. . .

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 18 / 43

Section 3

Metropolis-Hastings: Variations

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 19 / 43

Basic Issues

In any MCMC algorithm, we are always faced with the basic task of
reaching convergence in a reasonable amount of time

In particular, the algorithm may be very slow to converge to the target
f if the proposal q is chosen poorly

For example, in random-walk Metropolis, choosing σ2 too small will
cause the algorithm to explore the state space very slowly; on the other
hand, choosing σ2 too large will result in a large number of rejections

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 20 / 43

Problems with High Dimensions

High-dimensional posterior distributions typically have many modes

Thus, it is very easy for the basic Metropolis-Hastings algorithm to get
stuck in a local mode

Since we don’t know the locations of these modes, we can’t choose the
proposal q to account for them

Moreover, in high dimensions most regions of the state-space have very
low probability, which just makes things worse

Some variations, such as multiple-try Metropolis, sample multiple
proposals at each step in order to speed things up

I Although (at most) one sampled proposal is actually accepted, so there
is a heavy computational cost

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 21 / 43

Multiple-Try Metropolis
Given some non-negative symmetric function λ(x, y), define the weight
function

w(x, y) ∝ f (x) · q(x, y) · λ(x, y)

The basic multiple-try Metropolis algorithm proceeds as follows:
1 Start with an initial X (0) = x(0)

2 For each t ≥ 1, given X (t) = x(t),
a. Draw Y1, . . . , Yk

iid∼ q(· | x(t))
b. Sample Y from {Y1, . . . , Yk} according to the weights

w(Y1, x(t)), . . . , w(Yk , x(t))
c. Sample x1, . . . , xk−1 ∼ q(· | Y) and set xk = x(t)

d. Accept X (t+1) = Y with probability

min
{

w(y1, x(t)) + · · ·+ w(yk , x(t))
w(x1, y) + · · ·+ w(xk , y) , 1

}
;

otherwise take X (t+1) = x(t)

For details, see Liu et al. [2000]
Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 22 / 43

Problems with Evaluating the Target

So far, we have assumed that we can actually evaluate the target f up
to a normalizing constant

But sometimes this is not even the case!

However, we might still be able to produce an unbiased estimate of
f (x) for each particular x

That is, for any x, we can produce an estimator f̂ (x) such that
E
[
f̂ (x)

]
= f (x)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 23 / 43

Pseudo-Marginal Metropolis–Hastings

It turns out that we can simply replace f (x) in the original MH
algorithm with an unbiased estimator

The pseudo-marginal Metropolis-Hastings algorithm proceeds as
follows:

1 Start with an initial X (0) = x(0)

2 For each t ≥ 1, given X (t) = x(t),
a. Generate Y ∼ q(· | x(t))
b. Accept X (t+1) = Y with probability

min
{

f̂ (Y)
q(Y | x(t)) ·

q(x(t) | Y)
f̂ (x(t))

, 1
}

;

otherwise take X (t+1) = x(t)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 24 / 43

Section 4

Gibbs Sampling

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 25 / 43

Multidimensional Targets

Suppose that the target distribution f is multidimensional

As we saw in Class 6, sampling from non-trivial d-dimensional
distributions becomes more difficult as d becomes large

I Mainly due to the complicated dependencies among the components of
X = (X1, . . . ,Xd) ∼ f

This is especially true in Bayesian statistics, where we are interested in
high-dimensional posteriors. . .

I . . . of large vectors of parameters in a model
I . . . of latent variables in hierarchical models

However, there are sometimes cases where the conditional distribution
of Xh | X−h is available for each h ∈ {1, . . . , d}

I Here X−h := (X1, . . . ,Xh−1,Xh+1, . . . ,Xd)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 26 / 43

Conditional Distributions

For example, if X = (X1,X2) ∼ N2

((
µ1
µ2

)
,

(
σ11 σ12
σ12 σ22

))
, then

X1 | X2 = x2 ∼ N
(
µ1 + σ12

σ22
(x2 − µ2), σ11 −

σ2
12
σ22

)

Formulas exist for arbitrary subvectors of Nd (µ,Σ) conditional on
other subvectors

I Usually these involve block partitions of µ and Σ

When the joint distribution of X is non-normal, tedious calculations are
often needed to determine the relevant conditional distributions (if they
even have known forms)

But for now, assume we have the ability to determine all of the
conditional distributions of Xh | X−h

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 27 / 43

The Algorithm Itself

If X ∼ f , denote the conditional density of Xh | X−h = x−h by

fh(· | x1, . . . , xh−1, xh+1, . . . , xd) := f (x1, . . . , ·, . . . , xd)∫
f (x1, . . . , x , . . . , xd) dx

I Which we assume we know how to sample from!

The basic Gibbs sampler is as follows:
1 Initialize the process at X (0)

2 For t ≥ 1, sample X (t) as follows:

I For 1 ≤ h ≤ d , sample X (t)
h ∼ fh(· | x (t)

1 , . . . , x (t)
h−1, x

(t−1)
h+1 , . . . , x (t−1)

d)
I Accept X (t) = (X (t)

1 , . . . ,X (t)
d)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 28 / 43

This Does What We Want

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 29 / 43

Example: Univariate Normal Posterior

Suppose X1, . . . ,Xn
iid∼ N (µ, σ2) and we impose a non-informative

prior p(µ, σ2) ∝ 1/σ2

The posterior we want to sample from is

p(µ, σ2 | x) ∝ (σ2)−(n
2 +1) · exp

(
− 1
2σ2

n∑
i=1

(xi − µ)2
)

We need to determine p(µ | τ2, x) and p(τ2 | µ, x)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 30 / 43

Example: Univariate Normal Posterior (Continued)
We have

p(µ | σ2, x) ∝

so µ | σ2, x ∼ N
(
x̄ , σ2

n

)
And

p(σ2 | µ, x) ∝

so σ2 | µ, x ∼ InvGamma
(

n
2 ,

1
2
∑n

i=1(xi − µ)2
)

So the Gibbs sampler samples (µ(t), σ2(t)) via

µ(t) ∼ N

x̄ , σ
2(t−1)

n


σ2(t) ∼ InvGamma

(
n
2 ,

1
2

n∑
i=1

(xi − µ(t))2
)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 31 / 43

Example: Univariate Normal Posterior (Continued)
set.seed(2311)

n <- 100
x <- rnorm(n=n, mean=5, sd=3)
xbar <- mean(x)

TT <- 1000
theta <- matrix(0L, nrow=2, ncol=TT)
rownames(theta) <- c("mu", "sigma2")
theta[,1] <- c(0, 1)

for (t in 2:TT) {
theta[1,t] <- rnorm(n=1, mean=xbar, sd=sqrt(theta[2,t-1]/n))
theta[2,t] <- 1/rgamma(n=1, shape=n/2, rate=sum((x-theta[1,t])ˆ2)/2)

}

plot(theta[1,100:TT], type="l")
plot(theta[2,100:TT], type="l")

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 32 / 43

Systematic Scan and Random Scan

In higher dimensional problems, we can sample the components of X in
any order we please

That is, the sampling step at time t can be replaced by the following,
for any fixed permutation σ of (1, . . . , d):

“For 1 ≤ h ≤ d , sample

X (t)
σ(h) ∼ fσ(h)(· | x

(t)
σ(1), . . . , x

(t)
σ(h−1), x

(t−1)
σ(h+1), . . . , x

(t−1)
σ(d))

and then accept X(t) = (X (t)
1 , . . . ,X (t)

d)”

This version of the Gibbs sampler is called systematic scan (or
deterministic scan)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 33 / 43

Systematic Scan and Random Scan (Continued)

In contrast, random scan (or sequential scan) randomly chooses a
single index at time t

That is, the sampling step at time t is is replaced by the following:

“Sample H ∼ Unif{1, . . . , d} and then sample

X (t)
H ∼ fH(· | x (t−1)

1 , . . . , x (t−1)
H−1 , x (t−1)

H+1 , . . . , x (t−1)
d)

and then accept X(t) = (X (t−1)
1 , . . . ,X (t)

H , . . . ,X (t−1)
d)”

Surprisingly, random scan is more theoretically supported [He et al.,
2016]

I But systematic scan is clearly computationally cheaper!

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 34 / 43

Section 5

Gibbs Sampling: Variations

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 35 / 43

Gibbs Sampling: Variations

The basic Gibbs sampler only works if all of the conditional
distributions were available to sample from

In practice, this is rarely the case

We will discuss three modifications of the Gibbs sampler, each of which
helps to circumvent this issue in different ways

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 36 / 43

Blocked Gibbs

Suppose that sampling from the conditional distribution of some
subvector X1:h = (X1,X2, . . . ,Xh) of X is easier than sampling from
each of the conditional distributions of the marginals X1, . . . ,Xh

Of course this applies to any subcollection of X1, . . . ,Xd ; WLOG we
can re-order the components into the “block” as above

Let f1:h(·, . . . , · | xh+1, . . . , xd) = f (·,...,·,xh+1,...,xd)∫∫∫
f (x1,...,xd) dx1:h

Then the blocked Gibbs sampler proceeds as follows:
1 Initialize the process at X (0)

2 For t ≥ 1, sample X (t) as follows:
a. Sample X (t)

1:h ∼ f (·, . . . , · | x (t−1)
h+1 , . . . , x (t−1)

d)
b. For h + 1 ≤ i ≤ d , sample X (t)

i ∼ fh(· | x (t)
1 , . . . , x (t)

h , x (t−1)
h+1 , . . . , x (t−1)

d)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 37 / 43

Collapsed Gibbs

Suppose that sampling from all of the conditional distributions of X
was difficult, but the following conditions hold:

I There exists some component Xh such that
fh(· | x1, . . . , xh−1, xh+1, . . . , xd) is easy to sample from

I Running a Gibbs a sampler to sample from the “marginal” distribution
f−h(x−h) :=

∫
f (x) dxh is easy

For i 6= h, let
f−h;i (· | x1, . . . , xi−1, xi+1, . . . , xd) = f−h(x1,...,xi−1,·,xi+1,...,xd)∫

f−h(x1,...,xi−1,x ,xi+1,...,xd) dx

Then the collapsed Gibbs sampler proceeds as follows:
1 Initialize the process at X (0)

2 For t ≥ 1, sample X (t) as follows:
a. For i 6= h, sample X (t)

i ∼ f−h;i (· | x (t)
1 , . . . , x (t)

i−1, x (t−1)
i+1 , . . . , x (t−1)

d)
b. Sample X (t)

h ∼ fh(· | x (t)
1 , . . . , x (t)

h−1, x (t)
h+1, . . . , x (t)

d)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 38 / 43

Metropolis-within-Gibbs

What happens if we replace a conditional sampling step within the
Gibbs sampler with a Metropolis-Hastings update step?

That is, instead of trying to sample from some
fh(· | x (t)

1 , . . . , x (t)
h−1, x

(t−1)
h+1 , . . . , x (t−1)

d), we sample Y (t)
h from some

proposal qh(· | x (t)
1 , . . . , x (t)

h−1, x
(t−1)
h+1 , . . . , x (t−1)

d), and accept
X (t)

h = Y (t)
h according to the Metropolis-Hastings acceptance

probability?

We can do this for some components (with different proposals qh), and
leave other components alone if they’re easy to sample directly

The resulting algorithm is called Metropolis-within-Gibbs

Amazingly, all of the theory still caries through!

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 39 / 43

Metropolis-within-Gibbs (Continued)

The Metropolis-within-Gibbs algorithm proceeds as follows:
1 Start with an initial X (0) = x(0)

2 For each t ≥ 1, given X (t) = x(t), sample X (t+1) by doing the following
for each 1 ≤ h ≤ d :

a. Draw Yh ∼ qh(· | x (t+1)
1 , . . . , x (t+1)

h−1 , x (t)
h , x (t)

h+1 . . . , x (t)
d)

b. Accept X (t+1)
h = Yh with probability

min



(
fh(Yh | x (t+1)

1 , . . . , x (t+1)
h−1 , x (t)

h+1, . . . , x (t)
d)

qh(Yh | x (t+1)
1 , . . . , x (t+1)

h−1 , x (t)
h , x (t)

h+1 . . . , x (t)
d)

)
(

fh(x (t)
h | x

(t+1)
1 , . . . , x (t+1)

h−1 , x (t)
h+1, . . . , x (t)

d)
qh(x (t)

h | x
(t+1)
1 , . . . , x (t+1)

h−1 , Yh, x (t)
h+1 . . . , x (t)

d)

) , 1


;

otherwise take X (t+1)
h = x (t)

h

Note: the Metropolis-Hastings step is performed only once per iteration

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 40 / 43

Example: Metropolis-within-Gibbs (Continued)

Suppose we want to sample from the target

f (x1, x2) ∝ | sin(
√

x1x2)|, x1 ∈ (0, 3), x2 ∈ (0, 5)

To implement Metropolis-within-Gibbs, we can use a random-walk
Metropolis step to sample from each conditional distribution

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 41 / 43

Example: Metropolis-within-Gibbs (Continued)
set.seed(2311)

f <- function(x) {
ifelse(((x[1] > 0) && (x[1] < 3) && (x[2] > 0) && (x[2] < 5)),
abs(sin(sqrt(x[1]*x[2]))), 0)

}

TT <- 10000
X <- matrix(0L, nrow=2, ncol=TT)
X[,1] <- c(runif(n=1,0,3), runif(n=1,0,5))

for (t in 2:(TT-1)) {
Y <- X[,t-1]
for (h in 1:2) {

Y[h] <- X[h,t-1] + rnorm(n=1)
if (runif(n=1) < f(Y)/f(X[,t-1])) {

X[h,t] <- Y[h]
} else {

X[h,t] <- X[h,t-1]
}

}
}

plot(X[1,100:TT], type="l")
plot(X[2,100:TT], type="l")

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 42 / 43

References I

Bryan D He, Christopher M De Sa, Ioannis Mitliagkas, and Christopher Ré.
Scan order in gibbs sampling: Models in which it matters and bounds on
how much. Advances in neural information processing systems, 29, 2016.

Jun S Liu, Faming Liang, and Wing Hung Wong. The multiple-try method
and local optimization in metropolis sampling. Journal of the American
Statistical Association, 95(449):121–134, 2000.

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 31, 2023 43 / 43

	Introduction
	The Metropolis-Hastings Algorithm
	Metropolis-Hastings: Variations
	Gibbs Sampling
	Gibbs Sampling: Variations
	References

