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The Need for MCMC

@ Recall the setup from Class 6: we have some target density f that we
wish to generate samples from, usually for the purpose of estimating
some E¢[h]

We learned several methods of generating exact samples from f

> e.g., rejection sampling, the inverse cdf method, distribution-specific
techniques

However, these techniques require relatively detailed knowledge about f

For example, the rejection sampler requires knowing some
easy-to-sample density g such that f < c-g

» The bigger the “gap” between f and g, the more we reject (and the less
efficient the sampler is)

@ Thus, these only work for relatively simple targets

In particular, they fail miserably for high-dimensional targets!
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When the Target Cannot be Sampled From Directly

@ For a simple example, consider Bayesian logistic regression: we have
independent observations Yi,..., Y, and covariates xy,..., x, € RP
with Y; | x; ~ Bernoulli(c(8" x;)), where o(x) = (1 + e )1

e We place a N,(my, Sp) prior on 3

@ The posterior distribution satisfies
p(B|y) o< p(B) ply|B)

(8- mo) 5528~ mo) ) TLo(8 w1~ o(8 )
=1

X exp<—2

@ This is completely impossible to sample from directly, even if we could
calculate the normalizing constant (which we can't)

@ Even if we could, for large p rejection sampling and importance
sampling will fail miserably!
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Two Basic Algorithms

@ Markov chain Monte Carlo (MCMC) is, far and away, the most popular
method of generating a sample X = (X, ..., Xy) from a complicated
d-dimensional target distribution f

@ For the two basic algorithms we will study today, very little is asked of
us

o For the Metropolis-Hastings algorithm, we only need to know the
functional form of f up to a constant

» That is, we don’t need the normalizing constant [ f(x)dx

@ For the Gibbs sampler, we only need to know the conditional
distribution of Xj | X1, ..., Xp—1, Xpt1,...,Xg foreach h=1,...,d

» We will see that even this can be relaxed
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The Cost

o Virtually all other MCMC algorithms in use are built upon either of
these two techniques

However, their relative ease of use comes at a cost

The samples X(1), X2 they generate are only approximately
distributed according to f

And they aren't independent!

Fortunately, there are well-studied methods for minimizing these issues,
which we will see in Class 8

@ Moreover, the ergodic theorem still guarantees that when the simulated
chain is ergodic, the SLLN still holds:
L\~ poxto)y 2
T 2 HX) = Bl
t—
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The Idea Behind MCMC

@ The basic idea is straightforward

@ We will construct an (irreducible, aperiodic) Markov chain
XM X2 whose stationary distribution is f

The samples we actually use are the observed values of X1, X(2) .

» Or some subset thereof — to be discussed in Class 8

Thus, the distribution of X(M) only approaches f as M — oo

But with a well-designed MCMC algorithm, we will get there tolerably
quickly

» More specifically, the chain will mix quickly — again, Class 8
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The Metropolis-Hastings Algorithm
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Motivation

@ As always, we want to sample from a target density f

@ Assume we have at our disposal a conditional distribution g(- | x)
which is easy to simulate from, such that the ratio

f(y)
q(y | x)

is known up to a constant independent of x

@ The distribution g is called the proposal distribution
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The Algorithm Itself
@ Then the Metropolis-Hastings algorithm proceeds as follows:

@ Start with an initial X(© = x(©)
@ For each t > 1, given X() = x(1),
@ Generate Y ~ g(- | x')
@ Accept X(*) = Y with probability

win{ ) ) 1)

a(Y [x®)  £(x)
otherwise, take X1 = x(t+1)

@ The function

—in] fO)alx]y)
o) =mind L T

is called the Metropolis-Hastings acceptance probability

@ Every variation/extension of the basic MH algorithm ultimately accepts
new proposals with some variation of this acceptance probability
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This Does What We Want

@ To show that the Metropolis-Hastings algorithm has f as its stationary
distribution, it's enough to show that its transition kernel satisfies the
detailed balance condition with f

@ Indeed, the transition kernel is
K(x,y) = p(x,y) - aly | x) + (1 = r(x)) - 5x(y)
where r(x) = [ p(x,y) - q(y | x)dy
@ It is not hard to check that
p(x:y)-q(y [ x) - f(x) = ply,x)-a(x [ y) - f(y)

and
(1 —r(x)) - 0x(y) - f(x) = (L= r(y)) - 0y(x) - f(y)

which together establish the claim
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Choosing a Proposal Distribution

@ A good proposal distribution will yield in a high acceptance rate, but
also explore the state space reasonably quickly

@ These two desiderata are fundamentally in opposition with each other

@ Thus, we must strike a balance

» We will see in Class 8 that certain proposals can be adaptive — i.e., they
can change at each iteration

@ For now, we will examine two special cases of Metropolis-Hastings
which correspond to particular kinds of proposals
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Independence Sampler

@ One important special case of Metropolis-Hastings occurs when
q(y | x) = g(y) for some density g

@ That is, the proposal is independent of the current value of the chain
@ The resulting independence sampler proceeds as follows:

@ Start with an initial X(© = x(©)
@ For each t > 1, given X() = x(1),
@ Generate Y ~ g(+)
@ Accept X)) = Y with probability

{f(Y).g(x(f)) 1}_
g(Y) FxO) S

otherwise take X1 = x(9)
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Random-Walk Metropolis

@ When d = 1, another important special case occurs when the proposal
can be written as g(y — x) = g(|]y — x|) for some distribution g which
is symmetric around zero

» Classic examples include A(0,02) and Unif(—4, §) for some 02,6 > 0

@ As the name suggests, we simply take a random step away from x(t) in
order to explore the state space

@ The resulting random-walk Metropolis algorithm proceeds as follows:

@ Start with an initial X(© = x(©) and a symmetric proposal g
@ For each t > 1, given X(1) = x(1),
@ Generate Y ~ g(| - —x))
@ Accept X1 = v, with probability {ff((;(/ﬁ))) , 1}; otherwise take
X)) — 4 (®)

@ While the idea extends naturally to d > 1, it suffers heavily from the
curse of dimensionality
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Example: Simulating from the Standard Normal

Distribution
set.seed(2311)

delta <- 0.5

TT <- 15000
x <- 0*1:TT
x[1] <- runif(n=1, -1, 1)

for (t in 1:TT) {
Yt <- runif(n=1, x[t]-delta, x[t]+delta)
if (runif(n=1) < dnorm(Yt)/dnorm(x[t])) {
x[t+1] <- Yt
} else {
x[t+1] <- x[t]
}
}

hist(x)

Radu Craiu, Robert Zimmerman (UofT) October 31, 2023 17 /43



Unconstrained Sampling

e What happens if we want to run random-walk Metropolis (or more
general Metropolis-Hastings) on a target with bounded support?

» Or a support with constraints, such as the standard simplex?

@ We could simply reject proposals which fall outside the support, but
this is incredibly wasteful

@ Instead, it is usually a better idea to transform the target to an
unconstrained one (as in Class 2)

@ But this requires a bit of work. ..
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Metropolis-Hastings: Variations
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Basic Issues

@ In any MCMC algorithm, we are always faced with the basic task of
reaching convergence in a reasonable amount of time

@ In particular, the algorithm may be very slow to converge to the target
f if the proposal q is chosen poorly

o For example, in random-walk Metropolis, choosing o2 too small will
cause the algorithm to explore the state space very slowly; on the other
hand, choosing o2 too large will result in a large number of rejections
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Problems with High Dimensions

@ High-dimensional posterior distributions typically have many modes

@ Thus, it is very easy for the basic Metropolis-Hastings algorithm to get
stuck in a local mode

@ Since we don't know the locations of these modes, we can't choose the
proposal g to account for them

@ Moreover, in high dimensions most regions of the state-space have very
low probability, which just makes things worse

@ Some variations, such as multiple-try Metropolis, sample multiple
proposals at each step in order to speed things up

» Although (at most) one sampled proposal is actually accepted, so there
is a heavy computational cost
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Multiple-Try Metropolis

@ Given some non-negative symmetric function A(x, y), define the weight

function
w(x,y) o< £(x) - q(x,y) - Mx,y)

@ The basic multiple-try Metropolis algorithm proceeds as follows:

@ Start with an initial X(© = x(0

@ For each t > 1, given X(1) = x(t)

Draw Yi,..., Yi = g(- | x)

Sample Y from {Y1,..., Y} according to the weights
w(Yi, x®), ..., W(Yk,X(t))

Sample x1,...,xk_1 ~ q(- | Y) and set x, = x'*)
Accept X+ = Y with probability

- w(yl,x(t))—f—---—&-W(yk,x(t)) L
W(X1,y)-|—"'+W(Xk,y)

©6 660

otherwise take X(t1) = x(*)
e For details, see Liu et al. [2000]
October 31, 2023
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Problems with Evaluating the Target

@ So far, we have assumed that we can actually evaluate the target f up
to a normalizing constant

@ But sometimes this is not even the case!

@ However, we might still be able to produce an unbiased estimate of
f(x) for each particular x

e That is, for any x, we can produce an estimator f(x) such that

E[F(x)| = f(x)
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Pseudo-Marginal Metropolis—Hastings

@ It turns out that we can simply replace f(x) in the original MH
algorithm with an unbiased estimator

@ The pseudo-marginal Metropolis-Hastings algorithm proceeds as
follows:

@ Start with an initial X(© = x(0)
@ For each t > 1, given X(t) = x(t),
@ Generate Y ~ g(- | x')
@ Accept XY = Y with probability

i 0 010 )
q(Y | x(¥) F(x) " J°

otherwise take X1 = x(9)
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Gibbs Sampling
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Multidimensional Targets

@ Suppose that the target distribution f is multidimensional

@ As we saw in Class 6, sampling from non-trivial d-dimensional
distributions becomes more difficult as d becomes large

» Mainly due to the complicated dependencies among the components of
X=(Xt,...,Xq) ~f

@ This is especially true in Bayesian statistics, where we are interested in
high-dimensional posteriors. . .

» ...of large vectors of parameters in a model
» ...of latent variables in hierarchical models

@ However, there are sometimes cases where the conditional distribution
of Xp | X_p is available for each h € {1,...,d}

» Here X,h = (X17 e 7Xh71;Xh+1; e ,Xd)
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Conditional Distributions

e For example, if X = (X1, X2) ~ J\/’2<<#1> , (Gll Jl2>>, then

H2 012 022

2

012 o
X1 Xo=x ~N’<u1 + —(x — p2),011 — 12)
022 022

e Formulas exist for arbitrary subvectors of Ny(u, X) conditional on
other subvectors

» Usually these involve block partitions of g and X

@ When the joint distribution of X is non-normal, tedious calculations are
often needed to determine the relevant conditional distributions (if they
even have known forms)

@ But for now, assume we have the ability to determine all of the
conditional distributions of X}, | X_j
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The Algorithm Itself

e If X ~ f, denote the conditional density of X, | X_, = x_p, by

le ey Ty ey Xd
fo(- ] X1y - oy X1y Xht1y - - -y Xd) = ff(>(<1 ’ ’X’ 7Xd))dX
R

» Which we assume we know how to sample from!

@ The basic Gibbs sampler is as follows:

@ Initialize the process at X(©)
@ For t > 1, sample X as follows:

» For 1 < h<d, sample X ~ fu(- | (t),.. xﬁt)l,xéill),...,xc(/t_l)
» Accept X(*) = (X] x®, ..,X‘St))
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This Does What We Want
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Example: Univariate Normal Posterior

@ Suppose Xi,..., X, iﬁ/\/’(,u, 02) and we impose a non-informative
prior p(p, 0%) o 1/?

@ The posterior we want to sample from is

P(M=02|X) (U) LR exp<—% ] (Xi—ﬂ)2>
i=1

o We need to determine p(u | 72, x) and p(72 | p, x)
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Example: Univariate Normal Posterior (Continued)

o We have
p(i | 0%, x) o
so i | GZ,XN./\/’<)_<,U—H2)
e And
p(o? | 11, x) o

so 02 | i, x ~ InvGamma (g,% (- u)2>

@ So the Gibbs sampler samples (,u(t), az(t)) via

2(t—1)
M(t) ~ N()—(7 o - )

o2 < InvGamma (g, % Z(x,— - ,u(t))2>
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Example: Univariate Normal Posterior (Continued)

set.seed(2311)

n <- 100
x <- rnorm(n=n, mean=5, sd=3)
xbar <- mean(x)

TT <- 1000

theta <- matrix(OL, nrow=2, ncol=TT)
rownames (theta) <- c("mu", "sigma2")
thetal,1] <- c(0, 1)

for (t in 2:TT) {
thetal[l,t] <- rnorm(n=1, mean=xbar, sd=sqrt(theta[2,t-1]/n))
thetal[2,t] <- 1/rgamma(n=1, shape=n/2, rate=sum((x-thetal[1l,t]) " 2)/2)
}

plot(thetal[1,100:TT], type="1")
plot(theta[2,100:TT], type="1")
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Systematic Scan and Random Scan

@ In higher dimensional problems, we can sample the components of X in
any order we please

@ That is, the sampling step at time t can be replaced by the following,
for any fixed permutation o of (1,...,d):

@ “For 1 < h < d, sample

(1) (1) (1) (t-1) (t-1)
Xa(h) ~ fo‘(h)( | XD’(].)’ e ’Xo'(hfl)7xa'(h+1)7 e 7X0’(d) )

and then accept X() = (Xl(t)’ . ,Xc(,t))”

@ This version of the Gibbs sampler is called systematic scan (or
deterministic scan)

Radu Craiu, Robert Zimmerman (UofT) October 31, 2023 33/43



Systematic Scan and Random Scan (Continued)

@ In contrast, random scan (or sequential scan) randomly chooses a
single index at time t

@ That is, the sampling step at time t is is replaced by the following:

e “Sample H ~ Unif{1,...,d} and then sample

XO | DD e e

and then accept X(t) = (X(t 1) ""XI(-It)’ o ,X((ffl))”

@ Surprisingly, random scan is more theoretically supported [He et al.,
2016]

» But systematic scan is clearly computationally cheaper!
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Gibbs Sampling: Variations

@ The basic Gibbs sampler only works if all of the conditional
distributions were available to sample from

@ In practice, this is rarely the case

@ We will discuss three modifications of the Gibbs sampler, each of which
helps to circumvent this issue in different ways
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Blocked Gibbs

@ Suppose that sampling from the conditional distribution of some
subvector Xi., = (X1, X2, ..., Xp) of X is easier than sampling from
each of the conditional distributions of the marginals Xi,..., X,

@ Of course this applies to any subcollection of Xi,..., Xy; WLOG we
can re-order the components into the “block” as above

f( yeeey s Xh4 150X d)

ffff X1505%d ) dX1:p

@ Then the blocked Gibbs sampler proceeds as follows:

o Let ﬂ:h(-,...,-\thrl,...,x)

@ |Initialize the process at X(©)
@ For t > 1, sample X as follows:

Q@ Sample XU ~ (.o, | XY, xETY)
@ Forh+1<i<d, sample X,.(t) ~ fu(- | xlt S x,(, ),x,(,ill),...,xtstfl))
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Collapsed Gibbs

@ Suppose that sampling from all of the conditional distributions of X
was difficult, but the following conditions hold:

» There exists some component X}, such that
fo(- | X1y« y Xh—1, Xht1, - - -, Xg) IS €asy to sample from
» Running a Gibbs a sampler to sample from the “marginal” distribution
f_n(x_p) := [ f(x)dx is easy
e For i h, let

o fp(Xe o Xim 1, Xi 1 Xd)
FosiC | Xt Ximts Xty Xa) = J (X0 X1, X Xi 4100 Xg) dX

@ Then the collapsed Gibbs sampler proceeds as follows:

© Initialize the process at X(®)
@ For t > 1, sample X() as follows:

@ For i # h, sample X,(t) ~ pi( ] xl(t), . ,x,.(i)l,x,.(ﬁl), . ,xc(ffl))
Q@ Sample X,St) ~ (] <9 ,x,ﬁt_)l,x,gl, . ,x‘(f))
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Metropolis-within-Gibbs

@ What happens if we replace a conditional sampling step within the
Gibbs sampler with a Metropolis-Hastings update step?

@ That is, instead of trying to sample from some

fr(- | xl(t), . =X/(7t—)1=X/(7:11)> . ,xc(,t_l)), we sample Y,St) from some
proposal gp(- | xft), - ,xf(,i)l,x,(,izl), . ,x((,tfl)), and accept

X,St) = Y,St) according to the Metropolis-Hastings acceptance
probability?

@ We can do this for some components (with different proposals gy), and
leave other components alone if they're easy to sample directly

@ The resulting algorithm is called Metropolis-within-Gibbs

@ Amazingly, all of the theory still caries through!
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Metropolis-within-Gibbs (Continued)

@ The Metropolis-within-Gibbs algorithm proceeds as follows:
@ Start with an initial X(© = x(0)
@ For each t > 1, given X(1) = x(t) sample X(t+1) by doing the following
foreach 1 < h<d:
@ Draw Y, ~ gn(- | x; (t+1) x,(,tjll),xis ) ,(,i)l X((f))
@ Accept X,SHI =Y}, with probability

BV | XD oy
ah )

1) 11
_ (Y| xl” st g !
min t+1) (t+1)  _(t) (t) o
fh( |X1 yee o Xp1 9 Xpf1r ey Xy )
qh(xh | x1t+1), e 7><,(7t+1 Y Xh+)1 ,Xy))

otherwise take X,(,t“) = x,(,t)

o Note: the Metropolis-Hastings step is performed only once per iteration

Radu Craiu, Robert Zimmerman (UofT) October 31, 2023 40/43



Example: Metropolis-within-Gibbs (Continued)

@ Suppose we want to sample from the target

f(x1,x2) x |sin(y/x1x2)|, x1 € (0,3),x € (0,5)

@ To implement Metropolis-within-Gibbs, we can use a random-walk
Metropolis step to sample from each conditional distribution
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Example: Metropolis-within-Gibbs (Continued)
set.seed(2311)

f <- function(x) {
ifelse(((x[1] > 0) && (x[1] < 3) && (x[2] > 0) && (x[2] < 5)),
abs(sin(sqrt(x[1]1*x[2]1))), 0)
}

TT <- 10000
X <- matrix(OL, nrow=2, ncol=TT)
X[,1] <- c¢(runif(n=1,0,3), runif(n=1,0,5))

for (t in 2:(TT-1)) {
Y <- X[,t-1]
for (h in 1:2) {
Y[h] <- X[h,t-1] + rnorm(n=1)
if (runif(n=1) < £(Y)/£(X[,t-11)) {
X[h,t] <- Y[h]
} else {
X[h,t] <- X[h,t-1]
}
}
}
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