
STA2311: Advanced Computational Methods for
Statistics I

Class 6: Simulation and Monte Carlo

Radu Craiu Robert Zimmerman

University of Toronto

October 24, 2023

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 1 / 52

1 Introduction

2 Basic Theory of Simulation

3 Monte Carlo Methods

4 Variance Reduction and Swindles

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 2 / 52

Section 1

Introduction

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 3 / 52

Introduction

Simulation plays a crucial role in statistics

In the frequentist realm, simulation can help us verify:
▶ that a proposed model fits the observed data
▶ the properties of a model

In the Bayesian realm, simulation allows us to study posterior
distributions

▶ by sampling from the posterior
▶ . . . thereby allowing us to build a picture of the posterior
▶ For example: if θ1, θ2, . . . , θn are an iid sample from a posterior f (· | x),

then

Ef [h(θ) | x] =
∫

h(θ) · f (θ | x) dθ ≈ 1
n

n∑
i=1

h(θi)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 4 / 52

Simulation: The Basics

Let f be a distribution of interest (posterior, predictive, etc)

What does it mean to simulate X ∼ f ?

Formally speaking, we mean generating an observed value (or
“realization”) x of a random variable X that is f -distributed.

We have already used simulation in Class 1 and Classes 3–4, but these
were settings in which the targets were so standard that we could just
use R’s built-in routines directly

▶ e.g., to sample X ∼ N (0, 1) we could simply use x <- rnorm(n=1)

For the remainder of the course, we will study techniques for sampling
from arbitrary distributions (either exactly or approximately)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 5 / 52

Section 2

Basic Theory of Simulation

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 6 / 52

Random Number Generators

Every non-constant simulated random variable starts with the
generation of a (pseudo)-random number generated by a random
number generator (RNG)

Random number generation is a science in itself

There has been much work over the years developing RNGs whose
outputs satisfy desirable properties

No RNG is truly random: their outputs can be reproduced exactly
using the same seed

▶ Exception: some generators use natural phenomena (e.g., radioactive
decay)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 7 / 52

Random Number Generation

Usually it is enough to generate a random number in (0, 1)
▶ If u ∈ (0, 1) and a < b, then u′ = a + (b − a) · u ∈ (a, b)

Good RNGs will produce a sequence of outputs which appear to be
independent

On a computer these will always be rational numbers (due to finite
precision), but in practice this usually isn’t an issue

So from now on, we assume we have access to an RNG that will
generate U1, U2, . . .

iid∼ Unif(0, 1)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 8 / 52

Random Variables

How do we simulate random variables or random vectors from an
arbitrary distribution?

Generally speaking, there is no method that works for all distributions

The most basic method (and arguably most fundamental) is called the
inverse cdf method, which is based on the following theorem

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 9 / 52

The Inverse CDF Method

Theorem (Probability Integral Transform)
Let f be the density of a continuous random variable with cdf F and inverse
cdf F −1. If U ∼ Unif(0, 1) and X = F −1(U), then X ∼ f .

In other words, to simulate a continuous random variable, it suffices
that we know how to compute its inverse cdf

More generally, for any cdf F (continuous or not), we have that
X = F −(U) has cdf F , where U ∼ Unif(0, 1) and

F −(p) := inf{x ∈ R : F (x) ≥ p}

▶ When F is continuous, F − = F −1

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 10 / 52

The Inverse CDF Method (Continued)

If we can compute F −, the inverse cdf method provides a way to
simulate X ∼ f :

1 Simulate U ∼ Unif(0, 1)
2 Take X = F −(U)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 11 / 52

The Inverse CDF Method: Example

set.seed(2311)

n <- 5000

lambda <- 3

u <- runif(n=n)
x <- -(1/lambda)*log(1-u)
y <- rexp(n=n, rate=lambda)

hist(x)
hist(y)

ks.test(x,y)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 12 / 52

When Doesn’t It Work?

The inverse cdf method cannot be used when. . .

. . . F is the cdf of a random vector
▶ Because then F lacks an inverse (since domF ̸= ranF)

. . . F −1 does not have a closed form

But other methods are available!

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 13 / 52

Simulating Discrete Random Variables

If f is discrete, then X ∼ f is supported on X = {x1, x2, . . .} (which
may be finite) where WLOG xi < xi+1 for all i

Then the intervals Ii = (F (xi−1), F (xi)] partition (0, 1], where
F (x0) := 0 and F (xi) =

∑i
j=1 f (xj)

Then

f (xi) = F (xi) − F (xi−1) = P(F (xi−1) < U ≤ F (xi)) = P(U ∈ Ii)

where U ∼ Unif(0, 1)

So
∑

i≥1 xi · 1U∈Ai ∼ f

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 14 / 52

Simulating Discrete Random Variables: Example

set.seed(2311)

n <- 5000

lambda <- 5
X <- 0:100
F.p <- c(0, cumsum(lambdaˆX*exp(-lambda)/factorial(X)))

u <- runif(n=n)
x <- findInterval(u, F.p) - 1

y <- rpois(n=n, lambda=lambda)

hist(x)
hist(y)

ks.test(x,y)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 15 / 52

Simulating Discrete Random Variables: Example
Sometimes, we can sometimes write X ∼ f as a function of other
random variables which are easier to simulate from

For example, if U1, U2, . . .
iid∼ Unif(0, 1), then

min{j ∈ N :
∏j

i=1 Ui < e−λ} ∼ Poisson(λ)
set.seed(2311)

n <- 5000
N <- 100
x <- rep(0, n)

lambda <- 5

for (i in 1:n) { x[i] <- which(cumprod(runif(n=N)) < exp(-lambda))[1] - 1}

y <- rpois(n=n, lambda=lambda)

hist(x)
hist(y)
ks.test(x,y)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 16 / 52

Stochastic Representations: Mixture Models

Techniques like these are very handy when the inverse cdf method fails

For example, suppose X ∼ f =
∑

i≥1 pi · fi where each pi > 0 with∑
i≥1 pi = 1 and the fi ’s are distributions which are easy to sample

from
▶ The fi ’s should all have the same support!

Let Z be discrete with P(Z = i) = pi and let X | Z ∼ fZ
Then it is easily shown that X ∼ f

So to simulate from f , first simulate Z , and then simulate from fZ
The same procedure is valid when f =

∫
p(z) · fz dz and p(z) is a

density supported on (0, 1)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 17 / 52

Stochastic Representations: Random Vectors
Simulating a random vector X with dependent components is
(generally) very difficult

In theory, the cdf F of any random vector X = (X1, . . . , Xd) can be
written as

F (x) = C(F1(x1), . . . , Fd(xd)),

where Fh is the marginal cdf of Xh and C is some copula
▶ Eschewing technicalities, a copula is the cdf of some random vector with

uniform marginals

In principle, if the copula C of X is known, one can sample X by first
sampling U1, . . . , Ud from C (which imposes the correct dependence
structure) and then taking Xh = Fh(Uh) (which imposes the correct
marginal distributions)

In practice, unless C is specified, this rarely works because identifying
C from F is usually very difficult, if not impossible

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 18 / 52

Stochastic Representations: Bivariate Normal
Sometimes the components of X have convenient stochastic
representations

For example, if U1, U2
iid∼ Unif(0, 1) and

Z1 =
√

−2log(U1) cos(2πU2)

Z2 =
√

−2log(U1) sin(2πU2)
X1 = µ1 + σ1Z1

X2 = µ2 + σ2

(
ρZ1 +

√
1 − ρ2Z2

)
,

then
(X1, X2) ∼ N2

([
µ1
µ2

]
,

[
σ2

1 σ1σ1ρ
σ1σ1ρ σ2

2

])

This is the Box-Muller transform
Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 19 / 52

Box-Muller Transform: Example
set.seed(2311)

n <- 5000

mu <- c(-2, 2)
rho <- 0.8
sigma <- c(2, 1)

u1 <- runif(n=n)
u2 <- runif(n=n)

z1 <- sqrt(-2*log(u1))*cos(2*pi*u2)
z2 <- sqrt(-2*log(u1))*sin(2*pi*u2)

x1 <- mu[1] + sigma[1]*z1
x2 <- mu[2] + sigma[2]*(rho*z1 + sqrt(1-rhoˆ2)*z2)

library(ggplot2)
ggplot(data.frame(x=x1, y=x2), aes(x,y)) + stat_bin_hex()

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 20 / 52

Section 3

Monte Carlo Methods

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 21 / 52

The Basics

The last two examples were cases where the target random variable
had a convenient stochastic representation in terms of other random
variables that were easy to sample from

Such examples are quite rare, and each method is specific to the target
distribution

However, each requires a pre-determined number of samples (usually 1)

For more general distributions, one can instead turn to Monte Carlo
methods

Monte Carlo methods are a large class of sampling algorithms that rely
on repeated sampling to obtain either exact or approximate samples
from a target distribution

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 22 / 52

A Classical Example: Estimating π

If U1, U2
iid∼ Unif(0, 1), check that P(U2

1 + U2
2 < 1) = π/4

So for U1,1, . . . , U1,n, U2,1, . . . , U2,n
iid∼ Unif(0, 1), the LLN gives

π = 4 · P(U2
1 + U2

2 < 1) = 4 · E[1U2
1 +U2

2 <1] ≈ 4
n

n∑
i=1

1U2
1,i +U2

2,i <1

set.seed(2311)

n <- 10000

u1 <- runif(n=n)
u2 <- runif(n=n)

incirc <- sqrt(u1ˆ2 + u2ˆ2) < 1

pi.est <- mean(incirc)*4

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 23 / 52

Rejection Sampling

What if, instead of simply estimating the mean, we want a sample
X ∼ f but none of the previous methods work?

Again, suppose also that g is easier to sample from, and this time there
exists some constant c > 1 such that f (x) ≤ c · g(x) for all x ∈ Supp f

Suppose we sample Y ∼ g and accept it (i.e., set X = Y) with
probability f (Y)

c·g(Y)

We can do this by independently drawing U ∼ Unif(0, 1) and setting
X = Y if U < f (Y)

c·g(Y)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 24 / 52

Rejection Sampling (Continued)

Then. . .

P(X ≤ x)

= P
(

Y ≤ x | U <
f (Y)

c · g(Y)

)

=
P
(
Y ≤ x ∧ U < f (Y)

c·g(Y)

)
P
(
U < f (Y)

c·g(Y)

)
=
∫ x

−∞

(∫ f (y)/cg(y)

0
du
)

g(y) dy
/∫ ∞

−∞

(∫ f (y)/cg(y)

0
du
)

g(y) dy

=
∫ x

−∞
f (y) dy

/∫ ∞

−∞
f (y) dy

= FX (x)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 25 / 52

Rejection Sampling (Continued)

It is easy to see that the probability of accepting a draw is exactly 1/c

So for an efficient rejection sampler, we want c to be as small as
possible

Of course, this requires a careful choice of g

In theory, the optimal choice of g is f , but of course this is unattainable

But the “closer” g is to f , the better

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 26 / 52

Rejection Sampling: Example
set.seed(2311)

n <- 1000

f <- function(x) {2*dnorm(x)*(x >= 0)}
g <- function(x) {dexp(x)}
c <- sqrt(2*exp(1)/pi)

Y <- rexp(n=n)
u <- runif(n=n)

X <- Y*(u < f(Y)/(c*g(Y)))
X <- X[X > 0]

Z <- ifelse(runif(n=length(X)) < 0.5, 1, -1)*X

hist(Z)

ks.test(Z, "pnorm")

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 27 / 52

Monte Carlo Integration

Monte Carlo can be used to estimate definite integrals
∫ b

a g(x) dx that
may be difficult or impossible to evaluate analytically

Idea: manipulate the integral so that it is equal to
∫ d

c h(x) · f (x) dx for
some easily-sampled density f supported on (c, d)

Then the LLN gives

1
n

n∑
i=1

h(Xi) ≈ E[h(X)] =
∫ d

c
h(x) · f (x) dx =

∫ b

a
g(x) dx

where X , X1, . . . , Xn
iid∼ f

It’s okay if the original integral and/or the transformed one is improper!

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 28 / 52

Monte Carlo Integration: Example

Consider approximating

I =
∫ ∞

0

log(x)
4x2 + 1 dx

We can view 1
4x2+1 as an unnormalized density on (0, ∞)

Basic calculus gives
∫ 1

4x2+1 dx = tan−1(2x)
2 + c, so

∫∞
0

1
4x2+1 dx = π

4
and f (x) = 4

π(4x2+1) is a density on (0, ∞)

So
I = π

4 · E[h(X)] ≈ π

4n

n∑
i=1

h(Xi)

where h(x) = log(x) and X , X1, . . . , Xn
iid∼ f

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 29 / 52

Monte Carlo Integration: Example (Continued)

How do we sample from f ? We can use the inverse cdf method!

The antiderivative from before gives F (x) = 2 tan−1(2x)
π · 1x≥0, and easy

algebra gives F −1(y) = 1
2 tan

(πy
2
)
, which is all we need:

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 30 / 52

Monte Carlo Integration: Example (Continued)
set.seed(2311)
M <- 1000
I=rep(0,M)
for(i in 1:M){
u <- runif(n=10000)
x <- tan(pi*u/2)/2

I[i] <- (pi/4)*mean(log(x))
}
round(mean(I),3)

[1] -0.544

round(sqrt(var(I)),3)

[1] 0.012

In fact, one can show using contour integration that

I = −π · log(2)
4 = −0.5443965 . . .

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 31 / 52

Section 4

Variance Reduction and Swindles

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 32 / 52

Monte Carlo Variance

In all of the examples above, we have used the simulated Xi ’s to
construct an estimator Ĩn = Ĩn(X) of the integral I = Ef [h] we sought
to estimate

As with any statistical estimator, Ĩn is a random variable with its own
variance

We call this the Monte Carlo variance and, naturally, we would like it
to be small for fixed n

This is especially true when Ĩn is an unbiased estimator of I

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 33 / 52

Monte Carlo Variance (Continued)

When Ĩn = 1
n
∑n

i=1 h(Xi) for X1, . . . , Xn
iid∼ f , we get that

Var(̃In) = 1
nVar(h(Xi))

= 1
n
(
E
[
h(Xi)2

]
− E[h(Xi)]2

)
= 1

n

(∫
h(x)2 · f (x) dx − I2

)

What if we could replace Ĩn with some other unbiased estimator
1
n
∑n

i=1 g(Xi) with a lower variance?
▶ That is, we want

∫
g(x)2 · f (x) dx <

∫
h(x)2 · f (x) dx

It turns out that we can!

Such techniques are sometimes known as Monte Carlo swindles

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 34 / 52

Control Variates

Suppose we know some non-constant function k such that k(Xi) is an
unbiased estimator of 0

▶ Clearly it’s enough to know that E[k(Xi)] = c for some k and some c,
for then we can replace k(x) by k(x) − c

- Then for any λ ∈ R, the estimator

Ĩc.v. = 1
n

n∑
i=1

(h(Xi) − λ · k(Xi))

is still unbiased for I, and its variance is given by

Var(̃Ic.v.) = 1
n
(
Var(h(Xi)) + λ2 · Var(k(Xi)) − 2λ · Cov(h(Xi), k(Xi))

)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 35 / 52

Control Variates (Continued)
Which λ minimizes the variance? Easy calculus gives the optimal value
as

λ∗ = Cov(h(Xi), k(Xi))
Var(k(Xi))

Plugging this in gives

Var(̃Ic.v.) = 1
nVar(h(Xi)) ·

(
1 − Corr(h(Xi), k(Xi))2

)
= Var(̃In) ·

(
1 − Corr(h(Xi), k(Xi))2

)
≤ Var(̃In)

In theory, a k such that Corr(h(Xi), k(Xi))2 = 1 would give the
“perfect” estimator, but that can only happen when k(x) = ±(h(x) − I)

▶ But I is the very thing we’re trying to estimate!

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 36 / 52

Control Variates (Continued)

Fortunately, we can use Monte Carlo to estimate λ∗ via

λ∗ ≈
1

n(n−1)
∑n

i=1

(
h(Xi) − h(X)

)
·
(
k(Xi) − k(X)

)
1

n(n−1)
∑n

i=1

(
k(Xi) − k(X)

)2

=
∑n

i=1

(
h(Xi) − h(X)

)
·
(
k(Xi) − k(X)

)
∑n

i=1

(
k(Xi) − k(X)

)2

In fact, this is equivalent to the OLS estimator for β1 if
h(Xi) = β0 + β1k(Xi) + εi

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 37 / 52

Control Variates: Example

Again consider approximating

I =
∫ ∞

0

log(x)
4x2 + 1 dx = π

4 · E[h(X)]

where X ∼ f (x) = 4
π(4x2+1) on (0, ∞) and h(x) = log(x)

It is easy to show that
∫∞

0
4

π(4x2+1)2 dx = 1
2 , so we take

k(x) = 1
4x2+1 − 1

2 and

Ĩc.v. = π

4n

n∑
i=1

(h(Xi) − λ∗ · k(Xi))

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 38 / 52

Control Variates: Example (Continued)
set.seed(2311)
M=1000
I.CV=rep(0,M)
for(i in 1:M){
u <- runif(n=10000)
x <- tan(pi*u/2)/2
kx <- 1/(4*xˆ2 + 1) - 1/2
hx <- log(x)

lambda.star <- lm(hx ~ kx)$coefficients[2]

I.CV[i] <- (pi/4)*mean(hx - lambda.star*kx)}
round(mean(I.CV),3)

[1] -0.544

round(sqrt(var(I.CV)),3)

[1] 0.006

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 39 / 52

Antithetic Variates
Suppose that the function h : R → R in I = E[h(X)] is monotone

Furthermore, suppose that we have two unbiased estimators Ĩ(1) and
Ĩ(2) of I which are identically distributed but negatively correlated, with
Var(̃I(1)) = Var(̃I(2)) ≤ Var(̃In)

If we form the estimator

Ĩa.v. = Ĩ(1) + Ĩ(2)

2 ,

then Ĩa.v. is clearly unbiased for I

Moreover,

Var(̃Ia.v.) = Var(̃I(1)) + Var(̃I(2))
4 + Cov(̃I(1), Ĩ(2))

2

= (1 + Corr(̃I(1), Ĩ(2)))
2 · Var(̃In)

< Var(̃In)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 40 / 52

Antithetic Variates (Continued)

How do we choose Ĩ(1) and Ĩ(2) such that they both have the same
distribution as Ĩn = 1

n
∑n

i=1 h(Xi)?

According to the probability integral transform, Xi has the same
distribution as F −1(Ui), where Ui ∼ Unif(0, 1)

But 1 − Ui ∼ Unif(0, 1) too! So Xi also has the same distribution as
F −1(1 − Ui)

The rest relies on a basic theorem from probability

Theorem
If g1, g2 : R → R are monotone functions, then Cov(g1(X), g2(X)) ≥ 0 for
any random variable X.

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 41 / 52

Antithetic Variates (Continued)

An immediate corollary is that

Corr(h(F −1(Ui)), h(F −1(1 − Ui))) ≤ 0

Thus, we take

Ĩa.v. = 1
2

(
1
n

n∑
i=1

h(F −1(Ui)) + 1
n

n∑
i=1

h(F −1(1 − Ui))
)

= 1
2n

n∑
i=1

(
h(F −1(Ui)) + h(F −1(1 − Ui))

)

In fact, the antithetic variates estimator is a special case of the control
variates estimator

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 42 / 52

Antithetic Variates: Example

Consider once again approximating

I =
∫ ∞

0

log(x)
4x2 + 1 dx = π

4 · E[h(X)]

where X ∼ f (x) = 4
π(4x2+1) on (0, ∞) and h(x) = log(x)

We previously found that F −1(y) = 1
2 tan

(πy
2
)

Since h is monotone on (0, ∞), we have all we need to construct the
antithetic variates estimator:

Ĩa.v. = π

8n

n∑
i=1

(
log
(1

2 tan
(

πUi
2

))
+ log

(1
2 tan

(
π(1 − Ui)

2

)))
,

where U1, . . . , Un
iid∼ Unif(0, 1)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 43 / 52

Antithetic Variates: Example (Continued)

set.seed(2311)
M=1000
I.AV=rep(0,M)

for(i in 1:M){
u <- runif(n=10000)
Finv <- function(y) {0.5*tan(pi*y/2)}

I.AV[i] <- (pi/8)*mean(log(Finv(u)) + log(Finv(1-u)))
}
round(mean(I.AV),3)

[1] -0.544

round(sqrt(var(I.AV)),7)

[1] 0

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 44 / 52

Comparing Swindles

If we have several variance reduction techniques at our disposal, it is of
interest to decide which produces an estimator with the lowest variance
for a fixed Monte Carlo sample size n

In theory, two estimators I(1) and I(2) of the same quantity I can be
compared by their relative efficiency Var(I(1))/Var(I(1))

However, a closed form for the relative efficiency is rarely available

It is usually much easier to estimate Var(I(1)) and Var(I(2))
individually by running the simulation processes multiple times

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 45 / 52

Comparing Swindles (Continued)
set.seed(2311)

M <- 1000 # number of simulations

I.vanilla <- rep(0, times=M)
I.CV <- rep(0, times=M)
I.AV <- rep(0, times=M)

for (m in 1:M) {
u1 <- runif(n=10000)
x1 <- tan(pi*u1/2)/2
I.vanilla[m] <- (pi/4)*mean(log(x1))

u2 <- runif(n=10000)
x2 <- tan(pi*u2/2)/2
kx <- 1/(4*x2ˆ2 + 1) - 1/2
hx <- log(x2)
lambda.star <- lm(hx ~ kx)$coefficients[2]
I.CV[m] <- (pi/4)*mean(hx - lambda.star*kx)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 46 / 52

Comparing Swindles (Continued)
u3 <- runif(n=10000)
Finv <- function(y) {0.5*tan(pi*y/2)}
I.AV[m] <- (pi/8)*mean(log(Finv(u3)) + log(Finv(1-u3)))

}

cat("Vanilla Monte Carlo... MC mean: ", round(mean(I.vanilla),5),
"; MC SE: ", round(sqrt(var(I.vanilla)),5), sep="")

cat("Control variates... MC mean: ",round(mean(I.CV),5),
"; MC SE: ",round(sqrt(var(I.CV)),5), sep="")

cat("Antithetic variates... MC mean: ", round(mean(I.AV),5),
"; MC SE: ",round(sqrt(var(I.AV)),5), sep="")

Vanilla Monte Carlo... MC mean: -0.54402; MC SE: 0.01216

Control variates... MC mean: -0.54445; MC SE: 0.00514

Antithetic variates... MC mean: -0.5444; MC SE: 0

I = −π · log(2)
4 = −0.5443965 . . .

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 47 / 52

Importance Sampling

Suppose the goal is to estimate Ef [h] := E[h(X)] =
∫

h(x) · f (x) dx
but f is hard to sample from directly

Suppose also that g is easier to sample from and Supp f ⊆ Supp g

If Y1, Y2, . . . , Yn
iid∼ g , then

1
n

n∑
i=1

h(Yi) · f (Yi)
g(Yi)

→ Eg

[
h(Y) · f (Y)

g(Y)

]
= Ef [h].

Observe that if f = g , we get back the standard estimator of the mean

The more f and g “differ”, the more variance we introduce into the
estimator

▶ We will make this precise later

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 48 / 52

Importance Sampling: Example

set.seed(2311)

n <- 10000

f <- function(x) {1/(4*cosh((x-5)/2)ˆ2)}
g <- function(x) {dnorm(x, mean=5)}

hY <- sin(rnorm(n=n, mean=5)-5)ˆ3

mu.est <- mean(hY*f(Y)/g(Y))

actual value: 0 (prove!)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 49 / 52

What About the Normalizing Constant?

Often, we can only evaluate the target density f up to a constant (see
Bayesian posteriors)

▶ i.e., f (x) = c · q(x) where q(x) is known but c =
(∫

q(x) dx
)−1 is not

Importance sampling can be adapted to work in this situation

If Y1, . . . , Yn
iid∼ g , let w∗(Yi) = q(Yi)/g(Yi) and define the weights

w(Yi) = w∗(Yi)/
∑n

i=1 w∗(Yi)

Then two importance sampling approximations yield

1
n

n∑
i=1

h(Yi) · w(Yi) =
1
n
∑n

i=1 h(Yi) · q(Yi)/g(Yi)
1
n
∑n

i=1 q(Yi)/g(Yi)
≈
∫

h(y) · q(y) dy∫
q(y) dy

The last term is simply
∫

h(y) · c · q(y) dy =
∫

h(y) · f (y) dy = Ef [h]

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 50 / 52

Other Methods

There are other simple methods for reducing variance of Monte Carlo
estimators

For example, Rao-Blackwellizing an estimator automatically decreases
its variance, and in certain situations one can apply the same principle
to Monte Carlo

▶ See Rob’s STA261 slides for more info on Rao-Blackwellization

Importance sampling itself can be thought of a variance reduction
method if one chooses the “easier” sampling density g such that
Ef [h(Xi)] = Eg

[
h(Yi) · f (Yi)

g(Yi)

]
but Varg

[
h(Yi) · f (Yi)

g(Yi)

]
< Varf [h(Xi)]

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 51 / 52

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 24, 2023 52 / 52

	Introduction
	Basic Theory of Simulation
	Monte Carlo Methods
	Variance Reduction and Swindles

