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Introduction

@ Simulation plays a crucial role in statistics
@ In the frequentist realm, simulation can help us verify:

» that a proposed model fits the observed data
> the properties of a model

@ In the Bayesian realm, simulation allows us to study posterior

distributions

» by sampling from the posterior

> ...thereby allowing us to build a picture of the posterior

» For example: if 01,0,,...,0, are an iid sample from a posterior f(- | x),
then

B/(h(6) | x| = [ (6)£(0 x)d0~ >~ h(6)
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Simulation: The Basics

@ Let f be a distribution of interest (posterior, predictive, etc)
@ What does it mean to simulate X ~ {7

e Formally speaking, we mean generating an observed value (or
“realization”) x of a random variable X that is f-distributed.

@ We have already used simulation in Class 1 and Classes 3—4, but these
were settings in which the targets were so standard that we could just
use R's built-in routines directly

> e.g., to sample X ~ A(0,1) we could simply use x <- rnorm(n=1)

@ For the remainder of the course, we will study techniques for sampling
from arbitrary distributions (either exactly or approximately)
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Random Number Generators

@ Every non-constant simulated random variable starts with the
generation of a (pseudo)-random number generated by a random
number generator (RNG)

@ Random number generation is a science in itself

@ There has been much work over the years developing RNGs whose
outputs satisfy desirable properties

@ No RNG is truly random: their outputs can be reproduced exactly
using the same seed

» Exception: some generators use natural phenomena (e.g., radioactive
decay)
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Random Number Generation

Usually it is enough to generate a random number in (0, 1)
» If ue (0,1) and a < b, then ' =a+ (b—a)-u € (a,b)

@ Good RNGs will produce a sequence of outputs which appear to be
independent

On a computer these will always be rational numbers (due to finite
precision), but in practice this usually isn't an issue

@ So from now on, we assume we have access to an RNG that will

generate Uy, Uy, ... iid Unif(0, 1)
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Random Variables

@ How do we simulate random variables or random vectors from an
arbitrary distribution?

@ Generally speaking, there is no method that works for all distributions

@ The most basic method (and arguably most fundamental) is called the
inverse cdf method, which is based on the following theorem
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The Inverse CDF Method

Theorem (Probability Integral Transform)

Let f be the density of a continuous random variable with cdf F and inverse
cdf F71. If U ~ Unif(0,1) and X = F~1(U), then X ~ f.

@ In other words, to simulate a continuous random variable, it suffices
that we know how to compute its inverse cdf

@ More generally, for any cdf F (continuous or not), we have that
X = F~(U) has cdf F, where U ~ Unif(0,1) and

F~(p) :=inf{x e R: F(x) > p}

» When F is continuous, F~ = F~1
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The Inverse CDF Method (Continued)

@ If we can compute F~, the inverse cdf method provides a way to
simulate X ~ f:

© Simulate U ~ Unif(0, 1)
@ Take X =F~ (V)
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The Inverse CDF Method: Example

set.seed(2311)

n <- 5000

lambda <- 3

u <- runif (n=n)

x <- -(1/lambda)*log(1-u)

y <- rexp(n=n, rate=lambda)

hist(x)
hist(y)

ks.test(x,y)
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When Doesn't It Work?

@ The inverse cdf method cannot be used when. ..

@ ... F is the cdf of a random vector

» Because then F lacks an inverse (since domF # ranF)
o ... F~! does not have a closed form

@ But other methods are available!
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Simulating Discrete Random Variables

o If f is discrete, then X ~ f is supported on X = {x1,x2, ...} (which
may be finite) where WLOG x; < x;41 for all i

@ Then the intervals /; = (F(xi-1), F(x;)] partition (0, 1], where
F(x0) :=0and F(x;) = >i=1 f(x;)

@ Then
f(xi) = F(xi) — F(xi—1) = P(F(xi—1) < U < F(x;)) =P(U € ;)
where U ~ Unif(0, 1)
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Simulating Discrete Random Variables: Example

set.seed(2311)

n <- 5000
lambda <- 5
X <= 0:100

F.p <- c(0, cumsum(lambda X*exp(-lambda)/factorial(X)))

u <- runif (n=n)
x <- findInterval(u, F.p) - 1

y <- rpois(n=n, lambda=lambda)

hist(x)
hist(y)

ks.test(x,y)
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Simulating Discrete Random Variables: Example
@ Sometimes, we can sometimes write X ~ f as a function of other
random variables which are easier to simulate from
e For example, if Uy, Us, . .. % Unif(0, 1), then
min{j € N: [[_; Ui < e *} ~ Poisson(\)
set.seed(2311)
n <- 5000
N <- 100
x <- rep(0, n)
lambda <- 5
for (i in 1:n) { x[i] <- which(cumprod(runif(n=N)) < exp(-lambda))[1] - 1}
y <- rpois(n=n, lambda=lambda)
hist(x)

hist (y)
ks.test(x,y)
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Stochastic Representations: Mixture Models

@ Techniques like these are very handy when the inverse cdf method fails

@ For example, suppose X ~ f =3 ;5 p; - fj where each p; > 0 with
>_i>1Pi =1 and the f;'s are distributions which are easy to sample
from

» The f;'s should all have the same support!
@ Let Z be discrete with P(Z = i) = p; and let X | Z ~ f7
@ Then it is easily shown that X ~ f
@ So to simulate from f, first simulate Z, and then simulate from fz

@ The same procedure is valid when f = [ p(z) - f,dz and p(z) is a
density supported on (0, 1)

Radu Craiu, Robert Zimmerman (UofT) October 24, 2023 17 /52



Stochastic Representations: Random Vectors

@ Simulating a random vector X with dependent components is
(generally) very difficult

@ In theory, the cdf F of any random vector X = (Xi,...,Xy) can be
written as

F(x) = C(F1(x1), - -, Fa(xd)),
where Fj, is the marginal cdf of X}, and C is some copula

» Eschewing technicalities, a copula is the cdf of some random vector with
uniform marginals

@ In principle, if the copula C of X is known, one can sample X by first
sampling Ui, ..., Uy from C (which imposes the correct dependence
structure) and then taking X, = Fn(Up) (which imposes the correct
marginal distributions)

@ In practice, unless C is specified, this rarely works because identifying
C from F is usually very difficult, if not impossible
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Stochastic Representations: Bivariate Normal

@ Sometimes the components of X have convenient stochastic
representations

o For example, if Uy, Us i Unif(0,1) and

Z; = y/—2log(U;) cos(27Us)

22 = —2|og(U1)sin(27rU2)
X1=p1+o11

Xo = p2 + 02 (le +4/1— P222> ;

then
(X1 Xz)NNz M1 0’% 0101p
’ p2|’ |o1o1p o3

@ This is the Box-Muller transform

Radu Craiu, Robert Zimmerman (UofT) October 24, 2023

19/52



Box-Muller Transform: Example

set.seed(2311)
n <- 5000
mu <- c(-2, 2)
rho <- 0.8

sigma <- c(2, 1)

ul <- runif(n=n)
u2 <- runif(n=n)

z1 <- sqrt(-2*log(ul))*cos(2xpi*u2)
z2 <- sqrt(-2*log(ul))*sin(2*pi*u2)

x1 <- mu[1] + sigma[1]*z1
x2 <- mu[2] + sigma[2]*(rho*zl + sqrt(l-rho~2)*z2)

library(ggplot2)
ggplot(data.frame(x=x1, y=x2), aes(x,y)) + stat_bin_hex()
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The Basics

@ The last two examples were cases where the target random variable
had a convenient stochastic representation in terms of other random
variables that were easy to sample from

@ Such examples are quite rare, and each method is specific to the target
distribution

@ However, each requires a pre-determined number of samples (usually 1)

@ For more general distributions, one can instead turn to Monte Carlo
methods

@ Monte Carlo methods are a large class of sampling algorithms that rely
on repeated sampling to obtain either exact or approximate samples
from a target distribution
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A Classical Example: Estimating
o If Uy, Us ™ Unif(0,1), check that P(U2 + U2 < 1) = /4

o Sofor Ups,..., Urp Ua1, ..., Usn 2 Unif(0,1), the LLN gives
4"
2 2 ~
T=4-PU+U; <1)=4- IE[]1U12+U§<1] ~h Z ]lUf,i+U22’i<1
i=1

set.seed(2311)
n <- 10000

ul <- runif(n=n)
u2 <- runif(n=n)

incirc <- sqrt(ul”2 + u2°2) < 1

pi.est <- mean(incirc)*4
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Rejection Sampling

@ What if, instead of simply estimating the mean, we want a sample
X ~ f but none of the previous methods work?

@ Again, suppose also that g is easier to sample from, and this time there
exists some constant ¢ > 1 such that f(x) < c¢- g(x) for all x € Supp f

@ Suppose we sample Y ~ g and accept it (i.e., set X = Y) with

probability Cg(y\z)

@ We can do this by independently drawing U ~ Unif(0,1) and setting

X=vif U< 2
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Rejection Sampling (Continued)

@ Then...

_ /_Xoo (/Of(y)/cg(y) du> £0) dy/ /_oooo (/Of(y)/cg(y) du) e(y)dy
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Rejection Sampling (Continued)

It is easy to see that the probability of accepting a draw is exactly 1/c

So for an efficient rejection sampler, we want ¢ to be as small as
possible

Of course, this requires a careful choice of g

In theory, the optimal choice of g is f, but of course this is unattainable

@ But the “closer” g is to f, the better
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Rejection Sampling: Example
set.seed(2311)

n <- 1000

f <- function(x) {2*dnorm(x)*(x >= 0)}
g <- function(x) {dexp(x)}

c <- sqrt(2*exp(1l)/pi)

Y <- rexp(n=n)
u <- runif(n=n)

X <= Yx(u < £(Y)/(cxg(Y)))
X <- X[X > 0]

Z <- ifelse(runif(n=length(X)) < 0.5, 1, -1)*X
hist(Z)

ks.test(Z, "pnorm")
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Monte Carlo Integration

@ Monte Carlo can be used to estimate definite integrals fab g(x)dx that
may be difficult or impossible to evaluate analytically

@ Idea: manipulate the integral so that it is equal to fcd h(x) - f(x) dx for
some easily-sampled density f supported on (c, d)

@ Then the LLN gives

n d b
=YK~ EROO] = [ 4G F) e = [ g dx
i=1 c a
where X, X1,..., X, ¢

@ It's okay if the original integral and/or the transformed one is improper!
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Monte Carlo Integration: Example

o Consider approximating

_ [ log(x)
I—/0 4X2+1dx

e We can view —r as an unnormalized density on (0, c0)

+1
an—1(2x) oo 1 _
2 taso o g dx =73

and f(x) = m is a density on (0, c0)

@ Basic calculus gives [ 4X21+1 dx =t

e So
/:— E[h(X Zh

where h(x) = log(x) and X, Xi,..., X, " r
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Monte Carlo Integration: Example (Continued)

@ How do we sample from f7? We can use the inverse cdf method!

@ The antiderivative from before gives F(x) = Zta%l(b() 1

algebra gives F~1(y) = %tan(%), which is all we need:

x>0, and easy
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Monte Carlo Integration: Example (Continued)

set.seed(2311)

M <- 1000
I=rep(0,M)

for(i in 1:M){

u <- runif(n=10000)
x <- tan(pi*u/2)/2

I[i] <- (pi/4)*mean(log(x))
}

round (mean(I),3)

## [1] -0.544
round(sqrt(var(I)),3)

## [1] 0.012

@ In fact, one can show using contour integration that

| =108
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Monte Carlo Variance

@ In all of the examples above, we have used the simulated X;'s to
construct an estimator /I, = I,(X) of the integral | = E¢[h] we sought
to estimate

@ As with any statistical estimator, 7,, is a random variable with its own
variance

@ We call this the Monte Carlo variance and, naturally, we would like it
to be small for fixed n

e This is especially true when I, is an unbiased estimator of /
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Monte Carlo Variance (Continued)

e When I, = % 71 h(X;) for Xq,..., X, ind f, we get that

Var(l,) = %Vaf(h(xi))
= (B[A06)] - EROOR)
-1 (/h(x)2 F(x) dx ’2>

e What if we could replace T, with some other unbiased estimator
150, g(X;) with a lower variance?

» That is, we want [ g(x)?- f(x)dx < [ h(x)?- f(x)dx
@ It turns out that we can!

@ Such techniques are sometimes known as Monte Carlo swindles
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Control Variates

@ Suppose we know some non-constant function k such that k(X;) is an

unbiased estimator of 0
» Clearly it's enough to know that E[k(X;)] = ¢ for some k and some c,
for then we can replace k(x) by k(x) — ¢

- Then for any A € R, the estimator
~ 1<
i=1

is still unbiased for /, and its variance is given by

Var(ly.) = %(Var(h(X,-)) + A2 - Var(k(X;)) = 2 - Cov(h(X;), k(X))
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Control Variates (Continued)

@ Which A minimizes the variance? Easy calculus gives the optimal value

* . Cov(h(X), k(X}))

A= Var(k(X;))

@ Plugging this in gives

Var(le.) = %Var(h(X,-)) (1 = Corr(h(X), k(X)))?)
= Var(J,) - (1 — Corr(h(X;), k(x,-))2)
< Var(l,)

e In theory, a k such that Corr(h(X;), k(X;))? = 1 would give the
“perfect” estimator, but that can only happen when k(x) = +(h(x) — /)

» But / is the very thing we're trying to estimate!
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Control Variates (Continued)

@ Fortunately, we can use Monte Carlo to estimate \* via

D S 1(< )~ h(X)) - (k(X) — k(X))
n(n— 1)Z (k(Xl) ( ))

S (H0X) — X)) - (K(X) ~ kX))

z,-zl(koo) - (X))

PN

@ In fact, this is equivalent to the OLS estimator for 3y if

( ) /80+/81k( )+51
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Control Variates: Example

@ Again consider approximating

[ log(x)
o 0o 4x2+1

dx = % -E[h(X)]

where X ~ f(x) = T4X42+—1) on (0,00) and h(x) = log(x)

e It is easy to show that [5° 73—y dx = 1, so we take

m(4x 2+1)2
k(x) = 4X2+1 5 L and

Radu Craiu, Robert Zimmerman (UofT) October 24, 2023

38/52



Control Variates: Example (Continued)

set.seed(2311)

M=1000

I.CV=rep(0,M)

for(i in 1:M){

u <- runif (n=10000)

x <- tan(pi*u/2)/2

kx <- 1/(4*x°2 + 1) - 1/2
hx <- log(x)

lambda.star <- 1m(hx ~ kx)$coefficients[2]

I.CV[i] <- (pi/4)+*mean(hx - lambda.star*kx)}
round (mean(I.CV),3)

## [1] -0.544
round (sqrt (var(I.CV)),3)

## [1] 0.006
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Antithetic Variates

@ Suppose that the function h: R — R in / = E[h(X)] is monotone

o Furthermore, suppose that we have two unbiased estimators 1M and
() of | which are identically distributed but negatively correlated, with

Var(1M) = Var(i®) < Var(l,)

@ If we form the estimator

_ 7@ L7
a.v. — T?
then 73,\,, is clearly unbiased for /
@ Moreover,
~ 7@ 7(2) @) 2
Var(l,, ) = Var(I\V) + Var (/%)) N Cov(I1H)]1(2))
4 2
1 7@ 2 -
_ ( —l—Corré 1)) Var(T,)
< Var(l,)
October 24, 2023
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Antithetic Variates (Continued)

o How do we choose 1) and 7(?) such that they both have the same
distribution as I, = 1 37, h(X;)?

@ According to the probability integral transform, X; has the same
distribution as F~1(U;), where U; ~ Unif(0,1)

e But 1 — U; ~ Unif(0,1) too! So X; also has the same distribution as
F_l(l — U,')

@ The rest relies on a basic theorem from probability

Theorem

If g1, 8> : R — R are monotone functions, then Cov(gi1(X), g2(X)) > 0 for
any random variable X.

Radu Craiu, Robert Zimmerman (UofT) October 24, 2023 41/52



Antithetic Variates (Continued)

@ An immediate corollary is that

Corr(h(F~Y(U;)), h(F7Y(1 - U))) <0

( Z 1(U,-))+%Zh(F‘1(1—U,-))>
i=1 i=1

1 _ _
=5 1(h(ff H(U) + h(FH (1 - U)))

@ Thus, we take

r\)ln—l
:I'—‘

@ In fact, the antithetic variates estimator is a special case of the control
variates estimator
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Antithetic Variates: Example

o Consider once again approximating

[ log(x) .
_/0 rg o dx = 5 - E[A(X)]

where X ~ f(x) = on (0,00) and h(x) = log(x)

m
o We previously found that F~1(y) = 1 tan(%)

@ Since h is monotone on (0, c0), we have all we need to construct the
antithetic variates estimator:

Ly = E;in :1 (Iog(i tan (Wéj')> + Iog<2 tan (W(l;U))))’

where Uy, ..., Uy i Unif(0, 1)
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Antithetic Variates: Example (Continued)

set.seed(2311)
M=1000
I.AV=rep(0,M)

for(i in 1:M){

u <- runif(n=10000)

Finv <- function(y) {0.5*tan(pix*y/2)}

I.AV[i] <- (pi/8)*mean(log(Finv(u)) + log(Finv(1-u)))
}

round (mean(I.AV),3)

## [1] -0.544
round (sqrt (var(I.AV)),7)

## [1]1 0
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Comparing Swindles

@ If we have several variance reduction techniques at our disposal, it is of
interest to decide which produces an estimator with the lowest variance
for a fixed Monte Carlo sample size n

o In theory, two estimators /(1) and /@ of the same quantity / can be
compared by their relative efficiency Var(IV))/Var(/(})

@ However, a closed form for the relative efficiency is rarely available

o It is usually much easier to estimate Var(/(!)) and Var(/(®)
individually by running the simulation processes multiple times
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Comparing Swindles (Continued)

set.seed(2311)
M <- 1000 # number of simulations

I.vanilla <- rep(0, times=M)
I.CV <- rep(0, times=M)
I.AV <- rep(0, times=M)

for (m in 1:M) {
ul <- runif(n=10000)
x1 <- tan(pi*ul/2)/2
I.vanilla[m] <- (pi/4)#*mean(log(x1))

u2 <- runif(n=10000)

x2 <- tan(pi*u2/2)/2

kx <- 1/(4%x2°2 + 1) - 1/2

hx <- log(x2)

lambda.star <- 1lm(hx ~ kx)$coefficients[2]
I.CV[m] <- (pi/4)#*mean(hx - lambda.starxkx)
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Comparing Swindles (Continued)

u3 <- runif(n=10000)

Finv <- function(y) {0.5*tan(pi*y/2)}

I.AV[m] <- (pi/8)#*mean(log(Finv(u3)) + log(Finv(1-u3)))
}

cat("Vanilla Monte Carlo... MC mean: ", round(mean(I.vanilla),5),
"; MC SE: ", round(sqrt(var(I.vanilla)),5), sep="")
cat("Control variates... MC mean: ",round(mean(I.CV),5),
"; MC SE: ",round(sqrt(var(I.CV)),5), sep="")
cat("Antithetic variates... MC mean: ", round(mean(I.AV),5),
"; MC SE: ",round(sqrt(var(I.AV)),5), sep="")

## Vanilla Monte Carlo... MC mean: -0.54402; MC SE: 0.01216
## Control variates... MC mean: -0.54445; MC SE: 0.00514

## Antithetic variates... MC mean: -0.5444; MC SE: 0

- log(2)
4

I = = —0.5443965. ..
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Importance Sampling

@ Suppose the goal is to estimate Ef[h] := E[h(X)] = [ h(x) - f(x) dx
but f is hard to sample from directly

@ Suppose also that g is easier to sample from and Supp f C Supp g
0 If Yi,Yo,...,Ys ™ g, then

f(Y) f B
fz ) — By [h(Y)-g(Y)} = Ef[A].

@ Observe that if f = g, we get back the standard estimator of the mean

@ The more f and g "differ”, the more variance we introduce into the
estimator

» We will make this precise later
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Importance Sampling: Example

set.seed(2311)
n <- 10000

f <- function(x) {1/(4*cosh((x-5)/2)"2)}
g <- function(x) {dnorm(x, mean=5)}

hY <- sin(rnorm(n=n, mean=5)-5)"3
mu.est <- mean(hY*f(Y)/g(Y))

# actual wvalue: 0 (prove!)
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What About the Normalizing Constant?

e Often, we can only evaluate the target density f up to a constant (see
Bayesian posteriors)

> i.e., f(x) = c-q(x) where g(x) is known but ¢ = ([ g(x) dx)_1 is not
@ Importance sampIing can be adapted to work in this situation

o IfYy,...,Y, g, let w*(Y;) = q(Yi)/g(Yi) and define the weights
w(Y) = w(Y3)] S0y w*(Vy)

@ Then two importance sampling approximations yield

L ST YD) a(Y)/8(Y) [ Ay aly)dy
7 2 YD) wl¥i) = 1zn«w/W) oLt

@ The last term is simply [ h(y)-c-q(y)dy = [ h(y) - f(y)dy = Ef[h]
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Other Methods

@ There are other simple methods for reducing variance of Monte Carlo
estimators

@ For example, Rao-Blackwellizing an estimator automatically decreases
its variance, and in certain situations one can apply the same principle
to Monte Carlo

» See Rob’'s STA261 slides for more info on Rao-Blackwellization

@ Importance sampling itself can be thought of a variance reduction
method if one chooses the “easier” sampling density g such that

Er[h(X;)] = Eg [A(Y;) - 23] but Var [n(Y)) - £3] < Vare[h(X;)]
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