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Introduction
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Variational Inference

Variational inference provides a way to approximate complicated
distributions by simpler ones (usually for the purposes of sampling)

I Especially posterior distributions. . .

For a given distribution of interest, the approximating distribution is
chosen as the optimal one among a class of simpler ones

I The meaning of “optimal” here will be discussed!

Because one can then generate samples from the simpler distribution,
variational inference is a popular alternative to MCMC, which we will
learn about later in the course

The topic gets its name from variational calculus (or the calculus of
variations), with deals with optimizing functionals

We mainly follow Bishop [2006] and Blei et al. [2017]
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Optimizing Functionals
A functional S[·] is a mapping from a function space F to a scalar field
(R, for our purposes)

For example, the differential entropy H[·] can be viewed as a functional
on the space of density functions, given by

H[f ] = −
∫

log(f (x)) · f (x) dx

Since S[f ] ∈ R, in principle there usually exists at least one f ∗ ∈ F
such that S[f ∗] ≥ S[f ] for all f ∈ F

I For example, among densities supported on (a, b), the Unif(a, b) density
f (x) = 1a<x<b

b−a maximizes the differential entropy

Techniques for determining such an f ∗ are the topic of variational
calculus; these are broadly analogous to function optimization methods
from basic calculus, but we will not go into details
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Section 2

The Ingredients

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 10, 2023 6 / 39



Data and Latent Variables

Let X = X1:m represent our data and Z = Z1:m represent
auxiliary/latent variables (which may be parameters in the Bayesian
setup)

x and z are their observed counterparts

Then the joint distribution of (Z ,X) factorizes:
p(z, x) = p(z) · p(x | z) so that the conditional distribution of Z | x is

p(z | x) = p(z) · p(x | z)∫
p(z) · p(x | z) dz (1)

We’re interested in approximating p(z | x)
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The KL Divergence
The Kullback-Leibler (KL) divergence is a measure of “distance”
between distributions

For mass functions p and q defined on a sample space X , it is given by

KL(p || q) =
∑
x∈X

p(x) · log
(p(x)
q(x)

)

For density functions p and q defined on X , it is given by

KL(p || q) =
∫
X
p(x) · log

(p(x)
q(x)

)
dx

One can show that KL(p || q) ≥ 0 for any distributions p, q, with
equality if and only if p = q

I However, it is not a metric on the space of distributions on X
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Information Theory

The KL divergence emerged from the field of information theory

In statistics, p typically describes our observed data, and q represents a
distribution which is hypothesized to have generated that data

The KL divergence is then interpreted as the average difference
of the number of bits required for encoding samples of p using a
code optimized for q rather than one optimized for p.

The KL divergence shows up in many areas within statistics
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Towards the ELBO

First, we consider a family Q of approximate distributions of Z

Then, we find the member q∗ ∈ Q that best approximates p(Z | X)

The “best” is defined in terms of the KL divergence:

q∗(z) = argmin
q∈Q

KL (q(·) || p(· | x)) = argmin
q∈Q

∫
log
( q(z)
p(z | x)

)
q(z) dz

We can recast this optimization problem more conveniently in terms of
the evidence
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The Evidence
Another way to write (1) is

p(z | x) = p(z, x)
p(x)

Here p(x) =
∫
p(z, x) dz is called the evidence, and is usually

intractable

Observe that for any q,

KL (q(·) || p(· | z)) = Eq[log(q(Z))]− Eq[log(p(Z | x))]
= Eq[log(q(Z))]− Eq[log(p(Z , x))] + Eq[log(p(x))]

Since the rightmost term is constant in Z , minimizing
KL (q(·) || p(· | x)) is equivalent to maximizing

ELBO(q) := Eq[log(p(Z , x))]− Eq[log(q(Z))]
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The ELBO

The quantity ELBO(q) is called the evidence lower bound (ELBO)

The name comes from the fact that

log(p(x)) = KL (q(·) || p(· | x)) + ELBO(q) ≥ ELBO(q),

because the KL divergence is non-negative

So the ELBO provides a lower bound on the (log) evidence

Moreover, equality holds if and only if q(z) = p(z | x)

But usually p(· | x) 6∈ Q.
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Section 3

Mean-Field Variational Inference
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Choosing the Variational Family

There are usually several choices of variational family to choose from

We want the family to be rich enough to provide a reasonably good
approximation to our target, but simple enough that its members
satisfy the requirement of being easy to work with

If the family contains the target itself, then the problem is trivial

One choice is the set of densities from a given parametric family (such
as Gaussian distributions)

I Then the optimization problem reduces to finding the optimal
parameters µ and σ2, which is “easy”

However, for complicated target distributions, it is preferable to
optimize over a more flexible class
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Choosing the Variational Family (Continued)

The mean-field variational family is one in which the latent variables
are independent

That is, each has its own factor in the variational distribution:
q(z) =

∏m
j=1 qj(zj)

Usually the posterior is not in the mean-field variational family because
of dependencies between components of Z

However, this family allows us to use the coordinate ascent algorithm
to find the optimal q

We will discuss some extensions later
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Deriving the Coordinate Ascent Algorithm

For any j , let Z−j = (Z1, . . . ,Zj−1,Zj+1, . . . ,Zm) and q−j =
∏m

i 6=j qi

Under the mean-field assumption, ELBO depends on qj through

ELBO (qj) =
∫

qj(Zj)log(p̃(X ,Zj))dZj−
∫

log(qj(Zj))qj(Zj) dZj+const

where log(p̃(X ,Zj)) = Ei 6=j [log(p(X ,Z))]

Note that the ELBO (qj) is just the negative KL divergence between qj
and p̃(X ,Zj) so we know it is minimized when qj = p̃(X ,Zj)
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The Optimal Solution

This implies that the optimal qj satisfies

log(qj(zj)) = Eq−j [log(p(zj ,Z−j , x))] + cj , 1 ≤ j ≤ m, (2)

for an appropriate constant cj (used for normalization)

This is optimal, but not quite explicit because the expectation involved
is taken with respect to q−j , which is a product of the other mean-field
factors

This suggests an iterative algorithm in which we first initialize
q1, . . . , qm, and then repeatedly update them one at a time using (2)
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The Algorithm

Given data x and a joint distribution p(z, x), the mean-field variational
inference algorithm is

1 Initialize q(0)
j (zj) for 1 ≤ j ≤ m

2 For t ≥ 0:
I for 1 ≤ j ≤ m, compute

q(t+1)
j (zj) ∝ exp

(
Eq(t)

−j
[log(p(zj ,Z−j , x))]

)
,

where q(t)
−j =

∏j−1
i=1 q

(t+1)
i ·

∏m
i=j+1 q

(t)
i , with edge cases are treated in

the obvious manner

It can be shown that this algorithm is guaranteed to converge
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Caveats

In order to use the algorithm, we need to evaluate
exp
(
Eq−j [log(p(zj ,Z−j , x))]

)
and the normalizing constant∫

exp
(
Eq−j [log(p(zj ,Z−j , x))]

)
dzj

These can be extremely challenging to compute for all but the simplest
toy models

There is no guarantee that the expectation and/or the normalizing
constant exists in closed form

I Especially in Bayesian models
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A Toy Example

To get a feel for how the algorithm works, consider finding a mean-field
approximation to a bivariate normal distribution:

p(z | x) = p(z) = 1√
2π|Σ|

exp
(
−(z − µ)>Σ−1(z − µ)/2

)
, z ∈ R2

This target involves no “data” x, but that’s okay

The parameters in p(z) are the mean µ and covariance matrix Σ, but
it easier to work in terms of the precision matrix Λ := Σ−1 and
transform back later
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A Toy Example (Continued)
The first step is to compute

q1(z1) ∝ exp(Eq2 [log(p(z1,Z2))])

= exp
(
Eq2

[
−1
2(z1 − µ1)2Λ11 − (z1 − µ1)Λ12(Z2 − µ2)

])
= exp

(
−1
2z

2
1 Λ11 + z1(µ1Λ11 − Λ12(Eq2 [Z2]− µ2))

)

This is the kernel of a normal distribution!

Working out the mean and variance (e.g., by completing the square)
gives q1(z1) = φ(z1 | m1,Λ−1

11 ) where

m1 = µ1 −
Λ12
Λ11

(Eq2 [Z2]− µ2) (3)

I Here φ(z | µ, σ2) is the N (µ, σ2) pdf
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A Toy Example (Continued)

A similar calculation (or a symmetry argument) yields
q2(z2) = φ(z2 | m2,Λ−1

22 ) where

m2 = µ2 −
Λ12
Λ22

(Eq1 [Z1]− µ1) (4)

In fact, since Eq1 [Z1] = m1 and Eq2 [Z2] = m2, we can plug these into
(3) and (4) to get a linear system which is easy to solve

That is, the optimal mean field approximation here has an explicit
solution

Since this is rarely the case, we will practice solving the system
iteratively instead
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A Toy Example (Continued)
norm <- function(x) {sqrt(sum(xˆ2))}

mu <- c(-3, 3)
Sigma <- matrix(c(1,0.5,0.5,3), nrow=2, ncol=2, byrow=T)
Lambda <- solve(Sigma)

m1.old <- NaN; m2.old <- NaN
m1 <- 0; m2 <- 0

pars.old <- c(m1.old, m2.old)
pars <- c(m1, m2)

while(is.nan(m1.old) || norm(pars.old - pars) > 10e-6) {
m1.old <- m1
m2.old <- m2
pars.old <- c(m1.old, m2.old)

m1 <- mu[1] - Lambda[1,1]ˆ(-1)*Lambda[1,2]*(m2.old - mu[2])
m2 <- mu[2] - Lambda[2,2]ˆ(-1)*Lambda[2,1]*(m1.old - mu[1])
pars <- c(m1, m2)

}
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Section 4

Local Methods
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The Local Approach

The mean-field approach seeks an optimal approximation to the entire
posterior p(z | x)

Instead, we might settle on optimizing the distribution of a certain
component zi or a group of components z ′ within the full model

In the context of variational inference, “optimizing” means “getting as
close to the ELBO as possible”

Combining such bounds then provides a bound on the target p(z | x)
that is still easier to work with

Bishop [2006] calls these approaches local variational methods
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Variational Parameters
The idea is to introduce a free parameter ξ into the function we wish
to optimize, and then select — perhaps iteratively — the ξ that brings
us as close to optimality as possible

I We call ξ a variational parameter

For example, to obtain a linear lower bound on the function
f (x) = e−x , we can take a first-order Taylor expansion around any ξ to
get

f (ξ) + f ′(ξ) · (x − ξ) = e−ξ − e−ξ · (x − ξ)

To keep track of the variational parameter, we denote the linear
function above as y(x , ξ)

Then y(x ′, ξ) ≤ f (x ′) for all x ′, and the bound is optimal (i.e., as tight
as possible) when ξ = x ′

In fact f (x) = supξ y(x , ξ)
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Example: Bayesian Logistic Regression

Consider logistic regression: we have independent observations
Y1, . . . ,Yn and covariates x1, . . . , xn ∈ Rp with
Yi | xi ∼ Bernoulli(σ(β>xi )), where σ(x) = (1 + e−x )−1

We adopt a Bayesian model and impose a Np(m0,S0) prior on β

I This is a canonical prior for Bayesian logistic regression

We seek a local variational approximation to the posterior p(β | y) by
finding a lower bound on the evidence, and then maximizing it
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Example: Bayesian Logistic Regression (Continued)

Our prior is p(β) ∝ exp
(
−1

2(β −m0)>S−1
0 (β −m0)

)
The likelihood for a single observation is

p(yi | β) = σ(β>xi )yi · (1− σ(β>xi ))1−yi = · · · = eβ>xi yi · σ(−β>xi )

The evidence is therefore given by

p(β) =
∫

p(β) · p(y | β) dβ

=
∫

p(β) ·
( n∏

i=1
p(yi | β)

)
dβ

The plan is to lower bound the integrand by the kernel of a distribution
that’s easy to work with
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Example: Bayesian Logistic Regression (Continued)

To do this, we use a lower bound on the expit function σ(x):

σ(x) ≥ σ(ξ) · exp
((x − ξ)

2 − λ(ξ) · (x2 − ξ2)
)
, x ∈ (−ξ, ξ)

where λ(ξ) = 1
2ξ (σ(ξ)− 1

2)
I This bound is derived using some mild convex analysis (see p.495 of

Bishop [2006] for details)

We allow each p(yi | β) to get its own variational parameter ξi

Thus

p(yi | β) ≥ σ(ξi ) · exp
(

(−β>xi − ξi )
2 − λ(ξi ) · ([−β>xi ]2 − ξ2

i )
)
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Example: Bayesian Logistic Regression (Continued)
This gives us

p(β | y) ≥ exp
(
−1
2 (β −m0)>S−1

0 (β −m0) +
n∑

i=1

(
β>xi (yi − 1/2)− λ(ξn) · β>xix>i β

)
+ c

)
(5)

where c =
∑n

i=1
(
log
(
σ(ξi )− λ(ξi ) · ξ2

i
))

is constant with respect to β

The RHS is the kernel of a normal distribution with covariance matrix

Sn =
(

S−1
0 + 2

n∑
i=1

λ(ξi ) · xix>i

)−1

and mean
mn = Sn

(
S−1

0 m0 +
n∑

i=1
(yi − 1/2)xi

)
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Example: Bayesian Logistic Regression (Continued)

So we have a family of normal approximations to the posterior: one for
each ξ = (ξ1, . . . , ξn)

The next step is to determine the optimal ξ

To do this, we let

L(ξ) = log
(∫

h(β, ξ) dβ

)
where h(β, ξ) is the RHS of (5)

We have that log(p(y)) ≥ L(ξ) for any ξ
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Example: Bayesian Logistic Regression (Continued)
Since h(β, ξ) involves the exponential of a quadratic form in β,∫
h(β, ξ) dβ can be evaluated in closed form, which gives

L(ξ) = 1
2
(
log(|Sn|) + m>n S−1

n mn
)

+
n∑

i=1

(
log(σ(ξi ))− ξi/2 + λ(ξi ) · ξ2

i

)
+c ′

where c ′ = −1
2

(
log(|S0|) + m>0 S−1

0 m0
)

Differentiating with respect to ξi and doing the (tedious) algebra yields
the optimal values

ξi =
√

x>i (Sn + mnm>n )xi

This can also be derived by viewing β as a latent variable in
log(

∫
h(β, ξ) dβ) and working out an EM algorithm

I See p.501 of Bishop [2006] for details
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Example: Bayesian Logistic Regression (Continued)

set.seed(2311)
expit <- function(x) {1/(1+exp(-x))}
logit <- function(p) {log(p/(1-p))}
norm <- function(x) {sqrt(sum(xˆ2))}

n <- 1000

X1 <- rnorm(n=n)
X2 <- rbinom(n=n, size=1, prob=0.2)
X3 <- rpois(n=n, lambda=0.7)
X <- cbind(1, X1, X2, X3)

y <- rbinom(n=n, size=1, prob=expit(0.4 + 0.7*X1 + 3*X2 - X3))

S0 <- (1/4)*diag(4)
m0 <- rep(0, times=4)
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Example: Bayesian Logistic Regression (Continued)

xi <- rep(1, times=n)
xi.old <- rep(10, times=n)

lambda <- function(xi) {(1/(2*xi))*(expit(xi) - 1/2)}

Sn <- S0
mn <- m0

while (norm(xi - xi.old) > 10e-6) {
xi.old <- xi
xi <- sqrt(apply(X, 1, function(x) t(x)%*%(Sn + mn%*%t(mn))%*%x))

Sn <- solve( solve(S0) + 2*Reduce('+', lapply(1:n,
function(j) {lambda(xi.old[j])*X[j,]%*%t(X[j,])})) )

mn <- Sn %*% ( solve(S0)%*%m0 + colSums((y-1/2)*X) )
}
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Section 5

Connections
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Connection to EM

Suppose we move back to the frequentist realm

X is our data, and Z is a set of latent variables, and now θ is a
parameter in a parametric model for X that we seek to estimate

In Class 3, we learned how the EM algorithm increases the likelihood in
θ

In fact, we can view the EM algorithm as a special case of variational
inference

Write the ELBO as

ELBO(q,θ) = Eq[log(p(Z ,X ; θ))]− Eq[log(q(Z))] (6)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 10, 2023 36 / 39



The E-Step

Recall that in the E-step of the EM algorithm, we compute Q(θ | θ(t)),
the expected complete-data log-likelihood E[log(p(Z ,X ; θ))] where
Z ∼ p(· | X ,θ(t)) and θ(t) is our current parameter estimate

But we know that the ELBO (6) is maximized when
q(Z) = p(· | X ,θ(t))

So computing Q(θ | θ(t)) is the same as computing ELBO(q(t),θ),
where q(t) = argmax

q
ELBO(q,θ)
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The M-Step

In the M-step of the EM algorithm, we choose θ(t+1) by maximizing
Q(θ | θ(t)) with respect to θ

From the previous slide, we see that this is the same as
θ(t+1) = argmax

θ
ELBO(q(t),θ)

Alternatively, note that maximizing Q(θ | θ(t)) means setting
θ(t+1) = argmax

θ
E[log(p(Z ,X ; θ))] where again Z ∼ p(· | X ,θ(t))

And

θ(t+1) = argmax
θ

(
E[log(p(Z ,X ; θ))]− E[log

(
p(Z | X ,θ(t))

)
]
)

= argmax
θ

ELBO(q(t),θ)
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