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Variational Inference

@ Variational inference provides a way to approximate complicated
distributions by simpler ones (usually for the purposes of sampling)

» Especially posterior distributions. . .

@ For a given distribution of interest, the approximating distribution is
chosen as the optimal one among a class of simpler ones

» The meaning of “optimal” here will be discussed!

@ Because one can then generate samples from the simpler distribution,
variational inference is a popular alternative to MCMC, which we will
learn about later in the course

@ The topic gets its name from variational calculus (or the calculus of
variations), with deals with optimizing functionals

e We mainly follow Bishop [2006] and Blei et al. [2017]
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Optimizing Functionals

@ A functional S[-] is a mapping from a function space F to a scalar field
(R, for our purposes)

@ For example, the differential entropy H[-] can be viewed as a functional
on the space of density functions, given by

HIf] = — / log(F(x)) - £(x) dx

e Since S[f] € R, in principle there usually exists at least one f* € F
such that S[f*] > S[f] for all f € F

» For example, among densities supported on (a, b), the Unif(a, b) density
f(x) = % maximizes the differential entropy

@ Techniques for determining such an f* are the topic of variational
calculus; these are broadly analogous to function optimization methods
from basic calculus, but we will not go into details
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Data and Latent Variables

o Let X = Xi.,, represent our data and Z = Z3.,, represent
auxiliary/latent variables (which may be parameters in the Bayesian
setup)

@ x and z are their observed counterparts

@ Then the joint distribution of (Z, X) factorizes:
p(z,x) = p(z) - p(x | z) so that the conditional distribution of Z | x is

Pz 1X) = o) pix ] 2)dz

@ We're interested in approximating p(z | x)
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The KL Divergence

e The Kullback-Leibler (KL) divergence is a measure of “distance”
between distributions

@ For mass functions p and g defined on a sample space X, it is given by

Lp |l q)=>_ p(x |og<q8)

xXEX

e For density functions p and g defined on X, it is given by

Ki(plla) = [ p(x)- log(gg;) dx

@ One can show that KL(p || g) > 0 for any distributions p, g, with
equality if and only if p =g

» However, it is not a metric on the space of distributions on X
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Information Theory

@ The KL divergence emerged from the field of information theory

@ In statistics, p typically describes our observed data, and g represents a
distribution which is hypothesized to have generated that data

The KL divergence is then interpreted as the average difference
of the number of bits required for encoding samples of p using a
code optimized for g rather than one optimized for p.

@ The KL divergence shows up in many areas within statistics
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Towards the ELBO

o First, we consider a family Q of approximate distributions of Z
@ Then, we find the member g* € Q that best approximates p(Z | X)

@ The “best” is defined in terms of the KL divergence:

o (2) = angmin KL (4() [| - | ) = argmin [ tog(- 25 g(2) a2

qeQ qeQ p(z | x)

@ We can recast this optimization problem more conveniently in terms of
the evidence
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The Evidence

@ Another way to write (1) is

p(z | x) =

e Here p(x) = [ p(z,x)dz is called the evidence, and is usually
intractable

@ Observe that for any g,

KL(q(-) [ p(- | 2)) = Eqllog(q(Z))] — Eq[log(p(Z | x))]
= Eq[log(q(Z))] — Eqllog(p(Z, x))] + Eq[log(p(x))]

@ Since the rightmost term is constant in Z, minimizing
KL (q(:) || p(- | x)) is equivalent to maximizing

ELBO(q) := Eq[log(p(Z, x))] — Eq[log(q(Z))]
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The ELBO

@ The quantity ELBO(q) is called the evidence lower bound (ELBO)

@ The name comes from the fact that

log(p(x)) = KL (q(-) || p(- | x)) + ELBO(q) > ELBO(q),

because the KL divergence is non-negative

So the ELBO provides a lower bound on the (log) evidence
@ Moreover, equality holds if and only if g(z) = p(z | x)
But usually p(- | x) € Q.
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Choosing the Variational Family

@ There are usually several choices of variational family to choose from

@ We want the family to be rich enough to provide a reasonably good
approximation to our target, but simple enough that its members
satisfy the requirement of being easy to work with

o If the family contains the target itself, then the problem is trivial

@ One choice is the set of densities from a given parametric family (such
as Gaussian distributions)

» Then the optimization problem reduces to finding the optimal
parameters z and o2, which is “easy”

@ However, for complicated target distributions, it is preferable to
optimize over a more flexible class
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Choosing the Variational Family (Continued)

@ The mean-field variational family is one in which the latent variables
are independent

@ That is, each has its own factor in the variational distribution:
q(z) = 11121 gi(z)

@ Usually the posterior is not in the mean-field variational family because
of dependencies between components of Z

@ However, this family allows us to use the coordinate ascent algorithm
to find the optimal g

@ We will discuss some extensions later

Radu Craiu, Robert Zimmerman (UofT) October 10, 2023 15 /39



Deriving the Coordinate Ascent Algorithm

@ For any j, let Z_J' = (Zly---’Zj—I;Zj+17---;Zm) and q—j = H?;éj qi

@ Under the mean-field assumption, the ELBO depends on g; through
ELBO (q)) = [ ai(Z))log(P(X. Z))) dZi~ [ log(q)(Z}))q)(Z}) AZj+const

where
log(B(X, Z;)) = Ez_;[log(p(X, Z))]

o Note that the ELBO (g;) is just the negative KL divergence between g;
and p(X, Z;j) so we know it is minimized when q; = p(X, Z;)
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The Optimal Solution

@ This implies that the optimal g; satisfies

Iog(qj(zj)) = quj[log(p(zﬁ z—j7x))] + ¢, 1<j<m, (2)
for an appropriate constant ¢; (used for normalization)

@ This is optimal, but not quite explicit because the expectation involved
is taken with respect to g_;, which is a product of the other mean-field
factors

@ This suggests an iterative algorithm in which we first initialize
gi,---,9m, and then repeatedly update them one at a time using (2)
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The Algorithm

e Given data x and a joint distribution p(z, x), the mean-field variational

inference algorithm is

@ |Initialize q}o)(zj) for1<j<m
Q Fort>0:

» for 1 <j < m, compute
(t+ ) I ) Z )
g (z) o exp(E o [log(p(z;; 2, x))] )

where q H t+1 H,mjﬂ q,( ), with edge cases are treated in

the obvnous manner

@ It can be shown that this algorithm is guaranteed to converge
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Caveats

@ In order to use the algorithm, we need to evaluate
exp(Eqﬂ.[Iog(p(zj, Z,j,x))]) and the normalizing constant

[ exp(Eq log(p(z. 25 x)))) dz;

@ These can be extremely challenging to compute for all but the simplest
toy models

@ There is no guarantee that the expectation and/or the normalizing
constant exists in closed form

» Especially in Bayesian models
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A Toy Example

@ To get a feel for how the algorithm works, consider finding a mean-field
approximation to a bivariate normal distribution:

1 -
P10 = p(2) = Z=sen(—(z - W) BNz -w)2), zeR:

@ This target involves no “data” x, but that's okay

@ The parameters in p(z) are the mean p and covariance matrix 3, but
it easier to work in terms of the precision matrix A := 3! and
transform back later
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A Toy Example (Continued)
@ The first step is to compute
q1(z1) o exp(Eq,[log(p(z1, 22))])
(Ba |5t - ¥
= exp| Eqg, [—2(21 — p1) M1 — (z1 — p1)Mi2(22 — Mz)])

1
= exp (—2212/\11 + z1(p11 — Ai2(Eg,[22] - Mz))>

@ This is the kernel of a normal distribution!

e Working out the mean and variance (e.g., by completing the square)
gives q1(z1) = ¢(z1 | my, A7) where

A12
my = p1 — r(qu [Z2] — 112) (3)
11
> Here ¢(z | u,0?) is the N'(p, 0?) pdf
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A Toy Example (Continued)

@ A similar calculation (or a symmetry argument) yields
@(22) = (2 | m2,/\2_21) where
A12
my = pi2 — = (Bq, [Z1] = pu) (4)
22

@ In fact, since Eg,[Z1] = my and Eg,[Z>] = my, we can plug these into
(3) and (4) to get a linear system which is easy to solve

@ That is, the optimal mean field approximation here has an explicit
solution

@ Since this is rarely the case, we will practice solving the system
iteratively instead
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A Toy Example (Continued)

norm <- function(x) {sqrt(sum(x~2))}

mu <- c(-3, 3)
Sigma <- matrix(c(1,0.5,0.5,3), nrow=2, ncol=2, byrow=T)
Lambda <- solve(Sigma)

ml.0ld <- NalN; m2.o0ld <- NalN
ml <- 0; m2 <- 0

pars.old <- c(ml.old, m2.0ld)
pars <- c(ml, m2)

while(is.nan(ml.0ld) || norm(pars.old - pars) > 10e-6) {
ml.old <- ml
m2.0ld <- m2
pars.old <- c(ml.old, m2.01ld)

ml <- mu[1] - Lambdal[1,1]" (-1)#*Lambda[1,2]*(m2.01d - mul[2])
m2 <- mu[2] - Lambdal[2,2]  (-1)*Lambdal[2,1]*(ml.0l1d - mul1])
pars <- c(ml, m2)

}
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The Local Approach

@ The mean-field approach seeks an optimal approximation to the entire
posterior p(z | x)

@ Instead, we might settle on optimizing the distribution of a certain
component z; or a group of components z’ within the full model

@ In the context of variational inference, “optimizing” means “getting as
close to the ELBO as possible”

e Combining such bounds then provides a bound on the target p(z | x)
that is still easier to work with

@ Bishop [2006] calls these approaches local variational methods

Radu Craiu, Robert Zimmerman (UofT) October 10, 2023 25/39



Variational Parameters

@ The idea is to introduce a free parameter £ into the function we wish
to optimize, and then select — perhaps iteratively — the ¢ that brings
us as close to optimality as possible

» We call £ a variational parameter

@ For example, to obtain a linear lower bound on the function
f(x) = e, we can take a first-order Taylor expansion around any & to
get

FE) +1(E) - (x—&=e*—et-(x—¢
@ To keep track of the variational parameter, we denote the linear
function above as y(x, &)

@ Then y(x',&) < f(x) for all x’, and the bound is optimal (i.e., as tight
as possible) when ¢ = x’

e In fact f(x) = sup¢ y(x, &)
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Example: Bayesian Logistic Regression

o Consider logistic regression: we have independent observations
Y1,..., Y, and covariates xi, ..., x, € RP with

Y; | x; ~ Bernoulli(c(87 x;)), where o(x) = (1 + e}
e We adopt a Bayesian model and impose a N,(myg, So) prior on 3

» This is a canonical prior for Bayesian logistic regression

@ We seek a local variational approximation to the posterior p(3 | y) by
finding a lower bound on the evidence, and then maximizing it
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Example: Bayesian Logistic Regression (Continued)

@ Our prior is p(8) x exp(—%(ﬂ —mg) ' S; (B — mo))

@ The likelihood for a single observation is
T x:v:
plyi| B)=a(BTx)" - (1—a(B" X))V ==& .o(-BTx)
@ The evidence is therefore given by

8)= [ p(8)-ply | B)d
- [ p(®: (H Pl | B)) a8
i=1

@ The plan is to lower bound the integrand by the kernel of a distribution
that's easy to work with
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Example: Bayesian Logistic Regression (Continued)

@ To do this, we use a lower bound on the expit function o(x):

o) > oe)-op( B 29 02— ). xe(-e9)

where A() = 3 (o(6) - 3)

» This bound is derived using some mild convex analysis (see p.495 of
Bishop [2006] for details)

e We allow each p(y; | B) to get its own variational parameter &;

@ Thus

_BTx &
(i1 8) = o(&) exp<<ﬂ—2'f') &) (876 - 5,-2))
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Example: Bayesian Logistic Regression (Continued)
@ This gives us

(B | ¥) = exp (5 (8 mo)" S ™(8 — mo) +

Z(BTX;(y,- —1/2) = A&n) - ﬁTXiX;Tﬂ> + C)
(5

i=1

)
where ¢ = Y14 (Iog(a(,BTx,-) — &) - f?)) is constant with respect
to B

@ The RHS is the kernel of a normal distribution with covariance matrix

n -1

S, = (So_l + 22)\(5,) . X,'X,-T>
i=1

and mean

i=1

m,=S, <So_lm0 + i(y; - 1/2)Xi)
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Example: Bayesian Logistic Regression (Continued)

@ So we have a family of normal approximations to the posterior: one for

each & = (&,...,&n)

@ The next step is to determine the optimal £

@ To do this, we let

£(¢) = tog( [ (8.€)dp)

where h(3, &) is the RHS of (5)
e We have that log(p(y)) > L£(&) for any &
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Example: Bayesian Logistic Regression (Continued)

@ Since h(B, &) involves the exponential of a quadratic form in 3,
J h(B, &) dB can be evaluated in closed form, which gives

£(€) = 5 (loa(IS,)) + m] s, m,,)+§;(|og (@) - 6/2+\€) - &)+

where ¢’ = —%(|0g(‘50’) + mJS(;lmo)

e Differentiating with respect to &; and doing the (tedious) algebra yields
the optimal values

& = \/x (Sn+ mum])x;

@ This can also be derived by viewing 8 as a latent variable in
log(/ h(B, &) dB) and working out an EM algorithm

» See p.501 of Bishop [2006] for details
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Example: Bayesian Logistic Regression (Continued)

set.seed(2311)

expit <- function(x) {1/(1+exp(-x))}
logit <- function(p) {log(p/(1-p))}
norm <- function(x) {sqrt(sum(x"2))}

n <- 1000

X1 <- rnorm(n=n)

X2 <- rbinom(n=n, size=1, prob=0.2)
X3 <- rpois(n=n, lambda=0.7)

X <- cbind(1, X1, X2, X3)

y <- rbinom(n=n, size=1, prob=expit(0.4 + 0.7*X1 + 3*xX2 - X3))

S0 <- (1/4)*diag(4)
m0 <- rep(0, times=4)
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Example: Bayesian Logistic Regression (Continued)

xi <- rep(1l, times=n)
xi.old <- rep(10, times=n)

lambda <- function(xi) {(1/(2*xi))*(expit(xi) - 1/2)}

Sn <- SO
mn <- mO0

while (norm(xi - xi.old) > 10e-6) {
xi.old <- xi
xi <- sqrt(apply(X, 1, function(x) t(x)%*%(Sn + mny*)t(mn))%*%x))

Sn <- solve( solve(SO) + 2xReduce('+', lapply(l:m,
function(j) {lambda(xi.old[j1)*X[j,1%*%t(X[j,101)) )
mn <- Sn %*% ( solve(S80)%*/m0 + colSums((y-1/2)*X) )
}
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Connection to EM

Suppose we move back to the frequentist realm

@ X is our data, and Z is a set of latent variables, and now @ is a
parameter in a parametric model for X that we seek to estimate

In Class 3, we learned how the EM algorithm increases the likelihood in
0

@ In fact, we can view the EM algorithm as a special case of variational
inference

@ Write the ELBO as

ELBO(q,0) = Eq[log(p(Z, X; 0))] — Eq[log(q(Z))] (6)
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The E-Step

@ Recall that in the E-step of the EM algorithm, we compute Q(€ | O(t)),
the expected complete-data log-likelihood E[log(p(Z, X; 8))] where
Z ~ p(-| X,01) and 8 is our current parameter estimate

e But we know that the ELBO (6) is maximized when
q9(Z) = p(- | X,01)

@ So computing Q(6 | 8()) is the same as computing ELBO(q(?), 8),
where ¢(t) = argmax ELBO(q, 6)
q
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The M-Step

o In the M-step of the EM algorithm, we choose 8(t*1) by maximizing
Q(6 | 6)) with respect to 6

@ From the previous slide, we see that this is the same as
6(t+1) = argmax ELBO(g(*), )
0

o Alternatively, note that maximizing Q(8 | 8(*)) means setting
6(t+1) = argmax E[log(p(Z, X; 8))] where again Z ~ p(- | X, 8()
[

e And
glr+1) — argma (Ellog(p(Z. X; 0))] — Elog(p(Z | X,6))])

= argmax ELBO(q(?, )
6
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