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Section 1

Introduction
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Assumed Knowledge

@ In this class and the next, assume we know how to sample simple
random variables

@ Essentially what was discussed in Class 1

@ Usually the multivariate normal distribution will suffice

» To sample X ~ Ny(p, X) in R, use

d <- 3
mu <- c(2,3,1)
Sigma <- matrix(c(1.3, -1.6, -0.6,
-1.6, 4.5, 0.9,
-0.6, 0.9, 3.5), nrow=3, ncol=3, byrow=T)

Z <- rnorm(n=d)
X <- mu + t(chol(Sigma))*/Z

@ We will discuss sampling much more thoroughly in Class 6
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Deterministic vs. Stochastic Algorithms

@ In the last two classes, we learned about classical optimization
techniques and the EM algorithm

@ These algorithms were all deterministic

@ That is, each algorithm, run with the same inputs (known parameters,
initializations, etc.) would invariably produce the same outputs

@ It turns out that introducing randomness into certain optimization
procedures can dramatically improve their performance

@ Such algorithms are generally called stochastic optimization procedures
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A Simple Stochastic Algorithm

e To illustrate, suppose we want to minimize a function g : RY — R

@ Given a current best guess 6; of the minimizer, we can propose a
candidate 8’ = 0, + Z, where Z ~ Ny(0,521) for some o2 > 0

o If g(0') < g(0:), then accept the candidate and set 0,1 = 6’;
otherwise, set 0;1 = 6

@ This is called random optimization, and works well when d is small

» But performance becomes much worse as d increases due to the curse of
dimensionality

@ We will discuss several more refined stochastic optimization methods
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Section 2

Stochastic Gradient Descent
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Gradient Descent

@ Recall the gradient descent (GD) algorithm from Class 2
@ We aim to minimize a differentiable function g : R — R

@ Starting with an initial value 6, the basic GD procedure selects
0t+1 = Ot - th(Ot)

for some pre-chosen h > 0

@ Once a stopping criterion has been met (say at iteration T), we could
output 81 or % ZtT:1 0: or s where s = argmin g(6;)
t<T

Radu Craiu, Robert Zimmerman (UofT) October 3, 2023 8/41



The Problem with GD

@ In statistical applications we are interested in minimizing
g(0)=—I(0ly) = = log(f(yi|0)) which we often do by solving

0=Vg(0) = ~1 E, 1 aglOg(f(YIW))

@ For example, in multiple linear regression, the function to be minimized
is

1 n
£(0) = > (i~ 0" x;)
i=1
and its gradient is
2 n
Vg(B) = ; Z ((OTX,' — y,'),X,'71(0TX,' — y,'), e ,X,"p(HTX,' — y,'))

- 1)

where n is the number of observations in our training dataset
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From GD to SGD

If sample size n is large, the computational cost is too large so instead
one could use a random sample from {y1, y>,...,yn} to produce an
unbiased estimator of Vg(6)

@ In stochastic gradient descent (SGD), we replace the gradient Vg(O(t))
with a random vector W(t)

@ The random vector is chosen so that its expected value is Vg(0(1)

In other words, we seek an unbiased estimator of the gradient

Canonical choices:

» W = Vylog(f(yi|0)) where | ~ Uniform{1,...,n}
» W — % Eszl Velog(f(y,-j|9)) where {1, ..., ik} is a simple random
sample (without replacement) from {1,...,n}.
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Loss Functions

@ In general, suppose that the function to be minimized is
1 n
i=1

where y; is the i'th observation in our dataset and L is a loss function

@ Therefore

1 n
Ve(0) =~ > Vel(6.y) =E VoL(6, )|
i=1

@ The random vector W(t) we choose satisfies
E (WO [0 =E/ |[VoL(09), V)]

where the left side expectation is with respect to whatever
randomization procedure we have to determine W.
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Unbiased Estimators of the Gradient

@ Use a single-observation-at-a-time design and cycle through all
observations

@ Partition data into batches of size K << n which are sampled at
random without replacement.
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The Algorithm

@ The stochastic gradient descent algorithm is

@ Initialize the process at 6y and choose a pre-specified step size h > 0
and number of iterations T

@ Make the updates 0,41 = 8, — h, W) for 0 < t < T, where W(1) is a
random vector such that E [W() | ()] = Vg(6("))

© Stepsize h; can be constant or can be decreased h; = v'h with
v € (0,1).

@ Clearly, the update is no longer guaranteed to decrease g at every
update.

@ Convergence is towards a ball centered at the stationary point 6* so
the method is often used when approximate rather than precise
optimization is acceptable (e.g., ML applications with massive volume
of training data)

@ Theory. ..
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Example: Logistic Regression

@ Consider the same logistic regression example from Class 2
set.seed(7)
expit <- function(x) {1/(1+exp(-x))}
logit <- function(p) {log(p/(1-p))}
norm <- function(x) {sqrt(sum(x~2))}

n <- 1000

X1 <- rnorm(n=n)

X2 <- rbinom(n=n, size=1, prob=0.2)
X3 <- rpois(n=n, lambda=0.7)

X <- cbind(1, X1, X2, X3)

y <- rbinom(n=n, size=1, prob=expit(0.4 + 0.7*X1 + 3%X2 - X3))

grad.g <- function(theta, XX, yy) {
t(XX) %*% (expit(apply (XX, 1, function(x) xJ*/theta)) - yy)l}
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Example: Logistic Regression (Continued)

# use TT iterations
TT <- 1000

# size of minibatch
k <- 50

#want to go through all the data in repl updates
repeatsi=n/k

#need to cycle through all the data rep2 times
repeats2=TT/repeatsl

sub.sample=matrix(0,nrow=TT, ncol=k)
for(i in 1:repeats2){
samp. inds<-sample(1:n)
sub.sample[((i-1) *repeatsl+1): (i*repeatsl),]=
matrix(samp.inds,ncol=k,nrow=repeatsl,byrow=T) }

#stores the parameter values
ths <- cbind( rep(l, 4), matrix(OL, nrow=4, ncol=TT-1))
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Example: Logistic Regression (Continued)

for (t in 1:(TT-1)) {
# samp.inds <- sample(1:n, size=k,replace=F)
X.k <- X[as.vector(sub.sample[t,]),]
y.k <- ylas.vector(sub.sample[t,])]

#fized stepsize
alp <- 0.005

ths[,t+1] <- ths[,t] - alp*grad.g(ths[,t], X.k, y.k)
}

th.SGD <- ths[,TT]

th.NR <- as.vector(glm(y ~ ., family = binomial(link="logit"),
data=data.frame(y, X1, X2, X3))$coefficients)

print (cbind(th.SGD,th.NR))

par (mfrow=c(2,2))

for (i in 1:4) ts.plot(ths[i,])

Radu Craiu, Robert Zimmerman (UofT) October 3, 2023 16 /41



Section 3

Simulated Annealing
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Basic Metallurgy

@ Reference: Goffe et al. [1994]

@ In metallurgy (or thermodynamics more generally), annealing means
“slow cooling”

@ When casting metallic objects from molten metal, the final goal is to
bring the metal to a minimum-energy state (where it is very hard)

@ However, hot metal is easier to mold

@ One wants to shape the metal while slowly cooling it (cooling it too
fast will not allow reaching the desired shape)

@ ...but not too slowly, since we don't want to wait too long

@ Simulated annealing seeks to minimize/maximize a function according
to the same principle
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The set up

o Interested in minimizing g(6) : E C RY — R (or maximizing —g(0))
where g is not restricted (can be discrete, non-continuous, etc).

@ We will assume here that g is bounded

@ Note that max of —g is also max of § = exp(—g) which can be
thought of as an unnormalized density on E.

@ Most of the algorithms studied so far have trouble escaping a local
extrema point

e We “heat” g = exp(—g(#)) into g; = exp(—g(0)/t) where t > 1.

@ Intuition: As T — oo g7(0) = 1£(0) so if & has extreme points
separated by “big dips"” its heated versions are more “level”
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Example

f.T=function(nn=3,xx=c(1,1), TT=1){
rez=(16*xx [1]* (1-xx[1]) *xx [2] * (1-xx [2]) *sin(nn*pi*xx [1]) *sin(nn*pi*xx [2
return(exp(rez/TT))}

n.eval=100
col=ppoints(n.eval)
co3=ppoints(n.eval)

TT=1

for(i in 1:n.eval)

co3[i]=f.T(n,c(co1[i],0.5),TT)
plot(col,co3,col="black",type="1", xlab="x",ylab="f(x,0.5)")
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Example

f(x,0.5)

1.0

Figure 1: lllustration of annealing
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Building Up the Algorithm

@ Suppose at time t, our best guess of the optimum is (t)

e We construct a candidate 8’ for 8(t*1) by randomly perturbing one
element of 6(*)

o If g(6') < g(6:), good — we've improved upon the old guess, so take
9t+1 =60

@ Otherwise, 8; could just be a Jocal minimum that we'd like to escape
from

@ In order to escape, one must accept moves that seem
counterproductive (e.g., increase the value of g occasionally)
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The Algorithm

@ The basic simulated annealing algorithm is

@ Choose a run length M, a cooling schedule T : {0,1,..., M} — (0, c0)
and initialize the process at 8y
@ Evaluate g(6o)
© For 1<t < M, propose a new 8 by perturbing a random coordinate:
0} = 0; + & for some random variable &;
* If g(0') < g(6:), take O¢1 = 6
* If g(0') > g(6:), set 841 = 0; with probability

(6005070 _ ET(¢)
gT(t)(Ot)

and 6;:1 = 6; otherwise

@ Note that in our example the ratlo E ; will tend to be closer to 1
when T(t) > 1.
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That Random Variable

@ The random variable &; used to perturb the coordinate at step t of the
algorithm is chosen based on what we know about the objective
function

. . . . jid
e If g is continuous with domain RY, then we can take &; ~ N(0, o?) for
some chosen variance o2

@ Or the the algorithm can be made to be adaptive, with independent

e ~ N(O7 0'?)

@ But the domain of g can be finite (like the configuration of atoms in a
metal) too

> In this case, the “perturbed’’ coordinate can be chosen randomly from
the configuration space of g
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The Cooling Schedule

@ The “temperature’ ' evolves according to the cooling schedule (or
annealing schedule) and should generally decrease to 0 as t — oo

There are many choices for the functional form of T(t)
Linear: T(t) = T(0) — dt for some d > T(0)/M
Logarithmic: T(t) = T(0)/log(1 + t)

Geometric: T(t) =r- T(t—1) for some r € (0,1)
Exponential: T(t+1) = (T(1)/T(0))"- T(t)
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Example: Logistic Regression (Again)

set.seed(2311)

expit <- function(x) {1/(1+exp(-x))}
logit <- function(p) {log(p/(1-p))}
norm <- function(x) {sqrt(sum(x~2))}

n <- 1000

X1 <- rnorm(n=n)

X2 <- rbinom(n=n, size=1, prob=0.2)

X3 <- rpois(n=n, lambda=0.7)

X <- cbind(1, X1, X2, X3)

y <- rbinom(n=n, size=1, prob=expit(0.4 + 0.7*X1 + 3%X2 - X3))
g <- function(theta) {

-sum(y*log(expit(apply(X, 1, function(x) xJ*/theta))) +
(1-y)*log(l-expit (apply(X, 1, function(x) x/*/theta))))}
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Example: Logistic Regression (Again) (Continued)

M <- 5000
th <- rep(1l, times=4)

for (t in 1:M) {
TT <- 10/log(t+1)
gth <- g(th)

p.ind <- sample(1:4, size=1)

th.p <- th

th.plp.ind] <- th.p[p.ind] + rnorm(n=1, sd=.5)
gth.p <- g(th.p)

if (gth.p < gth || runif(n=1) < min(exp(gth - gth.p)/TT,1)) {
th <- th.p
} else {
th <- th
}
}

th.SA <- th
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Benefits

o Observe that there are essentially no restrictions on the objective
function g

@ It need not be continuous, which makes simulated annealing useful for
discrete optimization problems

> The travelling salesman problem is a classical example

@ We will see later in the course that simulated annealing is a particular
kind of Markov Chain Monte Carlo (MCMC) algorithm
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Genetic Algorithms
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Inspired by Evolution

o Genetic Algorithms (GA) are iterative stochastic algorithms often used
in discrete optimization

@ The design is inspired by theory of evolution and adaptation through
genetics

@ Assumptions:

» (A1) Fitness: the quality of a potential solution can be evaluated using a
fitness function, e.g. if the problem of interes is finding arg max, g(x)
then the fitness of a candidate solution xg is g(xo)-

» (A2) Representation: every candidate solution v to the optimization
problem can be represented as a string of bits (vectors whose entries are
Oorl) ve{01M
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Implementation

@ The algorithm cycles through the following steps:

» From a population of candidate solutions at iteration t,
St ={vi,g(vi): 1 <i< K} we use selection to produce an
intermediate population
» The intermediate population can be created in different ways:
* ltis St
* Via sampling K times with replacement from S; using p; o< g(v;) as the
sampling weights.
* Use the fittest L elements in S; and K — L random elements from S;.
» The population at time t + 1 is obtained from the intermediate
population using crossover and mutation.
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Crossover

e Consider two potential solutions/strings
(101...1101) and (yxy ... xxy)
e Randomly select the crossover point ¢ € {1,...,K — 1}
11010 \/ 01100101101
yxyyx [\ yxxyyyxyxxy
11010yxxyyyxyxxy and yxyyx01100101101

@ There can be more than one crossover point
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Mutation

@ With certain probability € a random element in the string is flipped

@ Alternatively, can think of mutation of generating a random new bit for
a randomly selected component of v;

@ In summary: for each j flip a coin to decide whether v; will mutate. If

it does select the component uniformly at random and with probability
€ flip it.

Possible references: Whitley [1994] Chatterjee et al. [1996]
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Example

o Find arg max(y, x,) f(x1, x2) where

f(x1,x2) = [16x1x2(1 — x1)(1 — X2) sin(97x1) sin(97x0)]?

library(rgl)
f=function(nn=3,xx=c(1,1)){
rez=(16*xx[1]*(1-xx[1])*xx[2] * (1-xx[2]) *
sin(nn*pi*xx[1])*sin(nn*pi*xx[2])) "2
return(rez)}

# we want to plot f

n.eval=100
col=ppoints(n.eval)
co2=ppoints(n.eval)
s=matrix(0,n.eval,n.eval)
n=9

set.seed(17)
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Example (cont'd)

for(i in 1:n.eval){for(j in 1:n.eval)

{sli,jl=f(n,c(col[il,c02[jI1))}}

persp3d(col,co2,s,col = "white", package = "rgl")
contour(col,co2,s)

S= 80 # size of each generation

itr= 100 # number of iterations to run

m=10 # the number of digits (determines the precision of solution)
m.rate=0.01 # mutation rate

rnk =c(1:8) # ranks the specimens in one generation

phi =c(1:8) # fitness for each specimen

best.ftness =c(1:(itr+1)) # best fitness found

ftness =matrix(0,nrow=(itr+1),ncol=S) # stores all the fitness-es
bin.current=array(0,c(S,2,m)) # current population
bin.next=array(0,c(S,2,m)) # current population

twos=(1/2) "c(1:m)

x.current=x.next=matrix(0,ncol=2,nrow=S)
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Example (cont'd)

# initialize the population

for(i in 1:8){
bin.current[i,1,]=rbinom(m,1,0.5)
bin.current[i,2,]=rbinom(m,1,0.5)
x.current[i,1]=sum(twos*bin.current[i,1,])
x.current [i,2]=sum(twos*bin.current[i,2,])
philil=f(n,c(x.current[i,1] ,x.current[i,2]))}

ftness[1,]=phi

rnk=order (phi)
best.ftness[1]=max (phi)
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Exampble (cont'd)
for(j in 1:itr-1)
{

# BUILDS THE NEW GENERATION, SELECTING FIRST PARENT BASED ON
# FITNESS AND THE SECOND PARENT AT RANDOM
# THERE ARE S/2-2 BREEDINGS ALLOWED RESULTING IN S OFFSPRINGS

# we keep the top two specimens in the population
for(i in 1:8){
x.current[i,1]=sum(twos*bin.current[i,1,])
x.current [i,2]=sum(twos*bin.current[i,2,])
philil=f(n,c(x.current[i,1],x.current[i,2]))

}

ftness[1,]=phi
rnk=order (phi)

bin.next[1,,]=bin.current [rnk[S],,]1# this one has the highest rank in fitne
bin.next[S,,]=bin.current [rnk[S-1],,] # has the second highest rank in fitr

x.current[1,]=x.current [rnk[S],]
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Example (cont'd)

for(i in 2:(S8/2)) A

# samples from {1,...,S} with probs prop to phi
parentl.index=sample(1:S,1,prob=phi)

parent2.index = sample(1:S,1)

#crossover position

pos = sample(l:(m-1),1)

#the first offspring is produced via crossover

# first coordinate

bin.next[i,1,1:pos]=bin.current [parentl.index,1,1:pos]
bin.next[i,1, (pos+1) :m]=bin.current [parent2.index,1, (pos+1) :m]
#second coordinate

bin.next[i,2,1:pos]=bin.current [parentl.index,2,1:pos]
bin.next[i,2, (pos+1) :m]=bin.current [parent2.index,2, (pos+1) :m]
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Example (cont'd)

# THE MUTATION STEP IS PERFORMED

mutate = rbinom(m,1,m.rate)

#1f a mutation has occured, the coordinate is flipped
bin.next[i,1,] = (bin.next[i,1,]+mutate)%%2

# repeat the process for second offspring

pos = sample(1l:(m-1),1)

mutate = rbinom(m,1,m.rate)

bin.next[S-i+1,1,1:pos]=bin.current [parent2.index,1,1:pos]
bin.next[S-i+1,1, (pos+1) :m]=bin.current [parentl.index,1, (pos+1) :m]
bin.next [S-i+1,2,1:pos]=bin.current [parent2.index,2,1:pos]
bin.next[S-i+1,2, (pos+1) :m]=bin.current [parentl.index,2, (pos+1) :m]
bin.next[i,1,] = (bin.next[i,1,]+mutate)%%2}

for(i in 2:(S-1)){

x.current[i,1]=sum(twos*bin.next[i,1,])
x.current[i,2]=sum(twos*bin.next[i,2,])
philil=f(n,c(x.current[i,1],x.current[i,2]))

}

bin.current=bin.next
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Example (cont'd)

# update the fitness wvalues

for(k in 1:8){
x.current [k, 1]=sum(twos*bin.current[k,1,])
x.current [k,2]=sum(twos*bin.current[k,2,])
phi[k]=f (n,c(x.current[k,1] ,x.current[k,2])) ¥

ftness[j+1,]=phi
best.ftness[j+1]=max(phi)}

print(x.current [rnk[S],])

plot(c(1,40),c(0,1.1),type="n", xlab="Generation", ylab="Best solution")
lines(c(1:itr),best.ftness[1:itr])

abline(h=f(n,c(0.5,0.5)),col="red")
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