
STA2311: Advanced Computational Methods for
Statistics I

Class 4: Stochastic Optimization

Radu Craiu Robert Zimmerman

University of Toronto

October 3, 2023

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 1 / 41

1 Introduction

2 Stochastic Gradient Descent

3 Simulated Annealing

4 Genetic Algorithms

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 2 / 41

Section 1

Introduction

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 3 / 41

Assumed Knowledge

In this class and the next, assume we know how to sample simple
random variables

Essentially what was discussed in Class 1

Usually the multivariate normal distribution will suffice
▶ To sample X ∼ Nd(µ, Σ) in R, use

d <- 3
mu <- c(2,3,1)
Sigma <- matrix(c(1.3, -1.6, -0.6,

-1.6, 4.5, 0.9,
-0.6, 0.9, 3.5), nrow=3, ncol=3, byrow=T)

Z <- rnorm(n=d)
X <- mu + t(chol(Sigma))%*%Z

We will discuss sampling much more thoroughly in Class 6

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 4 / 41

Deterministic vs. Stochastic Algorithms

In the last two classes, we learned about classical optimization
techniques and the EM algorithm

These algorithms were all deterministic

That is, each algorithm, run with the same inputs (known parameters,
initializations, etc.) would invariably produce the same outputs

It turns out that introducing randomness into certain optimization
procedures can dramatically improve their performance

Such algorithms are generally called stochastic optimization procedures

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 5 / 41

A Simple Stochastic Algorithm

To illustrate, suppose we want to minimize a function g : Rd → R

Given a current best guess θt of the minimizer, we can propose a
candidate θ′ = θt + Z , where Z ∼ Nd(0, σ2I) for some σ2 > 0

If g(θ′) < g(θt), then accept the candidate and set θt+1 = θ′;
otherwise, set θt+1 = θt

This is called random optimization, and works well when d is small
▶ But performance becomes much worse as d increases due to the curse of

dimensionality

We will discuss several more refined stochastic optimization methods

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 6 / 41

Section 2

Stochastic Gradient Descent

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 7 / 41

Gradient Descent

Recall the gradient descent (GD) algorithm from Class 2

We aim to minimize a differentiable function g : Rd 7→ R

Starting with an initial value θ0, the basic GD procedure selects

θt+1 = θt − h∇g(θt)

for some pre-chosen h > 0

Once a stopping criterion has been met (say at iteration T), we could
output θT or 1

T
∑T

t=1 θt or θs where s = argmin
t≤T

g(θt)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 8 / 41

The Problem with GD

In statistical applications we are interested in minimizing
g(θ) = −l(θ|y) = −

∑n
i=1 log(f (yi |θ)) which we often do by solving

0 = ∇g(θ) = − 1
n

∑n
i=1

∂
∂θ log(f (yi |θ))

For example, in multiple linear regression, the function to be minimized
is

g(θ) = 1
n

n∑
i=1

(yi − θ⊤xi)2

and its gradient is

∇g(θ) = 2
n

n∑
i=1

(
(θ⊤xi − yi), xi ,1(θ⊤xi − yi), . . . , xi ,p(θ⊤xi − yi)

)
(1)

where n is the number of observations in our training dataset

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 9 / 41

From GD to SGD

If sample size n is large, the computational cost is too large so instead
one could use a random sample from {y1, y2, . . . , yn} to produce an
unbiased estimator of ∇g(θ)

In stochastic gradient descent (SGD), we replace the gradient ∇g(θ(t))
with a random vector W (t)

The random vector is chosen so that its expected value is ∇g(θ(t))

In other words, we seek an unbiased estimator of the gradient

Canonical choices:
▶ W (t) = ∇θlog(f (yI |θ)) where I ∼ Uniform{1, . . . , n}
▶ W (t) = 1

K
∑K

j=1 ∇θlog
(
f (yij |θ)

)
where {i1, . . . , iK } is a simple random

sample (without replacement) from {1, . . . , n}.

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 10 / 41

Loss Functions
In general, suppose that the function to be minimized is

g(θ) = 1
n

n∑
i=1

L(θ, yi),

where yi is the i ’th observation in our dataset and L is a loss function

Therefore

∇g(θ) = 1
n

n∑
i=1

∇θL(θ, yi) = EI
[
∇θL(θ(t), YI)

]

The random vector W (t) we choose satisfies

E
[
W (t) | θ(t)

]
= EI

[
∇θL(θ(t), YI)

]
where the left side expectation is with respect to whatever
randomization procedure we have to determine W .

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 11 / 41

Unbiased Estimators of the Gradient

Use a single-observation-at-a-time design and cycle through all
observations

Partition data into batches of size K << n which are sampled at
random without replacement.

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 12 / 41

The Algorithm

The stochastic gradient descent algorithm is
1 Initialize the process at θ0 and choose a pre-specified step size h > 0

and number of iterations T
2 Make the updates θt+1 = θt − htW (t) for 0 ≤ t ≤ T , where W (t) is a

random vector such that E
[
W (t) | θ(t)] = ∇g(θ(t))

3 Stepsize ht can be constant or can be decreased ht = γth with
γ ∈ (0, 1).

Clearly, the update is no longer guaranteed to decrease g at every
update.

Convergence is towards a ball centered at the stationary point θ∗ so
the method is often used when approximate rather than precise
optimization is acceptable (e.g., ML applications with massive volume
of training data)

Theory. . .

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 13 / 41

Example: Logistic Regression

Consider the same logistic regression example from Class 2
set.seed(7)
expit <- function(x) {1/(1+exp(-x))}
logit <- function(p) {log(p/(1-p))}
norm <- function(x) {sqrt(sum(xˆ2))}

n <- 1000

X1 <- rnorm(n=n)
X2 <- rbinom(n=n, size=1, prob=0.2)
X3 <- rpois(n=n, lambda=0.7)
X <- cbind(1, X1, X2, X3)

y <- rbinom(n=n, size=1, prob=expit(0.4 + 0.7*X1 + 3*X2 - X3))

grad.g <- function(theta, XX, yy) {
t(XX) %*% (expit(apply(XX, 1, function(x) x%*%theta)) - yy)}

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 14 / 41

Example: Logistic Regression (Continued)
use TT iterations
TT <- 1000
size of minibatch
k <- 50

#want to go through all the data in rep1 updates
repeats1=n/k
#need to cycle through all the data rep2 times
repeats2=TT/repeats1

sub.sample=matrix(0,nrow=TT, ncol=k)
for(i in 1:repeats2){

samp.inds<-sample(1:n)
sub.sample[((i-1)*repeats1+1):(i*repeats1),]=

matrix(samp.inds,ncol=k,nrow=repeats1,byrow=T) }

#stores the parameter values
ths <- cbind(rep(1, 4), matrix(0L, nrow=4, ncol=TT-1))

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 15 / 41

Example: Logistic Regression (Continued)

for (t in 1:(TT-1)) {
samp.inds <- sample(1:n, size=k,replace=F)
X.k <- X[as.vector(sub.sample[t,]),]
y.k <- y[as.vector(sub.sample[t,])]

#fixed stepsize
alp <- 0.005

ths[,t+1] <- ths[,t] - alp*grad.g(ths[,t], X.k, y.k)
}

th.SGD <- ths[,TT]
th.NR <- as.vector(glm(y ~ ., family = binomial(link="logit"),

data=data.frame(y, X1, X2, X3))$coefficients)
print(cbind(th.SGD,th.NR))
par(mfrow=c(2,2))
for (i in 1:4) ts.plot(ths[i,])

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 16 / 41

Section 3

Simulated Annealing

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 17 / 41

Basic Metallurgy

Reference: Goffe et al. [1994]

In metallurgy (or thermodynamics more generally), annealing means
“slow cooling”

When casting metallic objects from molten metal, the final goal is to
bring the metal to a minimum-energy state (where it is very hard)

However, hot metal is easier to mold

One wants to shape the metal while slowly cooling it (cooling it too
fast will not allow reaching the desired shape)

. . . but not too slowly, since we don’t want to wait too long

Simulated annealing seeks to minimize/maximize a function according
to the same principle

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 18 / 41

The set up

Interested in minimizing g(θ) : E ⊂ Rd → R (or maximizing −g(θ))
where g is not restricted (can be discrete, non-continuous, etc).
We will assume here that g is bounded
Note that max of −g is also max of g̃ = exp(−g) which can be
thought of as an unnormalized density on E .
Most of the algorithms studied so far have trouble escaping a local
extrema point
We “heat” g̃ = exp(−g(θ)) into g̃t = exp(−g(θ)/t) where t ≥ 1.
Intuition: As T → ∞ g̃T (θ) = 1E (θ) so if g̃ has extreme points
separated by “big dips” its heated versions are more “level”

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 19 / 41

Example

f.T=function(nn=3,xx=c(1,1), TT=1){
rez=(16*xx[1]*(1-xx[1])*xx[2]*(1-xx[2])*sin(nn*pi*xx[1])*sin(nn*pi*xx[2]))ˆ2
return(exp(rez/TT))}

n.eval=100
co1=ppoints(n.eval)
co3=ppoints(n.eval)

TT=1
for(i in 1:n.eval)
co3[i]=f.T(n,c(co1[i],0.5),TT)
plot(co1,co3,col="black",type="l", xlab="x",ylab="f(x,0.5)")

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 20 / 41

Example

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

x

f(
x,

0.
5)

T=1
T=3
T=6
T=12

Figure 1: Illustration of annealing

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 21 / 41

Building Up the Algorithm

Suppose at time t, our best guess of the optimum is θ(t)

We construct a candidate θ′ for θ(t+1) by randomly perturbing one
element of θ(t)

If g(θ′) < g(θt), good — we’ve improved upon the old guess, so take
θt+1 = θ′

Otherwise, θt could just be a local minimum that we’d like to escape
from

In order to escape, one must accept moves that seem
counterproductive (e.g., increase the value of g occasionally)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 22 / 41

The Algorithm

The basic simulated annealing algorithm is
1 Choose a run length M, a cooling schedule T : {0, 1, . . . , M} → (0, ∞)

and initialize the process at θ0
2 Evaluate g(θ0)
3 For 1 ≤ t ≤ M, propose a new θ′ by perturbing a random coordinate:

θ′
j = θj + ξt for some random variable ξt
⋆ If g(θ′) < g(θt), take θt+1 = θ′

⋆ If g(θ′) ≥ g(θt), set θt+1 = θt with probability

e(g(θt)−g(θ′))/T (t) =
g̃T (t)(θ′)
g̃T (t)(θt)

and θt+1 = θt otherwise

Note that in our example the ratio g̃T (t)(θ′)
g̃T (t)(θt) will tend to be closer to 1

when T (t) > 1.

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 23 / 41

That Random Variable

The random variable ξt used to perturb the coordinate at step t of the
algorithm is chosen based on what we know about the objective
function

If g is continuous with domain Rd , then we can take ξt
iid∼ N (0, σ2) for

some chosen variance σ2

Or the the algorithm can be made to be adaptive, with independent
ξt ∼ N (0, σ2

t)

But the domain of g can be finite (like the configuration of atoms in a
metal) too

▶ In this case, the “perturbed’ ’ coordinate can be chosen randomly from
the configuration space of g

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 24 / 41

The Cooling Schedule

The “temperature’ ’ evolves according to the cooling schedule (or
annealing schedule) and should generally decrease to 0 as t → ∞

There are many choices for the functional form of T (t)

Linear: T (t) = T (0) − dt for some d > T (0)/M

Logarithmic: T (t) = T (0)/log(1 + t)

Geometric: T (t) = r · T (t − 1) for some r ∈ (0, 1)

Exponential: T (t + 1) = (T (1)/T (0))t · T (t)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 25 / 41

Example: Logistic Regression (Again)

set.seed(2311)
expit <- function(x) {1/(1+exp(-x))}
logit <- function(p) {log(p/(1-p))}
norm <- function(x) {sqrt(sum(xˆ2))}

n <- 1000

X1 <- rnorm(n=n)
X2 <- rbinom(n=n, size=1, prob=0.2)
X3 <- rpois(n=n, lambda=0.7)
X <- cbind(1, X1, X2, X3)

y <- rbinom(n=n, size=1, prob=expit(0.4 + 0.7*X1 + 3*X2 - X3))

g <- function(theta) {
-sum(y*log(expit(apply(X, 1, function(x) x%*%theta))) +

(1-y)*log(1-expit(apply(X, 1, function(x) x%*%theta))))}

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 26 / 41

Example: Logistic Regression (Again) (Continued)
M <- 5000
th <- rep(1, times=4)

for (t in 1:M) {
TT <- 10/log(t+1)
gth <- g(th)

p.ind <- sample(1:4, size=1)
th.p <- th
th.p[p.ind] <- th.p[p.ind] + rnorm(n=1, sd=.5)
gth.p <- g(th.p)

if (gth.p < gth || runif(n=1) < min(exp(gth - gth.p)/TT,1)) {
th <- th.p

} else {
th <- th

}
}

th.SA <- th

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 27 / 41

Benefits

Observe that there are essentially no restrictions on the objective
function g

It need not be continuous, which makes simulated annealing useful for
discrete optimization problems

▶ The travelling salesman problem is a classical example

We will see later in the course that simulated annealing is a particular
kind of Markov Chain Monte Carlo (MCMC) algorithm

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 28 / 41

Section 4

Genetic Algorithms

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 29 / 41

Inspired by Evolution

Genetic Algorithms (GA) are iterative stochastic algorithms often used
in discrete optimization

The design is inspired by theory of evolution and adaptation through
genetics

Assumptions:
▶ (A1) Fitness: the quality of a potential solution can be evaluated using a

fitness function, e.g. if the problem of interes is finding arg maxx g(x)
then the fitness of a candidate solution x0 is g(x0).

▶ (A2) Representation: every candidate solution v to the optimization
problem can be represented as a string of bits (vectors whose entries are
0 or 1) v ∈ {0, 1}M

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 30 / 41

Implementation

The algorithm cycles through the following steps:
▶ From a population of candidate solutions at iteration t,

St = {vi , g(vi) : 1 ≤ i ≤ K} we use selection to produce an
intermediate population

▶ The intermediate population can be created in different ways:
⋆ It is St
⋆ Via sampling K times with replacement from St using pi ∝ g(vi) as the

sampling weights.
⋆ Use the fittest L elements in St and K − L random elements from St .

▶ The population at time t + 1 is obtained from the intermediate
population using crossover and mutation.

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 31 / 41

Crossover

Consider two potential solutions/strings

(101 . . . 1101) and (yxy . . . xxy)

Randomly select the crossover point c ∈ {1, . . . , K − 1}

There can be more than one crossover point

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 32 / 41

Mutation

With certain probability ϵ a random element in the string is flipped

Alternatively, can think of mutation of generating a random new bit for
a randomly selected component of vi

In summary: for each i flip a coin to decide whether vi will mutate. If
it does select the component uniformly at random and with probability
ϵ flip it.

Possible references: Whitley [1994] Chatterjee et al. [1996]

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 33 / 41

Example

Find arg max(x1,x2) f (x1, x2) where

f (x1, x2) = [16x1x2(1 − x1)(1 − x2) sin(9πx1) sin(9πx2)]2

library(rgl)
f=function(nn=3,xx=c(1,1)){

rez=(16*xx[1]*(1-xx[1])*xx[2]*(1-xx[2])*
sin(nn*pi*xx[1])*sin(nn*pi*xx[2]))ˆ2

return(rez)}

we want to plot f

n.eval=100
co1=ppoints(n.eval)
co2=ppoints(n.eval)
s=matrix(0,n.eval,n.eval)
n=9
set.seed(17)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 34 / 41

Example (cont’d)

for(i in 1:n.eval){for(j in 1:n.eval)
{s[i,j]=f(n,c(co1[i],co2[j]))}}

persp3d(co1,co2,s,col = "white", package = "rgl")
contour(co1,co2,s)
S= 80 # size of each generation
itr= 100 # number of iterations to run
m=10 # the number of digits (determines the precision of solution)
m.rate=0.01 # mutation rate
rnk =c(1:S) # ranks the specimens in one generation
phi =c(1:S) # fitness for each specimen
best.ftness =c(1:(itr+1)) # best fitness found
ftness =matrix(0,nrow=(itr+1),ncol=S) # stores all the fitness-es
bin.current=array(0,c(S,2,m)) # current population
bin.next=array(0,c(S,2,m)) # current population
twos=(1/2)ˆc(1:m)
x.current=x.next=matrix(0,ncol=2,nrow=S)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 35 / 41

Example (cont’d)

initialize the population

for(i in 1:S){
bin.current[i,1,]=rbinom(m,1,0.5)
bin.current[i,2,]=rbinom(m,1,0.5)
x.current[i,1]=sum(twos*bin.current[i,1,])
x.current[i,2]=sum(twos*bin.current[i,2,])
phi[i]=f(n,c(x.current[i,1],x.current[i,2]))}

ftness[1,]=phi
rnk=order(phi)
best.ftness[1]=max(phi)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 36 / 41

Example (cont’d)
for(j in 1:itr-1)
{

BUILDS THE NEW GENERATION, SELECTING FIRST PARENT BASED ON
FITNESS AND THE SECOND PARENT AT RANDOM
THERE ARE S/2-2 BREEDINGS ALLOWED RESULTING IN S OFFSPRINGS

we keep the top two specimens in the population
for(i in 1:S){
x.current[i,1]=sum(twos*bin.current[i,1,])
x.current[i,2]=sum(twos*bin.current[i,2,])
phi[i]=f(n,c(x.current[i,1],x.current[i,2]))
}

ftness[1,]=phi
rnk=order(phi)

bin.next[1,,]=bin.current[rnk[S],,]# this one has the highest rank in fitness

bin.next[S,,]=bin.current[rnk[S-1],,] # has the second highest rank in fitness

x.current[1,]=x.current[rnk[S],]
x.current[2,]=x.current[rnk[S-1],]Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 37 / 41

Example (cont’d)

for(i in 2:(S/2)) {
samples from {1,...,S} with probs prop to phi
parent1.index=sample(1:S,1,prob=phi)
parent2.index = sample(1:S,1)
#crossover position
pos = sample(1:(m-1),1)
#the first offspring is produced via crossover
first coordinate
bin.next[i,1,1:pos]=bin.current[parent1.index,1,1:pos]
bin.next[i,1,(pos+1):m]=bin.current[parent2.index,1,(pos+1):m]
#second coordinate
bin.next[i,2,1:pos]=bin.current[parent1.index,2,1:pos]
bin.next[i,2,(pos+1):m]=bin.current[parent2.index,2,(pos+1):m]

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 38 / 41

Example (cont’d)
THE MUTATION STEP IS PERFORMED
mutate = rbinom(m,1,m.rate)
#if a mutation has occured, the coordinate is flipped
bin.next[i,1,] = (bin.next[i,1,]+mutate)%%2
repeat the process for second offspring
pos = sample(1:(m-1),1)
mutate = rbinom(m,1,m.rate)
bin.next[S-i+1,1,1:pos]=bin.current[parent2.index,1,1:pos]
bin.next[S-i+1,1,(pos+1):m]=bin.current[parent1.index,1,(pos+1):m]
bin.next[S-i+1,2,1:pos]=bin.current[parent2.index,2,1:pos]
bin.next[S-i+1,2,(pos+1):m]=bin.current[parent1.index,2,(pos+1):m]
bin.next[i,1,] = (bin.next[i,1,]+mutate)%%2}
for(i in 2:(S-1)){
x.current[i,1]=sum(twos*bin.next[i,1,])
x.current[i,2]=sum(twos*bin.next[i,2,])
phi[i]=f(n,c(x.current[i,1],x.current[i,2]))
}
bin.current=bin.next

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 39 / 41

Example (cont’d)

update the fitness values
for(k in 1:S){

x.current[k,1]=sum(twos*bin.current[k,1,])
x.current[k,2]=sum(twos*bin.current[k,2,])
phi[k]=f(n,c(x.current[k,1],x.current[k,2])) }

ftness[j+1,]=phi
best.ftness[j+1]=max(phi)}

print(x.current[rnk[S],])
plot(c(1,40),c(0,1.1),type="n", xlab="Generation", ylab="Best solution")
lines(c(1:itr),best.ftness[1:itr])
abline(h=f(n,c(0.5,0.5)),col="red")

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 40 / 41

References I

Sangit Chatterjee, Matthew Laudato, and Lucy A Lynch. Genetic
algorithms and their statistical applications: an introduction.
Computational Statistics & Data Analysis, 22(6):633–651, 1996.

William L Goffe, Gary D Ferrier, and John Rogers. Global optimization of
statistical functions with simulated annealing. Journal of econometrics,
60(1-2):65–99, 1994.

Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4:
65–85, 1994.

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I October 3, 2023 41 / 41

	Introduction
	Stochastic Gradient Descent
	Simulated Annealing
	Genetic Algorithms
	References

