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Introduction
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Background

The expectation-maximization (EM) algorithm is one of the most
ubiquitous algorithms in statistics

It plays a huge role in both frequentist and Bayesian computational
statistics

The algorithm was formally introduced in Dempster et al. [1977] but a
number of special cases of it were known earlier

I e.g., the Baum-Welch algorithm for fitting hidden Markov models

In the original setup, the goal is to find the MLE of some parameter θ
in a statistical model featuring missing data
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Missing Data and the Algorithm Itself
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Missing Data?

It is not unusual for data to be lost or unreported

The EM algorithm is thus popular in many areas

In addition, it can be helpful to formulate a model with complete data
as a missing data one (as we will see later)

In fact, some of the most commonly-used statistical models benefit
from the elegant properties of the EM algorithm
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The Basics

Suppose that under perfect circumstances, we could observe complete
data Ỹcom generated from some statistical model

In real life, however, we only have access to a part of it, the observed
data Ỹobs

The remaining part is the missing data Ỹmis

So Ỹcom = (Ỹobs, Ỹmis)
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Missingness Mechanisms
Let f (ỹcom | θ) and g(ỹobs | θ) be the pdfs of the complete and
observed data, respectively

Define the random variable R as

R =
{
1 if Ymis is observed
0 if Ymis is unobserved

Suppose the distribution of R depends on Ycom and varies with some
parameter ψ

I i.e., it takes the form p(r | Ycom, ψ)

The likelihood of the model that includes the missing indicator is then

L(θ, ψ | Ỹobs, R̃) =
∫

p(R̃ | Ỹobs, Ỹmis, ψ)f (Ỹobs, Ỹmis | θ) dỸmis
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MAR and MCAR

Suppose that the probability of missingness does not depend on the
missing data itself

I i.e., p(R | Yobs,Ymis, ψ) = p(R | Yobs, ψ)
I This property is known as missing at random (MAR)

Then
L(θ, ψ | Ỹobs, R̃) = p(R̃ | Ỹobs, ψ)g(Ỹobs | θ)

So in this case, likelihood-based inference for θ does not depend on the
distribution of R

So we can proceed without considering the missingness mechanism

The stronger condition p(R | Yobs,Ymis, ψ) = p(R | ψ) is known as
missing completely at random (MCAR)
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The Ingredients
Define the complete-data log likelihood as

`com(θ) = log
(
f (Ỹobs, Ỹmis | θ)

)
and the observed-data log likelihood as

`obs(θ) = log
(
g(Ỹobs | θ)

)
Define the Q-function as the conditional expectation

Q(θ | θ′) = Eθ′

[
`com(θ) | Ỹobs

]
computed with respect to the conditional density

k(Ỹmis | Ỹobs,θ
′) = f (Ỹobs, Ỹmis | θ′)

g(Ỹobs | θ′)
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Description of the EM Algorithm

The EM algorithm relies on an iterative procedure to find a local (or
global) maximizer of `obs(θ):

1 Choose a starting value θ(0)

2 For t ≥ 0:
E-Step Compute Q(θ | θ(t))

M-Step Set θ(t+1) = argmaxθQ(θ | θ(t))
3 Stop when ||θ

(t+1)−θ(t)||
||θ(t)|| < ε where ε is a small user-defined threshold

(say ε ≈ 10−6)
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Examples
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Example: Finite Mixture of Poissons

Suppose Y1, . . . ,Yn arises from a finite mixture of K Poisson
distributions:

P(Yi = y) =
K∑

k=1
πk
λyi

k e−λk

yi !

Here each λk > 0, and each πk > 0 with
∑K

k=1 πk = 1

We want to find the MLE of θ = (λ1, . . . , λK , π1, . . . , πK )
I Note that πK = 1− π1 − · · · − πK−1, so there are 2K − 1 scalars to

estimate

The MLE does not exist in closed form, but the model is an ideal
candidate for the EM algorithm
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Example: Finite Mixture of Poissons (Continued)

To begin with, we need to formulate the latent variables and the
complete data

It is easy to show that the original model is equivalent to the model

Yi | Zi = k ∼ Poisson(λk)
Zi ∼ Categorical(π1, . . . , πk)

That is, P(Yi = y | Zi = k) = λ
yi
k e−λk

yi ! and P(Zi = k) = πk for
1 ≤ k ≤ K

So we take Ỹcom = (Y1, . . . ,Yn,Z1, . . . ,Zn) and Ỹmis = (Z1, . . . ,Zn)
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Example: Finite Mixture of Poissons (Continued)
The pdf of the complete data is given by

f (Ỹcom | θ) = f (ỹobs, Ỹmis | θ) =
n∏

i=1

K∏
k=1

(
πk ·

λyi
k e−λk

yi !

)
1Zi =k

The complete-data log likelihood is therefore

`com(θ) =
n∑

i=1

K∑
k=1

1Zi =k · (log(πk) + yi · log(λk)− λk − log(yi !))

Taking the expectation with respect to θ′ and conditional on
Ỹobs = ỹobs, our Q-function is

Q(θ | θ′)

=
n∑

i=1

K∑
k=1

P(Zi = k | ỹobs,θ
′) · (log(πk) + yi · log(λk)− λk − log(yi !))

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 26, 2023 15 / 37



Example: Finite Mixture of Poissons (Continued)
To evaluate P(Zi = k | Ỹobs = ỹobs,θ

′), use Bayes’ rule and the law of
total probability to get

P(Zi = k | Ỹobs = ỹobs,θ
′) = P(Ỹobs = ỹobs | Zi = k,θ′) · P(Zi = k | θ′)∑K

l=1 P(Ỹobs = ỹobs | Zi = l ,θ′) · P(Zi = l | θ′)

= P(Yi = yi | Zi = k,θ′) · P(Zi = k | θ′)∑K
l=1 P(Yi = yi | Zi = l ,θ′) · P(Zi = l | θ′)

=
π′k ·

λ
′yi
k e−λ′k

yi !∑K
l=1 π

′
l ·

λ
′yi
l e−λ′l

yi !

=: ak(yi ,θ
′)

- So

Q(θ | θ′) =
n∑

i=1

K∑
k=1

ak(yi ,θ
′) · (log(πk) + yi · log(λk)− λk − log(yi !))
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Example: Finite Mixture of Poissons (Continued)

We must now maximize Q(θ | θ′) in θ, which amounts to finding
∇θQ(θ | θ′), setting it to 0, and solving

Basic calculus and some algebra shows that the maximizing parameters
are given by

λ̂k =
∑n

i=1 yi · ak(yi ,θ
′)∑n

i=1 ak(yi ,θ′)
, 1 ≤ k ≤ K

and
π̂k =

∑n
i=1 ak(yi ,θ

′)∑K
l=1

∑n
i=1 al (yi ,θ′)

, 1 ≤ k ≤ K
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Example: Finite Mixture of Poissons (Continued)

The EM algorithm for this example is thus
1 Choose a starting value θ(0)

2 For t ≥ 0: compute θ(t) via the updates

λ
(t+1)
k =

∑n
i=1 yi · ak(yi ,θ

(t))∑n
i=1 ak(yi ,θ(t))

and
π

(t+1)
k =

∑n
i=1 ak(yi ,θ

(t))∑K
l=1
∑n

i=1 al (yi ,θ(t))

3 Stop when ||θ
(t+1)−θ(t)||
||θ(t)|| < ε where ε is a small user-defined threshold

(say ε ≈ 10−6)
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Example: Finite Mixture of Poissons (Continued)

set.seed(2311)
norm <- function(x) {sqrt(sum(xˆ2))}

n <- 10000
lambda_true <- c(0.5, 2.5, 5)
y <- rep(0, times=n)

for (i in 1:n) {
z <- which(rmultinom(n=1, size=c(1,1,1), prob=c(0.25, 0.5, 0.25)) == 1)
y[i] <- rpois(n=1, lambda=lambda_true[z])

}
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Example: Finite Mixture of Poissons (Continued)
lambda_new = c(0.5, 1, 1.5)
pi_new <- c(1/3, 1/3, 1/3)
theta_new <- c(lambda_new, pi_new)
theta_old <- rep(1000, times=3)

A <- array(0L, dim=c(3, n))

while(norm(theta_new - theta_old)/norm(theta_old) >= 1e-6) {
theta_old <- theta_new; pi_old <- pi_new; lambda_old <- lambda_new
for (k in 1:3) {

for (i in 1:n) {
A[k, i] <- pi_old[k]*dpois(y[i], lambda_old[k])/
sum(pi_old*dpois(y[i], lambda_old))

}
}

lambda_new <- sapply(1:3, function(k) sum(y*A[k,])/sum(A[k,]))
pi_new <- sapply(1:3, function(k) sum(A[k,])/sum(A))
theta_new <- c(lambda_new, pi_new)
print(theta_new)

}

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 26, 2023 20 / 37



Exponential Families

Recall that the distribution of a random vector Y is in an exponential
family if its density (or mass) function can be written as

f (y | θ) = h(y) · g(θ) · exp
(
η(θ)>T (y)

)
,

where T (·), η(·), g(·), and h(·) are known functions

T (Y ) is called the sufficient statistic for the distribution

Exponential families have countless properties that make them
particularly nice to do inference with

Many “classical” distributions are members of exponential families
I Normal, exponential, chi-squared, gamma, beta, Bernoulli, binomial,

negative binomial, multinomial, Poisson, geometric. . .
I Finite mixtures of exponential family distributions don’t count
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EM for Exponential Families

If the distribution of Ycom is in an exponential family, then the EM
algorithm has a particularly simple form

At the t’th iteration:
E-Step Estimate the sufficient statistic T = T (Ycom) by

T (t) = E[T (Ycom) | Yobs,θ
(t)]

M-Step Compute θ(t+1) by solving

E
[
∂η(θ)>
∂θ

T (Ycom) | θ
]

= ∂η(θ)>
∂θ

T (t),

or, if the Jacobian ∂η(θ)
∂θ is invertible, by solving

E[T (Ycom) | θ] = T (t)
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EM for Bayesian Posteriors

Suppose we’re Bayesians and we equip θ with a prior p(θ)

Instead of the MLE, we want to find the posterior mode
argmax

θ
p(θ) · g(ỹobs | θ)

Fortunately, the EM algorithm can handle this

Instead of maximizing Q(θ | θ(t)) in the M-step, we simply maximize
Q(θ | θ(t)) + p(θ)

All of the theory still works!
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Section 4

Convergence Properties
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EM: The Ascent Property
A primary feature of the EM algorithm is that each new iterate θ(t+1)

never decreases the likelihood from the previous one:

Theorem
Let θ(1),θ(2), . . . ,θ(t), . . . be the sequence of parameter estimates produced
by the EM algorithm. For all t ≥ 0,

L(θ(t+1) | Yobs) ≥ L(θ(t) | Yobs).

This is not hard to prove

First note that

`(θ(t+1) | Yobs) = log
(
g(Yobs | θ(t+1))

)
= `(θ(t+1) | Ycom)− log

(
k(Ymis | Yobs,θ

(t+1))
)
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EM: The Ascent Property (Continued)

Taking expectations with respect to Ymis | Yobs,θ
(t), we obtain

`(θ(t+1) | Yobs)

= Q(θ(t+1) | θ(t))− Eθ(t)

[
log
(
k(Ymis | Yobs,θ

(t+1))
)
| Yobs

]
≥ Q(θ(t) | θ(t))− Eθ(t)

[
log
(
k(Ymis | Yobs,θ

(t+1))
)
| Yobs

]
≥ Q(θ(t) | θ(t))− Eθ(t)

[
log
(
k(Ymis | Yobs,θ

(t))
)
| Yobs

]
= `(θ(t) | Yobs)

The first inequality is true because θ(t+1) is chosen to maximize
Q(θ | θ(t))
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EM: The Ascent Property (Continued)
The second inequality is essentially due to Jensen’s inequality:

Eθ(t)

[
log
(
k(Ymis | Yobs,θ

(t+1))
)
| Yobs

]
− Eθ(t)

[
log
(
k(Ymis | Yobs,θ

(t))
)
| Yobs

]
= Eθ(t)

[
log
(
k(Ymis | Yobs,θ

(t+1))
k(Ymis | Yobs,θ(t))

)
| Yobs

]

≤ log
(
Eθ(t)

[
k(Ymis | Yobs,θ

(t+1))
k(Ymis | Yobs,θ(t))

| Yobs

])

= log
(∫ k(ymis | Yobs,θ

(t+1))
k(ymis | Yobs,θ(t))

k(ymis | Yobs,θ
(t)) dymis

)

= log
(∫

k(ymis | Yobs,θ
(t+1)) dymis

)
= 0.
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Generalized EM Algorithms

The proof above shows that the theorem holds for any sequence
θ(1),θ(2), . . . ,θ(t), . . . such that Q(θ(t+1) | θ(t)) ≥ Q(θ(t) | θ(t)) for
all t ≥ 0

Algorithms which produce such sequences are known as generalized
EM algorithms

These are also described in Dempster et al. [1977]

A famous example is the ECM algorithm of Meng and Rubin [1993]
I This essentially updates θ one (or several) components at a time within

the M-step
I A further extension is the ECME algorithm of Liu and Rubin [1994],

which speeds up the ECM algorithm
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Initialization(s)

The ascent property shows that the generalized EM algorithms will
eventually find a local maximum of the log-likelihood function (if one
exists)

But there is no guarantee that this is the global maximum!

Likelihood functions for complicated models with many parameters may
have many local maxima, and the algorithm may become stuck in one

Thus, it is usually a good idea to run the algorithm several times with
different initial values

If the parameter estimates upon convergence appear robust to initial
values, we have more assurance that the algorithm has discovered the
global maximum

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 26, 2023 29 / 37



Section 5

Variance Calculations and Convergence Rates
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Asymptotic Variance of the MLE

Classical theory tells us that under certain regularity conditions, the
MLE θMLE for a statistical model {fθ : θ ∈ Θ} is asymptotically normal

The asymptotic covariance is usually estimated using the inverse of the
observed information, Iobs(θMLE) :=

[
−H`(θ)

∣∣
θ=θMLE

]−1

I Here H`(θ) is the negative Hessian of the log-likelihood, as a function of
θ

However, the Hessian is generally unavailable when using the EM
algorithm to find θMLE

Usually, the complete data version of the observed information is easier
to compute than that based on the marginal likelihood
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Louis’s Method

Recall from the proof of the ascent property that

`(θ | Yobs) = Q(θ | θ(t))− R(θ | θ(t)),

where
R(θ | θ(t)) = Eθ(t) [log(k(Ymis) | Yobs,θ) | Yobs]

Suppose the EM algorithm has terminated, so that θ(t) = θ∗ is the
MLE (or a stationary point of the algorithm)

Taking negative second derivatives of both sides gives

Iobs(θ) = Icom(θ)− Imis(θ), (1)

where Icom(θ) = −HQ(·|θ∗)(θ) is called the complete information and
Imis(θ) = HR(·|θ∗)(θ) is called the missing information
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The Missing Information Principle
What happens when we evaluate (1) at θ = θ∗?

To simplify notation, assume that θ is a scalar
I Everything extends to vector parameters when first derivatives are

replaced by gradients and second derivatives are replaced by Hessians

Under regularity conditions, the complete information evaluated at θ∗
can be written as

Icom(θ∗) = Eθ∗
[
− ∂2

∂θ2 log
(
f (Ỹobs, Ỹmis | θ)

)∣∣∣∣∣
θ=θ∗

| Ỹobs

]

Similarly, the missing information at θ∗ can be written as

Imis(θ∗) = Eθ∗
[(

∂

∂θ
log
(
f (Ỹobs, Ỹmis | θ)

))2
∣∣∣∣∣
θ=θ∗

| Ỹobs

]

= Varθ∗
(
∂

∂θ
log
(
f (Ỹobs, Ỹmis | θ)

)∣∣∣∣
θ=θ∗

| Ỹobs

)
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The Missing Information Principle (Continued)

So the missing information is the conditional variance of the
complete-data score function, and is always non-negative

More missing data will result in a larger reduction of the observed
information

Hence, the asymptotic variance (i.e., I−1
com(θ∗)) will be larger

This is not surprising, as we expect to obtain estimators with larger
variances when data are missing

The same principle is also intimately connected to the algorithm’s rate
of convergence
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Rate of Convergence

An optimization method for finding θ∗ with convergence order c has a
rate of convergence γ if limt→∞ θ(t) = θ∗ and

lim
t→∞

||θ(t+1) − θ∗||
||θ(t) − θ∗||c

= γ,

provided the limit exists

The convergence order of the EM algorithm is usually 1 (i.e., it
converges linearly)

I In contrast to, e.g., Newton-Raphson, which is quadratic but lacks the
ascent property

If the EM update is implicitly defined by the function M(·) (i.e.,
θ(t+1) = M(θ(t))), then the EM algorithm’s rate of convergence is
given by the largest eigenvalue of the Jacobian ∂M

∂θ
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The Fraction of Missing Information

It turns out that this matrix is equal to

I − Iobs(θ∗)I−1
com(θ∗)

I Here I is the identity matrix of length p × p, where p = dim(θ)

Iobs(θ∗)I−1
com(θ∗) is called the fraction of missing information

With less missing data, Iobs(θ∗)I−1
com(θ∗) is “closer” to I and the rate

of convergence improves

Some components of θ(t) may have better convergence properties than
others

I Meng and Rubin [1994] give componentwise rates of convergence for the
EM algorithm
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