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Section 1

Introduction
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Optimization Methods

e Optimization methods are used for maximizing (or minimizing) a
function

@ For smooth multivariate functions, this can be achieved by solving a
system of non-linear equations

» Or linear, if you're lucky!
@ Many methods were developed for specific applications

@ We will focus on fairly robust methods, although their efficiency can
vary
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Notation

o Consider a pdf/pmf f(x | @), where x € RY and 8 € RP, which
generates a sample of data X, := {x1,...,Xp}

e We want to maximize (in 0) the likelihood

L(O| %) = [[ f(xi | 0)
i=1

which is equivalent to maximizing the log-likelihood

00 | xp) Zlog (xi | 9))

» Maximizing £(0 | X,) is almost always easier!
@ The maximizer is among the solutions of

o0 | x,) .
_— = < i<
90, 0, 1<i<d
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Section 2

Fixed Point Methods
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Fixed Point Iteration

@ A point 6" is a fixed point of a function h iff h(6*) = 6*

@ A fixed point iteration seeks to approximate the fixed points of h using
the following steps:

@ Initialize the process at 6q

@ Make the updates 0,1 = h(0;) for t > 1

© Stop when % < € where € is a small user-defined threshold (say
€~ 107°)

@ When is h guaranteed to have a fixed point?
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Fixed Point Solutions

Theorem

Let h : R? — RY. Suppose any of the following conditions hold:
Q h satisfies the Lipschitz condition ||h(0) — h(€')|| < C - ||@ — &'|| for
some constant C € (0,1) and for all 6,60' € RY
@ h: K — K is continuous and K € RY is compact
© d =1, h is differentiable, and ||W'(0)|| <1 for all € R
Then a solution exists to h(0) = 6.
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Example: Existence of a Fixed Point Solution

norm <- function(v) {sqrt(sum(v-2))}
h <- function(th) {c(sin(th[1]), cos(th[2]))}
th <- ¢(0.5, 0.5)
err <- Inf
while (err > 10e-6) {
th_new <- h(th)
err <- norm(th_new - th)/norm(th)
print (th_new)
th <- th_new

}

th
h(th)
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Section 3

Newton-Raphson Methods
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Univariate Newton-Raphson

@ Let g: R — R be twice continuously differentiable such that g’(8) # 0
whenever g(6) =0

@ The Newton-Raphson (NR) algorithm approximates a root of g using
the following steps:

@ Initialize the process at 6

@ Make the updates 0,1 = 0; — gg_,((%ft)) fort >1

© Stop when % < € where € is a small user-defined threshold
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Newton-Raphson: A Quick Derivation

@ Why should this work?
@ Suppose that 6* is a root of g

e By Taylor's theorem,

0=g(0") = g(0:) + (0" = 00)g"(00) + ——;——&"(0:) (1)

for some ét between 6; and 6*

o If 6; is close to 6%, then (6* — 6;)? is small and the last term in (1) is
(hopefully) negligible

e So
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Newton-Raphson: Convergence Order

o Let ¢; := 6; — 6" be the error of the t'th approximation

@ An optimization method for finding 6* has convergence order 8 > 0 if
|imt*)oo €t = 0 and

. |€t+1‘ _
tll[rc;‘o |€t|ﬁ -

for some ¢ > 0
@ What is the convergence order of NR (if it exists at all)?

e From (1), we get that

&2 9t+1
(0* o 01’:)2 g(ét) P — g(gt) _n*
2g'(0:) g'(0:)
g’/(ét) €t t1]
= 2
= 2g'(0:) lec|? @)

Radu Craiu, Robert Zimmerman (UofT) September 19, 2023 13 /46



Newton-Raphson: Convergence Order (Continued)

@ Using (2), one can rigorously show that NR has a convergence order of
2 in the proximity of 6*

@ That is, the convergence order is quadratic

@ Moreover, if g is steep in an interval around 6*, then g’ will be large in
that interval and the convergence will be even faster

@ But the algorithm is not guaranteed to find its way into that interval

» More on that later
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When Derivatives Are Unavailable. . .

@ When the derivative of g cannot be computed, we may approximate

g'(6:) by a finite difference:

g(0:) — g(0e—1)
g'(0r) ~ 0, — 0, 1

@ Then the modified NR process becomes

© Initialize the process at 6g, 61

@ Make the updates 6,1 = 6; — W fort>1

© Stop when % < € where € is a small user-defined threshold
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Multivariate Newton-Raphson

@ Suppose g = (g1, - - - ,gd)T :R? — R and assume we want to solve
gi(@)=0for1<i<d

o Define the Jacobian matrix Jg(8) € RY*? with [Je(0)];; = 6%"9(19) and
assume that Jg(@) is invertible when g(6) =0

@ The multivariate NR algorithm approximates a root of g using the
following steps:

@ Initialize the process at 6
@ Make the updates 0,1 = 6; — [Jg(et)]flg(Ht) fort >1
© Stop when % < € where € is a small user-defined threshold
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Newton-Raphson: General Remarks

@ NR may fail if the initial value 8 is far from the solution 6*
@ There may be more than one solution to g(6) =0

o It is generally a good idea to run multiple NR algorithms, each
initialized at different values widely spread out across Dom(g)

Radu Craiu, Robert Zimmerman (UofT) September 19, 2023 17 /46



Connections to Statistical Inference

PHACIED)

o When g : R? — R is the derivative of the log-likelihood g(6) = poria

the Jacobian J;(0*) is the observed Fisher information:

2 5&”
[jn(a*)]i,j = (%)

0=06*

@ The Fisher scoring algorithm is obtained when we replace the observed
Fisher information with the (expected) Fisher information

e

in the NR algorithm

Radu Craiu, Robert Zimmerman (UofT) September 19, 2023 18 /46



Newton-Raphson: Example 1

e Consider an iid sample {1,1,1,1,1,1,2,2,2 3} from

0y

f()’|9):m,

ye N 6€(0,1)

@ Compute the MLE of 6 using both NR and Fisher scoring

@ How do the methods compare to one another?
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Newton-Raphson: Example 2

@ Consider the four blood types A, B, O, and AB
@ We know that. ..

» Type A blood is given by alleles aa, ao, and oa
» Type B blood is given by alleles bb, bo, and ob
» Type AB blood is given by alleles ab and ba

» Type O blood is given by allele oo

@ Given counts of people with these four blood types, na,..., nag
obtained from a sample of size n, we would like to estimate the
frequency of the three alleles a, b, and o in the population

Radu Craiu, Robert Zimmerman (UofT) September 19, 2023 20 /46



Newton-Raphson: Example 3

o Consider the mining town data in the table below concerning the
number of children per family in a sample of 4075 families living in a
mining town

No. children | 0 1 2 3 4 5
No. families | 3,062 587 284 103 33 4

6
2]

@ Assume the samples are collected from a mixture of two
subpopulations:

@ One subpopulation consists of families without children, and its
proportion of the total population is & € (0,1)

@ The other subpopulation consists of families with any number of
children, and is well-modelled by a Poisson(\) distribution
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Newton-Raphson: Example 3 (Continued)

@ Given this model structure, the likelihood function of 8 = (\,§) is

e N ]"
J!

6

L(8 | no,...,ne) = [§+(1—£)e”}"°‘H[(1—§)'

Jj=1

@ Compute the MLE of 8 using both NR and Fisher scoring
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Newton-Raphson: Example 3 (Implementation)

n0 <- 3062
n <- c(587, 284, 103, 33, 4, 2)

expit <- function(x) {1/(1+exp(-x))}

11 <- function(lambda, eta) {

xi <- expit(eta)

n0*log(xi + (1-xi)*exp(-lambda)) + log(l-xi) -1013+*lambda + 1628*log(lamk
}

dll.dlambda <- function(lambda, eta) {
(1628 + exp(etatlambda)*(1628-1013*lambda) - 4075*lambda)/( lambda* (1+exp
}

dll.deta <- function(lambda, eta) {
-exp(eta) *(3063-3062*exp(lambda) + exp(eta+lambda))/( (1l+exp(eta))*(1+ex
}
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Newton-Raphson: Example 3 (Implementation Cont'd)

d211.dlambda2 <- function(lambda, eta) {

-2%(814 + 814+xexp(2*(eta+tlambda)) + exp(etat+lambda)*(1628-1531*1lambda”2)
}

d211.deta2 <- function(lambda, eta) {

exp(eta) *(-3063 + 3062*exp(lambda) - 2+exp(etat+lambda) - 3063*exp(2*(eta+
}

d211.detadlambda <- function(lambda, eta) {

3062+*exp (etat+lambda) /(1+exp(etat+lambda)) "2
}
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Newton-Raphson: Examble 3 (Imbplementation Cont'd)

norm <- function(x) {sqrt(sum(x"2))}

eps <- 10e-5

delta <- 1

lambda.old <- 0.5

xi.old <- 0.9

eta.old <- log(xi.old/(1-xi.old))

while (delta > eps) {
print(c(lambda.old, xi.old, 1l(lambda.old, eta.old)))
dl.old <- c(dll.dlambda(lambda.old, eta.old), dll.deta(lambda.old, eta.ol
Jl.0ld <- matrix(c(d211.dlambda2(lambda.old, eta.old), d211.detadlambda (1
d211.detadlambda(lambda.old, eta.old), d211.deta2(lamt
nrow=2, byrow=T)
w <- c(lambda.old, eta.old) - solve(Jl.old)%*%dl.old
lambda.new <- wl[1]
eta.new <- w[2]
delta <- norm(w - c(lambda.old, eta.old))/norm(c(lambda.old, eta.old))
lambda.old <- lambda.new
eta.old <- eta.new
xi.old <- expit(eta.old)}
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Gauss-Newton

o Let g(0) = 271 (yi — £(0))?, where each f; : R — R is differentiable
and 0 € R9

@ Suppose we want to find

0" = argmin g(6) (3)
0

o If £;(6) = X."0 (i.e., each f; is linear), then (3) is uniquely solved by
the well-known least-squares estimate 8* = (X' X)X Ty

o Here X =[X1---Xp]" and y = (y1,...,yn) "

@ The Gauss-Newton algorithm is an iterative procedure that solves (3)
using local linear approximations of f;
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Gauss-Newton: A Quick Derivation

@ Suppose 6* is the (unknown) solution to (3)

@ Use a Taylor series expansion of each f; at 8 close to 8%, say
0 = 0" + u* with a small u*.

@ Taylor expansion:
fi(6") = £i(6 — u*) = £(6) + V£(6) "u* (4)
e For a fixed 0, set hg(u) = 371 (y; — (0 — u))?, so that
argmin hg(u) = 6 — 6* = u*

e Plugging u* into (4) we see that it is also the minimizer of
S (yi — £i(0) — V£i(0) T u)?

© And the latter is just the least-squares sum i — )N(,-Tu)2 with
)7,' =Yi— f,(0) and X,' = Vf,(t‘))
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Gauss-Newton

@ The previous derivation suggests the following iterative procedure:

@ Initialize the process at 6q

Q Set
Al = (VA(B,),...,V1(0;)) € RI*"

.
where V£;(0) = (3—5’;’-~-’3—o";) , and

Z,= (1 — f(0:), . yn — f2(6:))T €R"

and
0:11=0:+ (A:At)_lA;th, t>0

© Stop when % < € where ¢ is a small user-defined threshold
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Section 4

Gradient Descent
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The Setup

@ Our goal here is to minimize a differentiable function g : RY — R
o By “differentiable”, we mean that the gradient Vg exists
» But we will relax this assumption later

@ Recall from multivariate calculus that the gradient Vg(80) is the vector
at which g increases the fastest at the point

» So —Vg(0) gives the direction in which g has the “steepest descent” at
0

e Equivalently, Vg(0) - u gives the directional derivative of g along the
vector u € RY at @

@ That is,
Ve(0)- u= lim E0T M) ~£(0)
h—0 h
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The Motivation

o Idea: if we want to find our way down the surface of g, take a step in
the steepest downward direction from where we currently stand

@ So if we stand at 6;, we then take a step to

011 =0;— Vg(at)

@ We may want to take smaller or larger steps in the same direction, so

choose
01_-+1 = Ot - th(Bt)

for some pre-chosen h > 0
e With small enough step sizes, we will always have g(0:+1) < g(6:)

» But too small, and we'll move very slowly. ..
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The Algorithm

@ The gradient descent algorithm is

@ Initialize the process at 8y and choose a pre-specified step size h > 0
@ Make the updates 0,11 = 0; — hVg(0;) for t > 0
© Stop when ||Vg(0:4+1)|] < € where € is a small user-defined threshold
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The Step Size Matters!

@ For a toy example, consider minimizing g(#) = 6* with g = 1 and step
sizes h € {0.0025,0.025,0.25}

g <- function(x) {x"4}
grad.g <- function(x) {4*x"3}

h.1 <- 0.0025
t.1<-0

th <- 1

while (abs(grad.g(th)) > 1le-6) {
t.1<-t.1+1
th <- th - h.l*grad.g(th)

}

cat("thetax = ", th, "; iterations: ", t.1, sep="")

## thetax = 0.006299604; iterations: 1259864
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The Step Size Matters! (Continued)

@ Now h = 0.025:

h.2 <- 0.025

t.2 <=0

th <- 1

while (abs(grad.g(th)) > 1e-6) {
t.2<-t.2+1
th <- th - h.2*grad.g(th)

}

cat("thetax = ", th, "; iterations: ", t.2, sep="")

## theta*x = 0.006299591; iterations: 125980
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The Step Size Matters! (Continued)
e And finally h = 0.25:

h.3 <- 0.25
t.3<-0

th <- 1
while (abs(grad.g(th)) > 1e-6) {
t.3<-t.3+1

th <- th - h.3*grad.g(th)
}

cat("thetax = ", th, "; iterations: ", t.3, sep="")
## thetax = 0; iteratiomns: 1

@ We seem to be improving as h gets larger

@ What happens if we try h = 0.57
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Guarantees for GD

Theorem

Suppose g is convex and Vg is L-Lipschitz. Let 8* = argmin g(0) and let
0

01,05, ... be the sequence of GD outputs. If h <1/L, then

" ||9*—90||2
0 _ 0 < e

o If g is convex then any local minimum is a global minimum

@ Unfortunately, we rarely have the luxury of dealing with convex
functions

» At least Lipschitz gradients are fairly common in statistics and machine
learning

e If g is nonconvex, then GD can easily find its way into a local mode
(and get stuck there)
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Adaptive Step Sizes

@ The choice of h is generally not an easy one to make, especially when
the conditions in the theorem above cannot be verified

@ At the cost of extra computation, we can make the step size adaptive

@ That is, we make the updates 0;1 = 0 — h;Vg(6;), where we choose
the h:'s in a principled way

@ In principle, the “best” choice is hy = argmin g(0; — hVg(6;))
h

» This is called exact line search, but is usually difficult/impractical
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Backtracking Line Search

@ A basic variation is backtracking line search, where we use the idea
above to find a “good enough” step size without doing too much work:

@ Initialize the process at 8y and choose a “large” o > 0 and v € (0,1)
@ For each t > 0, choose a decreasing sequence o > 1 > Qg2 > ...
until
g(0: — ackVg(6:)) < g(6:) — arxyl[Ve(8:)lI>
© Stop when ||Vg(0:4+1)|| < € where € is a small user-defined threshold

@ One common choice of sequence: choose o € (0,1) and a x = o

@ But there are more clever methods out there
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Example: Logistic Regression

set.seed(2311)

expit <- function(x) {1/(1+exp(-x))}
logit <- function(p) {log(p/(1-p))}
norm <- function(x) {sqrt(sum(x"2))}

n <- 1000

X1 <- rnorm(n=n)

X2 <- rbinom(n=n, size=1, prob=0.2)
X3 <- rpois(n=n, lambda=0.7)

X <- cbind(1, X1, X2, X3)

y <- rbinom(n=n, size=1, prob=expit(0.4 + 0.7*X1 + 3*xX2 - X3))

g <- function(theta) {
-sum(y*log(expit (apply(X, 1, function(x) x%*Y%theta))) +
(1-y)*log(1-expit(apply(X, 1, function(x) x%*)theta))))}

grad.g <- function(theta) {
t(X) %*% (expit(apply(X, 1, function(x) xJ*%theta)) - y)}

Radu Craiu, Robert Zimmerman (UofT) September 19, 2023

39 /46



Example: Logistic Regression (Continued)

eps <- le-b
gam <- 0.001

th <- rep(1, 4)

while (norm(grad.g(th)) > eps) {
alp <- 0.05

while(g(th - alp#*grad.g(th)) > g(th) - alp*gam*norm(grad.g(th)) 2) {
alp <- alp*0.05
}

th <- th - alp#*grad.g(th)
}

th.GD <- as.vector(th)

th.NR <- as.vector(glm(y ~ ., family = binomial(link="logit"),
data=data.frame(y, X1, X2, X3))$coefficients)
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Including Constraints: Projected Gradient Descent

@ In statistical contexts, we often need to perform constrained
optimization

@ The vanilla GD algorithm puts no constraints on the iterates 6;, but
this is easily modified

@ The projected gradient descent algorithm adds an intermediate step in
which each 0() is projected onto some closed constraint set C

@ More specifically, we replace Step 2 in the basic GD algorithm by

@ For t > 0, make the updates 6,;/,, = 0; — hVg(8;) and
0; € argmin ||[n — 0,41 2]|
necC

@ When C is convex, the argmin is unique (so “€" can be replaced by
ll:11)

@ Modifications such as adaptive step sizes can still be applied

Radu Craiu, Robert Zimmerman (UofT) September 19, 2023 41/46



Projected Gradient Descent: Example

@ Consider again finding the MLE of 6 given an iid sample
{1,1,1,1,1,1,2,2,2,3} from

QY

f()/|9):m,

yeN* 6€(0,1)

@ The constraint set here is (0, 1), which is open

@ However, if we're confident that Oy g isn't too close 0 or 1, we can
take C = [¢,1 — €] for some very small ¢ > 0

@ It is not hard to show that

ar{gr;lin] 17 — 01| = min{max{0;1/5,€},1 — €}
nele,l—e
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Projected Gradient Descent: Example (Continued)

y <= c(1,1,1,1,1,1,2,2,2,3)

11 <- function(theta) {sum(y*log(theta) - log(-y*log(l-theta)))}
grad.ll <- function(theta) {sum(y/theta + 1/((1-theta)*log(l-theta)))}

th <- 0.9

h <- 0.005

while (abs(grad.l1(th)) > le-6) {
thps <- th + h*grad.ll(th)

th <- min(max(thp5, O + .Machine$double.eps), 1 - .Machine$double.eps)
}
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Subgradient Methods

@ Sometimes our objective function g may not be differentiable

o If g is convex, then it still has at least one subgradient vy at any point
0, satisfying
g(0) — g(6o) > vo - (0 — o)

@ The basic subgradient method is

@ Initialize the process at 6y and choose a pre-specified step size h > 0

© Make the updates 0;.1 = 0; — hv; for t > 0, where v; is any
subgradient of h at 6,

© Keep track of the best iterate so far by setting hest = min{h>*t h(6,)}

© Stop when...?!

@ Although subgradient methods also have convergence guarantees, they
have no universally agreed upon stopping criteria
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Extensions

@ There are many (hundreds?) of extensions and variations of the basic
GD algorithm and the subgradient method [Ruder, 2016]

e We will examine SGD (stochastic gradient descent) in Class 4
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