
STA2311: Advanced Computational Methods for
Statistics I

Class 2: Classical Optimization Methods

Radu Craiu Robert Zimmerman

University of Toronto

September 19, 2023

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 1 / 46

1 Introduction

2 Fixed Point Methods

3 Newton-Raphson Methods

4 Gradient Descent

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 2 / 46

Section 1

Introduction

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 3 / 46

Optimization Methods

Optimization methods are used for maximizing (or minimizing) a
function

For smooth multivariate functions, this can be achieved by solving a
system of non-linear equations

I Or linear, if you’re lucky!

Many methods were developed for specific applications

We will focus on fairly robust methods, although their efficiency can
vary

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 4 / 46

Notation
Consider a pdf/pmf f (x | θ), where x ∈ Rd and θ ∈ Rp, which
generates a sample of data x̃n := {x1, . . . , xn}

We want to maximize (in θ) the likelihood

L(θ | x̃n) =
n∏

i=1
f (xi | θ)

which is equivalent to maximizing the log-likelihood

`(θ | x̃n) =
n∑

i=1
log(f (xi | θ))

I Maximizing `(θ | x̃n) is almost always easier!

The maximizer is among the solutions of

∂`(θ | x̃n)
∂θi

= 0, 1 ≤ i ≤ d

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 5 / 46

Section 2

Fixed Point Methods

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 6 / 46

Fixed Point Iteration

A point θ∗ is a fixed point of a function h iff h(θ∗) = θ∗

A fixed point iteration seeks to approximate the fixed points of h using
the following steps:

1 Initialize the process at θ0
2 Make the updates θt+1 = h(θt) for t ≥ 1
3 Stop when ||θt+1−θt ||

||θt || < ε where ε is a small user-defined threshold (say
ε ≈ 10−6)

When is h guaranteed to have a fixed point?

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 7 / 46

Fixed Point Solutions

Theorem
Let h : Rd → Rd . Suppose any of the following conditions hold:

1 h satisfies the Lipschitz condition ||h(θ)− h(θ′)|| ≤ C · ||θ − θ′|| for
some constant C ∈ (0, 1) and for all θ,θ′ ∈ Rd

2 h : K → K is continuous and K ∈ Rd is compact
3 d = 1, h is differentiable, and ||h′(θ)|| < 1 for all θ ∈ R

Then a solution exists to h(θ) = θ.

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 8 / 46

Example: Existence of a Fixed Point Solution

norm <- function(v) {sqrt(sum(vˆ2))}

h <- function(th) {c(sin(th[1]), cos(th[2]))}

th <- c(0.5, 0.5)

err <- Inf

while (err > 10e-6) {
th_new <- h(th)
err <- norm(th_new - th)/norm(th)
print(th_new)
th <- th_new

}

th
h(th)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 9 / 46

Section 3

Newton-Raphson Methods

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 10 / 46

Univariate Newton-Raphson

Let g : R→ R be twice continuously differentiable such that g ′(θ) 6= 0
whenever g(θ) = 0

The Newton-Raphson (NR) algorithm approximates a root of g using
the following steps:

1 Initialize the process at θ0
2 Make the updates θt+1 = θt − g(θt)

g ′(θt) for t ≥ 1
3 Stop when ||θt+1−θt ||

||θt || < ε where ε is a small user-defined threshold

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 11 / 46

Newton-Raphson: A Quick Derivation

Why should this work?

Suppose that θ∗ is a root of g

By Taylor’s theorem,

0 = g(θ∗) = g(θt) + (θ∗ − θt)g ′(θt) + (θ∗ − θt)2

2! g ′′(θ̃t) (1)

for some θ̃t between θt and θ∗

If θt is close to θ∗, then (θ∗ − θt)2 is small and the last term in (1) is
(hopefully) negligible

So
θ∗ ≈ θt −

g(θt)
g ′(θt)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 12 / 46

Newton-Raphson: Convergence Order
Let εt := θt − θ∗ be the error of the t’th approximation

An optimization method for finding θ∗ has convergence order β > 0 if
limt→∞ εt = 0 and

lim
t→∞

|εt+1|
|εt |β

= c

for some c > 0

What is the convergence order of NR (if it exists at all)?

From (1), we get that

ε2t︷ ︸︸ ︷
(θ∗ − θt)2 g(θ̃t)

2g ′(θt)
=

θt+1︷ ︸︸ ︷
θt −

g(θt)
g ′(θt)

−θ∗

=⇒
∣∣∣∣∣ g ′′(θ̃t)
2g ′(θt)

∣∣∣∣∣ = |εt+1|
|εt |2

(2)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 13 / 46

Newton-Raphson: Convergence Order (Continued)

Using (2), one can rigorously show that NR has a convergence order of
2 in the proximity of θ∗

That is, the convergence order is quadratic

Moreover, if g is steep in an interval around θ∗, then g ′ will be large in
that interval and the convergence will be even faster

But the algorithm is not guaranteed to find its way into that interval
I More on that later

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 14 / 46

When Derivatives Are Unavailable. . .

When the derivative of g cannot be computed, we may approximate
g ′(θt) by a finite difference:

g ′(θt) ≈
g(θt)− g(θt−1)

θt − θt−1

Then the modified NR process becomes
1 Initialize the process at θ0, θ1
2 Make the updates θt+1 = θt − g(θt)−g(θt−1)

θt−θt−1
for t ≥ 1

3 Stop when ||θt+1−θt ||
||θt || < ε where ε is a small user-defined threshold

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 15 / 46

Multivariate Newton-Raphson

Suppose g = (g1, . . . , gd)> : Rd → Rd and assume we want to solve
gi(θ) = 0 for 1 ≤ i ≤ d

Define the Jacobian matrix Jg (θ) ∈ Rd×d with [Jg (θ)]i ,j = ∂gi (θ)
∂θj

and
assume that Jg (θ) is invertible when g(θ) = 0

The multivariate NR algorithm approximates a root of g using the
following steps:

1 Initialize the process at θ0
2 Make the updates θt+1 = θt − [Jg (θt)]−1g(θt) for t ≥ 1
3 Stop when ||θt+1−θt ||

||θt || < ε where ε is a small user-defined threshold

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 16 / 46

Newton-Raphson: General Remarks

NR may fail if the initial value θ0 is far from the solution θ∗

There may be more than one solution to g(θ) = 0

It is generally a good idea to run multiple NR algorithms, each
initialized at different values widely spread out across Dom(g)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 17 / 46

Connections to Statistical Inference

When g : Rd → R is the derivative of the log-likelihood g(θ) = ∂`(θ|x̃n)
∂θ ,

the Jacobian Jg(θ∗) is the observed Fisher information:

[J n(θ∗)]i ,j :=
(
∂2`(θ | x̃n)
∂θi∂θj

)∣∣∣∣∣
θ=θ∗

The Fisher scoring algorithm is obtained when we replace the observed
Fisher information with the (expected) Fisher information

[In(θ∗)]i ,j = Eθ

[(
∂2`(θ | X̃n)
∂θi∂θj

)]

in the NR algorithm

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 18 / 46

Newton-Raphson: Example 1

Consider an iid sample {1, 1, 1, 1, 1, 1, 2, 2, 2, 3} from

f (y | θ) = θy

−y · log(1− θ) , y ∈ N∗, θ ∈ (0, 1)

Compute the MLE of θ using both NR and Fisher scoring

How do the methods compare to one another?

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 19 / 46

Newton-Raphson: Example 2

Consider the four blood types A, B, O, and AB

We know that. . .
I Type A blood is given by alleles aa, ao, and oa
I Type B blood is given by alleles bb, bo, and ob
I Type AB blood is given by alleles ab and ba
I Type O blood is given by allele oo

Given counts of people with these four blood types, nA, . . . , nAB
obtained from a sample of size n, we would like to estimate the
frequency of the three alleles a, b, and o in the population

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 20 / 46

Newton-Raphson: Example 3

Consider the mining town data in the table below concerning the
number of children per family in a sample of 4075 families living in a
mining town

No. children 0 1 2 3 4 5 6
No. families 3,062 587 284 103 33 4 2

Assume the samples are collected from a mixture of two
subpopulations:

One subpopulation consists of families without children, and its
proportion of the total population is ξ ∈ (0, 1)

The other subpopulation consists of families with any number of
children, and is well-modelled by a Poisson(λ) distribution

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 21 / 46

Newton-Raphson: Example 3 (Continued)

Given this model structure, the likelihood function of θ = (λ, ξ) is

L(θ | n0, . . . , n6) =
[
ξ + (1− ξ)e−λ

]n0 ·
6∏

j=1

[
(1− ξ) · e

−λλj

j!

]nj

Compute the MLE of θ using both NR and Fisher scoring

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 22 / 46

Newton-Raphson: Example 3 (Implementation)

n0 <- 3062
n <- c(587, 284, 103, 33, 4, 2)

expit <- function(x) {1/(1+exp(-x))}

ll <- function(lambda, eta) {
xi <- expit(eta)
n0*log(xi + (1-xi)*exp(-lambda)) + log(1-xi) -1013*lambda + 1628*log(lambda)

}

dll.dlambda <- function(lambda, eta) {
(1628 + exp(eta+lambda)*(1628-1013*lambda) - 4075*lambda)/(lambda*(1+exp(eta+lambda)))

}

dll.deta <- function(lambda, eta) {
-exp(eta)*(3063-3062*exp(lambda) + exp(eta+lambda))/((1+exp(eta))*(1+exp(eta+lambda)))

}

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 23 / 46

Newton-Raphson: Example 3 (Implementation Cont’d)

d2ll.dlambda2 <- function(lambda, eta) {
-2*(814 + 814*exp(2*(eta+lambda)) + exp(eta+lambda)*(1628-1531*lambdaˆ2))/((1+exp(eta+lambda))*lambda)ˆ2

}

d2ll.deta2 <- function(lambda, eta) {
exp(eta)*(-3063 + 3062*exp(lambda) - 2*exp(eta+lambda) - 3063*exp(2*(eta+lambda)) + 3062*exp(2*eta+lambda))/((1+exp(eta))*(1+exp(eta+lambda)))ˆ2

}

d2ll.detadlambda <- function(lambda, eta) {
3062*exp(eta+lambda)/(1+exp(eta+lambda))ˆ2

}

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 24 / 46

Newton-Raphson: Example 3 (Implementation Cont’d)
norm <- function(x) {sqrt(sum(xˆ2))}

eps <- 10e-5
delta <- 1
lambda.old <- 0.5
xi.old <- 0.9
eta.old <- log(xi.old/(1-xi.old))

while (delta > eps) {
print(c(lambda.old, xi.old, ll(lambda.old, eta.old)))
dl.old <- c(dll.dlambda(lambda.old, eta.old), dll.deta(lambda.old, eta.old))
Jl.old <- matrix(c(d2ll.dlambda2(lambda.old, eta.old), d2ll.detadlambda(lambda.old, eta.old),

d2ll.detadlambda(lambda.old, eta.old), d2ll.deta2(lambda.old, eta.old)),
nrow=2, byrow=T)

w <- c(lambda.old, eta.old) - solve(Jl.old)%*%dl.old
lambda.new <- w[1]
eta.new <- w[2]
delta <- norm(w - c(lambda.old, eta.old))/norm(c(lambda.old, eta.old))
lambda.old <- lambda.new
eta.old <- eta.new
xi.old <- expit(eta.old)}

th.MLE <- c(lambda.old, xi.old)Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 25 / 46

Gauss-Newton

Let g(θ) =
∑n

i=1(yi − fi(θ))2, where each fi : Rd → R is differentiable
and θ ∈ Rd

Suppose we want to find

θ∗ = argmin
θ

g(θ) (3)

If fi(θ) = X>i θ (i.e., each fi is linear), then (3) is uniquely solved by
the well-known least-squares estimate θ∗ = (X>X)−1X>y

Here X = [X1 · · ·Xn]> and y = (y1, . . . , yn)>

The Gauss-Newton algorithm is an iterative procedure that solves (3)
using local linear approximations of fi

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 26 / 46

Gauss-Newton: A Quick Derivation

Suppose θ∗ is the (unknown) solution to (3)

Use a Taylor series expansion of each fi at θ close to θ∗, say
θ = θ∗ + u∗ with a small u∗.

Taylor expansion:

fi(θ∗) = fi(θ − u∗) ≈ fi(θ) +∇fi(θ)>u∗ (4)

For a fixed θ, set hθ(u) =
∑n

i=1(yi − fi(θ − u))2, so that
argmin

u
hθ(u) = θ − θ∗ = u∗

Plugging u∗ into (4) we see that it is also the minimizer of∑n
i=1(yi − fi(θ)−∇fi(θ)>u)2

And the latter is just the least-squares sum
∑n

i=1(ỹi − X̃>i u)2 with
ỹi = yi − fi(θ) and X̃i = ∇fi(θ)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 27 / 46

Gauss-Newton

The previous derivation suggests the following iterative procedure:
1 Initialize the process at θ0
2 Set

A>t = (∇f1(θt), . . . ,∇fn(θt)) ∈ Rd×n

where ∇fi(θ) =
(
∂fi
∂θ1
, . . . , ∂fi

∂θd

)>
, and

Zt = (y1 − f1(θt), . . . , yn − fn(θt))> ∈ Rn

and
θt+1 = θt + (A>t At)−1A>t Zt , t ≥ 0

3 Stop when ||θt+1−θt ||
||θt || < ε where ε is a small user-defined threshold

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 28 / 46

Section 4

Gradient Descent

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 29 / 46

The Setup

Our goal here is to minimize a differentiable function g : Rd → R

By “differentiable”, we mean that the gradient ∇g exists
I But we will relax this assumption later

Recall from multivariate calculus that the gradient ∇g(θ) is the vector
at which g increases the fastest at the point θ

I So −∇g(θ) gives the direction in which g has the “steepest descent” at
θ

Equivalently, ∇g(θ) · u gives the directional derivative of g along the
vector u ∈ Rd at θ

That is,
∇g(θ) · u = lim

h→0

g(θ + hu)− g(θ)
h

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 30 / 46

The Motivation

Idea: if we want to find our way down the surface of g , take a step in
the steepest downward direction from where we currently stand

So if we stand at θt , we then take a step to

θt+1 = θt −∇g(θt)

We may want to take smaller or larger steps in the same direction, so
choose

θt+1 = θt − h∇g(θt)

for some pre-chosen h > 0

With small enough step sizes, we will always have g(θt+1) ≤ g(θt)
I But too small, and we’ll move very slowly. . .

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 31 / 46

The Algorithm

The gradient descent algorithm is
1 Initialize the process at θ0 and choose a pre-specified step size h > 0
2 Make the updates θt+1 = θt − h∇g(θt) for t ≥ 0
3 Stop when ||∇g(θt+1)|| < ε where ε is a small user-defined threshold

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 32 / 46

The Step Size Matters!
For a toy example, consider minimizing g(θ) = θ4 with θ0 = 1 and step
sizes h ∈ {0.0025, 0.025, 0.25}

g <- function(x) {xˆ4}
grad.g <- function(x) {4*xˆ3}

h.1 <- 0.0025
t.1 <- 0

th <- 1

while (abs(grad.g(th)) > 1e-6) {
t.1 <- t.1 + 1
th <- th - h.1*grad.g(th)

}

cat("theta* = ", th, "; iterations: ", t.1, sep="")

theta* = 0.006299604; iterations: 1259864

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 33 / 46

The Step Size Matters! (Continued)

Now h = 0.025:

h.2 <- 0.025
t.2 <- 0

th <- 1

while (abs(grad.g(th)) > 1e-6) {
t.2 <- t.2 + 1
th <- th - h.2*grad.g(th)

}

cat("theta* = ", th, "; iterations: ", t.2, sep="")

theta* = 0.006299591; iterations: 125980

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 34 / 46

The Step Size Matters! (Continued)
And finally h = 0.25:

h.3 <- 0.25
t.3 <- 0

th <- 1

while (abs(grad.g(th)) > 1e-6) {
t.3 <- t.3 + 1
th <- th - h.3*grad.g(th)

}

cat("theta* = ", th, "; iterations: ", t.3, sep="")

theta* = 0; iterations: 1

We seem to be improving as h gets larger

What happens if we try h = 0.5?

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 35 / 46

Guarantees for GD
Theorem
Suppose g is convex and ∇g is L-Lipschitz. Let θ∗ = argmin

θ
g(θ) and let

θ1,θ2, . . . be the sequence of GD outputs. If h ≤ 1/L, then

g(θt)− g(θ∗) ≤ ||θ
∗ − θ0||2

2th .

If g is convex then any local minimum is a global minimum

Unfortunately, we rarely have the luxury of dealing with convex
functions

I At least Lipschitz gradients are fairly common in statistics and machine
learning

If g is nonconvex, then GD can easily find its way into a local mode
(and get stuck there)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 36 / 46

Adaptive Step Sizes

The choice of h is generally not an easy one to make, especially when
the conditions in the theorem above cannot be verified

At the cost of extra computation, we can make the step size adaptive

That is, we make the updates θt+1 = θt − ht∇g(θt), where we choose
the ht ’s in a principled way

In principle, the “best” choice is ht = argmin
h

g(θt − h∇g(θt))

I This is called exact line search, but is usually difficult/impractical

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 37 / 46

Backtracking Line Search

A basic variation is backtracking line search, where we use the idea
above to find a “good enough” step size without doing too much work:

1 Initialize the process at θ0 and choose a “large” α > 0 and γ ∈ (0, 1)
2 For each t ≥ 0, choose a decreasing sequence α ≥ αt,1 > αt,2 > . . .

until
g(θt − αt,k∇g(θt)) ≤ g(θt)− αt,kγ||∇g(θt)||2

3 Stop when ||∇g(θt+1)|| < ε where ε is a small user-defined threshold

One common choice of sequence: choose α ∈ (0, 1) and αt,k = αk

But there are more clever methods out there

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 38 / 46

Example: Logistic Regression
set.seed(2311)
expit <- function(x) {1/(1+exp(-x))}
logit <- function(p) {log(p/(1-p))}
norm <- function(x) {sqrt(sum(xˆ2))}

n <- 1000

X1 <- rnorm(n=n)
X2 <- rbinom(n=n, size=1, prob=0.2)
X3 <- rpois(n=n, lambda=0.7)
X <- cbind(1, X1, X2, X3)

y <- rbinom(n=n, size=1, prob=expit(0.4 + 0.7*X1 + 3*X2 - X3))

g <- function(theta) {
-sum(y*log(expit(apply(X, 1, function(x) x%*%theta))) +

(1-y)*log(1-expit(apply(X, 1, function(x) x%*%theta))))}

grad.g <- function(theta) {
t(X) %*% (expit(apply(X, 1, function(x) x%*%theta)) - y)}

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 39 / 46

Example: Logistic Regression (Continued)
eps <- 1e-5
gam <- 0.001

th <- rep(1, 4)

while (norm(grad.g(th)) > eps) {
alp <- 0.05

while(g(th - alp*grad.g(th)) > g(th) - alp*gam*norm(grad.g(th))ˆ2) {
alp <- alp*0.05

}

th <- th - alp*grad.g(th)
}

th.GD <- as.vector(th)
th.NR <- as.vector(glm(y ~ ., family = binomial(link="logit"),

data=data.frame(y, X1, X2, X3))$coefficients)

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 40 / 46

Including Constraints: Projected Gradient Descent

In statistical contexts, we often need to perform constrained
optimization

The vanilla GD algorithm puts no constraints on the iterates θt , but
this is easily modified

The projected gradient descent algorithm adds an intermediate step in
which each θ(t) is projected onto some closed constraint set C

More specifically, we replace Step 2 in the basic GD algorithm by
2 For t ≥ 0, make the updates θt+1/2 = θt − h∇g(θt) and

θt ∈ argmin
η∈C

||η − θt+1/2||

When C is convex, the argmin is unique (so “∈” can be replaced by
“=”)

Modifications such as adaptive step sizes can still be applied

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 41 / 46

Projected Gradient Descent: Example

Consider again finding the MLE of θ given an iid sample
{1, 1, 1, 1, 1, 1, 2, 2, 2, 3} from

f (y | θ) = θy

−y · log(1− θ) , y ∈ N∗, θ ∈ (0, 1)

The constraint set here is (0, 1), which is open

However, if we’re confident that θMLE isn’t too close 0 or 1, we can
take C = [ε, 1− ε] for some very small ε > 0

It is not hard to show that

argmin
η∈[ε,1−ε]

||η − θt+1/2|| = min{max{θt+1/2, ε}, 1− ε}

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 42 / 46

Projected Gradient Descent: Example (Continued)

y <- c(1,1,1,1,1,1,2,2,2,3)

ll <- function(theta) {sum(y*log(theta) - log(-y*log(1-theta)))}
grad.ll <- function(theta) {sum(y/theta + 1/((1-theta)*log(1-theta)))}

th <- 0.9

h <- 0.005

while (abs(grad.ll(th)) > 1e-6) {
thp5 <- th + h*grad.ll(th)
th <- min(max(thp5, 0 + .Machine$double.eps), 1 - .Machine$double.eps)

}

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 43 / 46

Subgradient Methods

Sometimes our objective function g may not be differentiable

If g is convex, then it still has at least one subgradient v0 at any point
θ0 satisfying

g(θ)− g(θ0) ≥ v0 · (θ − θ0)

The basic subgradient method is
1 Initialize the process at θ0 and choose a pre-specified step size h > 0
2 Make the updates θt+1 = θt − hvt for t ≥ 0, where vt is any

subgradient of h at θt
3 Keep track of the best iterate so far by setting hbest

t = min{hbest
t−1, h(θt)}

4 Stop when. . . ?!

Although subgradient methods also have convergence guarantees, they
have no universally agreed upon stopping criteria

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 44 / 46

Extensions

There are many (hundreds?) of extensions and variations of the basic
GD algorithm and the subgradient method [Ruder, 2016]

We will examine SGD (stochastic gradient descent) in Class 4

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 45 / 46

References I

Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 19, 2023 46 / 46

	Introduction
	Fixed Point Methods
	Newton-Raphson Methods
	Gradient Descent
	References

