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Section 1

About This Course
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Statistical Computation

For a researcher, statistical computation is both a field of study and a
tool

For example: classical inference requires optimization strategies, while
Bayesian analysis requires sophisticated sampling techniques

Both areas (optimization and sampling) are put under pressure by
increasingly large datasets and intractable likelihoods

A graduate student must be able to apply these techniques efficiently
and correctly

I And also be able to tweak them when needed

For the latter, they need to “look under the hood” and understand the
principles behind most algorithms
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In This Course

We will look at some of the most widely used optimization and
sampling algorithms

We will illustrate concepts with examples in R, but emphasis will be
placed on understanding techniques and principles rather than
programming

So there will be hands-on practice problems, but also theoretical
questions
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Course Structure

The course is roughly divided into two parts

The first five classes are about basic inference and classical
optimization techniques, while the remaining six pertain to sampling

A class for the midterm will separate the two halves
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R

We will be doing all of our programming in R:

set.seed(2311)

s.means <- rep(0, length=1000)

for (j in 1:1000) {
s.means[j] <- mean(rpois(n=100, lambda=2))

}

hist((s.means - mean(s.means))/sd(s.means))

shapiro.test(s.means)

You will need a computer with fairly good specs for computations later
in the course
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Simulating with R

R allows simulation from most standard distributions (uniform, normal,
gamma, t, beta, Poisson, binomial, Dirichlet, etc.)

y <- rnorm(n=5, mean=0, sd=1)
print(round(y, 2))

y <- rbinom(n=5, size=19, prob=0.55)
print(y)

y <- sample(c(1,2,3), size=5, replace=T, prob=c(0.1, 0.3, 0.6))
print(y)
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Programming with R

It is essential that you have a solid grasp of R programming
I Including vectorization!

Rob will present a quick R bootcamp if you’re rusty with the basics
(date TBD)

If/when you already have basic knowledge: “The R Inferno” [Burns,
2012]

More advanced reading: “Advanced R” by Hadley Wickham [Wickham,
2019]
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RStudio

It is highly recommended that you use RStudio Desktop, which is a
popular IDE for R

RStudio supports Python, C, C++, etc.

It includes countless features for productivity and is very well supported

RStudio supports R Markdown, which you will use for your course
assignments

I Also useful/required for other courses (e.g., STA2101H)

These slides were prepared using RStudio!
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Model Validation and Comparison
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Model Validation and Comparison

Model validation is a hugely important aspect of statistical inference
I Sometimes you can think of this as checking model calibration:

confidence intervals must have the correct coverage, p-values under the
null hypothesis have the correct distribution (U(0, 1)), etc.

I Model validation is most often performed using simulations

Model comparison has to do with selecting the best model in a set
(although all could be pretty bad)

I Can be based on selection criteria (AIC, BIC, WAIC, etc)
I Can be done via cross-validation
I Can be done via simulation

Different criteria: estimating bias and variance, predictive accuracy,
testing power, robustness
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Computing Bias and Variance
Recall: let θ̃(Y ) be an estimator of θ based on data Y = (Y1, . . . ,Yn)

I For simplicity we view θ as a scalar here, but for most of the course we
will deal with vector parameters

The bias of θ̃(Y ) is defined as

Biasθ
(
θ̃(Y )

)
= Eθ

[
θ̃(Y )

]
− θ

The mean-squared error (MSE) of θ̃(Y ) is defined as

MSEθ
(
θ̃(Y )

)
= Eθ

[(
θ̃(Y )− θ

)2
]
,

where the expectation is taken with respect to Y generated by θ

The root-mean-square error (RMSE) of θ̃(Y ) is defined as

RMSEθ
(
θ̃(Y )

)
=
√
MSEθ

(
θ̃(Y )

)
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The Bias-Variance Tradeoff

The bias-variance tradeoff states that

MSEθ
(
θ̃(Y )

)
= Biasθ

(
θ̃(Y )

)2
+ Varθ

(
θ̃(Y )

)
Thus

RMSEθ
(
θ̃(Y )

)
=
√
Biasθ

(
θ̃(Y )

)2
+ Varθ

(
θ̃(Y )

)
In other words: for a fixed MSE or RMSE, we cannot reduce the bias
of an estimator without increasing its variance (or vice versa)
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Accuracy Measures
Note that the MSE can be computed or estimated when θ is known,
which leads to the idea of generating data given parameter values (i.e.,
generating synthetic data)

I We will discuss methods of generating synthetic data soon

For certain validation criteria, we want the synthetic data to be similar
to the observed data

Want to fit the model of interest to these synthetic data sets many
times

When generating n synthetic datasets using the parameter value θ,
leading to n estimates θ̂1, . . . , θ̂n, then the (empirical) RMSE is

RMSE(θ̂1, . . . , θ̂n) =

√∑n
i=1(θ̂i − θ)2

n

I When the context is clear, we call this the RMSE as well
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Predictive Modelling
The bias-variance theory above adapts naturally to predictive modelling

Assume we are interested in predicting values for n scalar observations

The observed values are y1, . . . , yn and a model makes predictions
ŷ1, . . . , ŷn

The RMSE here is then defined as

RMSE =

√∑n
i=1(yi − ŷi )2

n

The term (yi − ŷi )2 can be replaced by another loss function L(y , yi )
when appropriate

I The RMSE uses the quadratic loss L(y , ŷ) = (yi − ŷ)2

I If the yi ’s are binary, one might use the 0-1 loss, for which
L(y , ŷ) = 1− 1y−ŷ = 1y 6=ŷ
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Example: RMSE for Linear Regression

set.seed(2311)

n <- 1000

# design matrix
dat <- data.frame(X1=rnorm(n=n),

X2=rbinom(n=n, size=1, prob=0.2),
X3=rpois(n=n, lambda=0.7))

# noisy linear response
dat$y <- 0.4 + 0.7*dat$X1 + 3*dat$X2 - dat$X3 + rnorm(n=n, sd=2)

mod <- lm(y ~ ., data=dat) # fit basic linear model
y.hat <- predict.lm(mod) # make predictions

RMSE <- sqrt(mean((dat$y-y.hat)ˆ2))
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Section 3

Simulation for Validation
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Basic Simulation

Simulation itself is one of the most useful tools for model validation
and comparison

For now, we only note some basic facts about simulation

For today’s simple examples we rely on classical Monte Carlo:

In order to estimate

I = Eθ[h(X )] =
∫

h(x)fθ(x) dx

for some density/pmf fθ(x), we sample X1, . . . ,Xm
iid∼ fθ and use the

estimator

Î = 1
M

M∑
i=1

h(Xi )
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Proof of Principle Via Simulation

Given a model X ∼ fθ and data X1, . . . ,Xn, we can produce an
estimator θ̂(X)

Usually theory provides asymptotic properties for θ̂, but we are
interested in finite sample properties, which we can study by simulation

First we choose a specific θ0 of interest and a number of simulations M

Then for 1 ≤ i ≤ M, we do the following:
1 Generate data X (i)

1 , . . . ,X (i)
n ∼ fθ0 (these make up one synthetic dataset)

2 Compute θ̂i := θ(X (i))

The properties of θ̂(X) are explored using the empirical distribution of
θ̂1, . . . , θ̂M
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Example: Toxicity Data

Consider the following toxicity data, in which xi is the dose of some
toxin administered to the i ’th of 9 samples of individuals and yi is the
number of resulting dead:

x = (1, 1, 2, 2, 2, 2, 3, 3, 3)
y = (2, 3, 4, 7, 9, 9, 10, 12, 15)

We assume a standard Poisson regression model in which
Yi | xi ∼ Poisson(λ(xi )) and log(λ(xi )) = β0 + β1xi

The model is easily fit using glm in R

For such a small sample, we question the variance estimates and the
coverage of confidence intervals (why?)
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Example: Toxicity Data (Continued)

x <- c(1,1,2,2,2,2,3,3,3)
y <- c(2,3,4,7,8,9,10,12,15)
mod <- glm(y ~ x, family = poisson(link="log"))
summary(mod)$coefficients[,1:2]

## Estimate Std. Error
## (Intercept) 0.4494390 0.4643537
## x 0.6992008 0.1826136

An approximate 95% confidence interval for β1 is then (0.341, 1.057)

But this is based on the asymptotic variance obtained from the
observed Fisher information!

We use simulation to check whether this CI provides the correct
coverage
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Which Replication Design?
We need to decide between a fixed design model (where the x’s are
fixed) or a random design model (where the x’s are drawn from a
population)

This decision is based on the problem’s specifics, the inferential focus,
etc.

If the x’s represent fixed levels of an experiment and there is no need
to study the performance of the drug for other values, then a fixed
design is appropriate

I For example, x might represent dosages that are commonly used in a
population

If the x’s are covariate values sampled from a large population, then
conclusions are more widely applicable if we include new values of x in
the synthetic datasets, and so a random design is appropriate

I For example, x could be the salary of a UofT graduate and y the size of
the graduate’s family
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Fixed and Random Designs

In a fixed design setup, we choose values of θ and generate
Y ∼ fθ(· | x)

In a random design setup:
1 Choose parameter values for the distribution of x (say φ), and generate

x ∼ gφ

2 Choose values of θ and generate Y ∼ fθ(· | x)

For the toxicity data example we follow the random design approach
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Example: Toxicity Data (Continued)

The plan: simulate many x’s, and then many Y | x’s based on the
proposed model

I We assume the xi ’s follow a Poisson distribution with mean
x̄ = 19/9 ≈ 2.11

Then compare empirical variance and CIs with the estimated ones

For 1 ≤ j ≤ M:

1 Sample x (j)
1 , . . . , x (j)

9
iid∼ Poisson(2.11) and for 1 ≤ i ≤ 9, sample

Y (j)
i | x (j)

i ∼ Poisson(λ̂(x (j)
i )) where log

(
λ̂(x)

)
= 0.45 + 0.70x

2 Fit the Poisson regression model with data [Y (j), x(j)] and save the
estimates of β1
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Example: Toxicity Data (Continued)
set.seed(2311)

M <- 1000
ci.ind <- rep(0, M)
beta1.emp <- rep(0, M)

for (i in 1:M) {
x <- rpois(9, 2.11)
y <- rpois(9, exp(0.45 + 0.70*x))
mat <- summary(glm(y~x, family=poisson(link="log")))$coefficients
beta1.emp[i] <- mat[2,1]
ci.L <- beta1.emp[i] - 1.96*mat[2,2]
ci.U <- beta1.emp[i] + 1.96*mat[2,2]
ci.ind[i] <- 1*(ci.L < 0.70 && 0.70 < ci.U)

}

c(mean(ci.ind), sqrt(var(beta1.emp)))

## [1] 0.9490000 0.1181653
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Other Types of Constraints

Suppose that we are interested in creating synthetic datasets which
preserve the values of the response variable Y = y

Then we must simulate from the conditional distribution of X | y
generated by some pre-specified parameter values α and φ

I Say α specifies the conditional distribution of X | y and φ specifies the
marginal distribution of X

We have pα(y | X ) and pφ(X ), and we want to sample from
pα,φ(X | y) ∝ pα(y | X ) · pφ(X )

We may also want to sample α itself given some p(α)

We will learn how to do this later
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Section 4

Robustness Studies
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Model Assumptions

Every statistical model relies on a set of assumptions

Usually, these are structural and/or stochastic

For a regression model with covariates x = (x1, . . . , xp) and β ∈ Rp,
structural constraints can include. . .

I Linear dependence: E [Y ] = η(x) with η(x) = β>x
I Additive models: E [Y ] =

∑p
i=1 fi (xi ) with fi (xi ) = · · ·

I Single index models: E [Y ] = f (η(x))
I Many nonparametric models assume smoothness

Parametric assumptions
I Gaussian noise
I Poisson regression
I Logistic/probit regression
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Robustness Studies

A robustness study will explore the performance of a model under
various violations of its assumptions

Theoretical results are limited, so most of the results are empirical
I i.e., based on simulations

We create disturbances in the model and study the performance of the
estimators
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Robustness Study Techniques

Techniques for testing structural assumptions include. . .
I Modifying the structure of the generating model (e.g., use

f (x1, x2) = x1 · x2 + f (x1) + f (x2))
I Introducing dependence (when independence is assumed)
I Adding new covariates with spurious or real effects
I Investigating effects of missing data (ignorable and non-ignorable

missingness)

Techniques for testing parametric assumptions include..
I Changing the distribution of errors
I Contaminating distributions (using mixtures)
I Changing the lightness of tails
I Swapping symmetry for skewness
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Example: Toxicity Data (Continued)

We can also compare the empirical variance and CIs with the estimated
ones under model misspecification

That is, we generate the simulated data under a different model than
that used originally

For example, for each 1 ≤ i ≤ 9 we can generate
Zi | xi ∼ NegBin(r , p(xi )) where p(x) = 1

1+eη(x) and η(x) = α0 + α1x

I Recall: Z ∼ NegBin(r , p) can be interpreted as the number of failures
that occur before r successes (with success probability p) are
encountered; we use r = 1

True model: log(P(Zi = k | xi )) = k · η(xi )− (k + 1) · log
(
1 + eη(xi )

)
Fitted model: log(P(Yi = k | xi )) = k · η(xi )− eη(xi ) − log(k!)
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Example: Toxicity Data (Continued)
set.seed(2311)

M <- 1000
x <- c(1,1,2,2,2,2,3,3,3)
y <- c(2,3,4,7,8,9,10,12,15)
p <- 1/(1 + exp(0.45 + 0.70*x))
ci.ind <- rep(0, M)
beta1.emp <- rep(0, M)

for (i in 1:M) {
z <- sapply(1:9, function(j) rnbinom(n=1, size=1, prob=p[j]))
mat <- summary(glm(z~x, family=poisson(link="log")))$coefficients
beta1.emp[i] <- mat[2,1]
ci.L <- beta1.emp[i] - 1.96*mat[2,2]
ci.U <- beta1.emp[i] + 1.96*mat[2,2]
ci.ind[i] <- 1*(ci.L < 0.70 && 0.70 < ci.U)

}

c(mean(ci.ind), sqrt(var(beta1.emp)))

## [1] 0.495000 0.563285
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Section 5

Cross-Validation
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Basic Cross-Validation

Motivation: when training/fitting a model on data, one is concerned
about the performance of said model on new data (presumably selected
from the same population)

This goes back to the idea of replicating data, but this time without
knowing the parameters in the model.

Idea: train/fit the model on part(s) of the dataset D1 (the “training”
set), and then test it on the remaining part(s) D2 (the “testing” set)

Also called the holdout method

More involved: repeat the above many times in some principled way
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Motivation: Parameter Tuning/Model Selection

Suppose (θ, λ) are parameters in the model, with θ of interest, and λ a
tuning parameter one must choose from a set {λ1, . . . , λK}

First we fit model onto the data D1 using λj to get θ̂(j) for 1 ≤ j ≤ K

Then we compute a goodness-of-fit measure (predictive RMSE,
likelihood, etc.) when using the model with parameter values set to
(θ̂(j), λj) on D2

Examples: LASSO, bandwidth selection in NP, many instances of
model selection, etc.
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Motivation: Risk Assessment/Evaluation of Loss

Suppose that θ is the parameter of interest

Using D1, we obtain θ̂(1) and using using D2, we compute θ̂(2)

If we do this multiple times we end up with pairs (θ̂(1), θ̂(2))i so we can
analyze the stochastic behaviour of the difference δi = θ̂

(1)
i − θ̂

(2)
i

I e.g. E [δi ], Var(δi ) or MSE(δi ) = E[δ2
i ]

The latter is

E
[
(θ̂(1) − θ̂(2))2

]
= E

[
(θ̂(1) − θ)2

]
︸ ︷︷ ︸

MSE1

+E
[
(θ̂(2) − θ)2

]
︸ ︷︷ ︸

MSE2

−2Cov
(
θ̂(1), θ̂(2)

)

When D1 is independent of D2 and the θ̂’s are unbiased, this reduces
to MSE(δi ) = MSE1 + MSE2
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k-Fold Cross-Validation

Example: k-fold cross-validation:
1 Partition the data into k equal-sized batches
2 For each 1 ≤ i ≤ k, use batch i for testing and the other k − 1 batches

for training
3 Average the k ‘results’ (these are all δi ’s)

The k results are not independent

The resulting estimator has high variance when k is small
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Example: k-Fold Cross-Validation for Linear Regression

set.seed(2311)

k <- 10

dat$group <- sample(rep(1:k, times=n/k), size=n)

RMSE.vec <- 0*(1:k)

for (i in 1:k) {
dat.i <- subset(dat, group == i)
dat.noti <- subset(dat, group != i)
mod.i <- lm(y ~ ., data=dat.noti)
y.hat.i <- predict.lm(mod.i, newdata=dat.i)
RMSE.vec[i] <- sqrt(mean((dat.i$y-y.hat.i)ˆ2))

}

RMSE.kfold <- mean(RMSE.vec)
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Leave-p-Out Cross-Validation

Example: Leave-p-out cross-validation:
1 There are

(n
p
)
unique ways of partitioning the data into one batch of size

n − p and another of size p
2 For each partition, use the (n − p)-sized batch for training and the

p-sized batch for testing
3 Average the

(n
p
)
results

For moderately large datasets, this is only practical when p is small
(often p is taken to be 1 or 2)
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Monte Carlo Cross-Validation

Idea: instead of working exhaustively, use repeated random sampling

Example: Monte Carlo cross-validation:
1 Choose the number of simulations b
2 For 1 ≤ i ≤ b, perform standard validation with a random partition of

the data (of fixed length)
3 Average the b results
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Example: Monte Carlo Cross-Validation for Linear
Regression

set.seed(2311)

b <- 100

RMSE.MC.vec <- 0*(1:b)

for (i in 1:b) {
inds.train <- sample(1:n, size=0.7*n)
dat.i.train <- dat[inds.train,]
dat.i.test <- dat[-inds.train,]
mod.i <- lm(y ~ ., data=dat.i.train)
y.hat.i <- predict.lm(mod.i, newdata=dat.i.test)
RMSE.MC.vec[i] <- sqrt(mean((dat.i.test$y-y.hat.i)ˆ2))

}

RMSE.MC <- mean(RMSE.MC.vec)
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More on Cross-Validation

There are countless variations of cross-validation in use [Arlot and
Celisse, 2010]

While the basic idea may seem simple, much theory has been
developed to support it

For example, it has been shown that when using maximum likelihood,
using cross-validation for model selection is asymptotically equivalent
to the AIC [Stone, 1977]

Cross-validation can be also used for density estimation in an optimal
way [Celisse, 2014]

But the theory is tricky!
I See the above references for examples

Radu Craiu, Robert Zimmerman (UofT) STA2311: Computational Methods I September 12, 2023 43 / 46



Bayesian Modelling

We have not discussed yet Bayesian techniques. . .

The basic model has Y ∼ p(y | θ) and a prior distribution
θ ∼ p(θ | λ), which leads to a joint probability model with density

p(y , θ | λ) = p(y | θ)p(θ | λ)

Inference is based on the posterior distribution, which has density

π(θ | y , λ) = p(y , θ | λ)∫
p(y , θ|λ) dθ

The denominator is the marginal probability of the data (sometimes
denoted as m(y)) and is often impossible to compute analytically
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Questions of Interest

What is the interpretation of Bayesian posterior?

What are replicates in a Bayesian context?

Does it still make sense to study frequentist properties for Bayesian
estimators (e.g., consistency of the posterior mean, or the posterior
mode, coverage of credible regions)?
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