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Abstract

Over the past several decades, copulas have been widely applied in probability
and statistics to model complex structures governing the dependence between
components of random vectors. Despite the nearly concurrent increased interest
and theoretical developments in information geometry, it appears that little work
has been done in the intersection of these two fields — in fact, we identified only
two papers written in the last decade which focus on this intersection. In this report,
we critically analyze the discussions in these papers of information-geometric
connections to copulas. We find that the connections are relatively superficial and
conclude that a paper exploring deep theoretical connections has yet to be written.

1 Introduction

A d-dimensional copula is a function C : r0, 1sd Ñ r0, 1s which satisfies three properties:

Cp1, . . . , 1, ui, 1, . . . , 1q “ u, 0 ď ui ď 1

Cpu1, . . . , ui´1, 0, ui`1, . . . , udq “ 0, 0 ď ui ď 1
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¯
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In statistics and probability, copulas are operationalized by Sklar’s theorem [Sklar, 1959]. This
foundational result states roughly that any copula is the distribution function of some random vector
pU1, . . . , Udq with Ui „ Unifr0, 1s for each i P t1, . . . , du, and conversely that any random vector
pX1, . . . , Xdq with Xi „ Fi for each i P t1, . . . , du induces a copula through the relation Cpuq :“
PpF1pX1q ď u1, . . . , FdpXdq ď udq. The latter correspondence is unique when the marginal
distributions F1, . . . , Fd are continuous; otherwise, C is uniquely determined on

Śd
h“1 RanpFiq

[Nelsen, 2007].

Copulas allow the study of a random vector’s dependence structure separately from its marginals. A
copula is often used when the elliptical dependence structure of the multivariate Gaussian distribution
does not capture the (often quite complex) dependencies observed in multivariate modelling. A
classic example of this phenomenon is a time series of stock returns, in which dependence often
becomes prominent only at the extremes [McNeil et al., 2015].

Many — if not most — copulas used in practice are members of parametric families, through
which some parameter θ usually characterizes the “strength” of the dependence between the
marginals, often interpolating between perfect negative dependence (when d “ 2q and indepen-
dence, or else independence and perfect positive dependence. Parametric families of copulas
that interpolate all three are called comprehensive. The Gauss copula, for example, is defined
as CRpuq “ Φp0,Rq

`

Φ´1pu1q, . . . ,Φ´1pudq
˘

— where Φp¨q is the cdf of the (univariate) N p0, 1q



distribution, Φp0,Rq is the cdf of the (multivariate) Nd p0, Rq distribution andR is a correlation matrix.
It is perhaps the most widely used copula outside of finance and extreme value modelling, because it
is tractable and easy to interpret. Also popular are the Archimedean copulas; these comprise fam-
ilies of the form tCθpuq “ φ´1

θ pφθpu1q ` ¨ ¨ ¨ ` φθpudqq : θ P Θu, where φθ is a family-specific
Archimedean generator satisfying several regularity conditions. Countless modifications and exten-
sions of these copula families have appeared over the years; spin-offs of the Archimedean copulas
alone include nested Archimedean copulas [Hofert and Pham, 2013], outer power copulas [Górecki
et al., 2021], Archimax copulas [Klement et al., 2005], and many more. Meanwhile, entirely new
families of copulas are constantly being developed.

Separately, the field of information geometry seeks to analyze parametric families of absolutely
continuous distributions through the lens of differential geometry by viewing a parametric family of
densities tfθ : θ P Θu as a statistical manifold M (that is, a Riemannian manifold equipped a suitable
Riemannian metric, such as the Fisher-Rao metric — see Subsection 3.2) [Ay et al., 2017]. Among
other innovations, this viewpoint allows one to construct various notions of distances (or, more
precisely, statistical divergences) between distributions within the same family. Some extensions
to non-parametric statistics have been developed as well [Pistone and Sempi, 1995, Zhang, 2013,
Pistone, 2013]).

Briefly, a divergence Dp¨ || ¨q is a function defined on a statistical manifoldM satisfying the following
three properties [Amari, 2016]:

1. Dpθ1 || θ2q ě 0 for all θ1,θ2 P M ;
2. Dpθ1 || θ2q “ 0 if and only if θ1 “ θ2; and
3. D admits a Taylor expansion of the form

Dpθ || θ ` δθq “
1

2

d
ÿ

i,j“1

gijpθqdθi dθj `O
`

|δθ|3
˘

for some positive definite matrix Gpθq “ rgi,jpθqsi,j and an infinitesimal displacement
θ ` δθ from θ.

Two important families of divergences are the Bregman divergences and the f -divergences. Given a
strictly convex differentiable function ψ, a Bregman divergence takes the form

Dψpθ1 || θ2q “ ψpθ1q ´ ψpθ2q ´ xθ1 ´ θ2,∇ψpθ2qy ,

which can be interpreted geometrically as the vertical distance between ψpθ1q and the hyperplane
tangent to ψ at the point θ2. Given a strictly convex function f : R` Ñ R Y t8u which satisfies
fp1q “ 0, an f -divergence takes the form

Df pPθ1
|| Pθ2

q “

ż

X
f

ˆ

dPθ1

dPθ2

˙

dPθ2

where Pθ1
! Pθ2

. While f -divergences are defined on a spaces of measures, any absolutely
continuous probability measure Pθ can obviously be identified with θ P M . The famous Kullback-
Leibler (KL) divergence, perhaps the most important example of a statistical divergence, can be
obtained both as a Bregman divergence with ψpθq “

řD
d“1 θd ¨ log pθdq and as an f -divergence

with fpxq “ x ¨ log pxq); it is the only statistical divergence which is simultaneously a Bregman
divergence and an f -divergence on the space of probability measures [Amari, 2009].

Theoretically, any parametric family of absolutely continuous copula densities tcθ : θ P Θu with
Θ Ď Rp — as is virtually always the case — should qualify for an information-geometric analysis.
In this report, we examine two papers which deal with the intersection of copulas and information
geometry; both focus on well-known statistical methodologies (clustering and variational inference,
respectively), and both use copulas and information-geometric notions to devise improvements
over more basic schemes. In these papers, the primary connection to information-geometric is the
quantification of distances between copulas (or multivariate distributions) via statistical divergences.

The remainder of this report is organized as follows. In Sections 2 and 3, we provide some background
for the statistical methodology featured in each paper, discuss the main techniques and results in
an information geometric context, and critically evaluate the papers. In Section 4, we end with
a discussion and briefly speculate on why there has apparently been so little work featuring both
copulas and information geometric concepts.
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2 Copula Variational Bayes

Our first paper is Copula Variational Bayes inference via information geometry [sic] [Tran, 2018],
which as of this writing is still in preprint on arXiv.

2.1 Background

Variational Bayes, sometimes known as variational inference,1 is a popular method for conducting
approximate statistical inference of complicated systems. Although (as its name suggests) the
technique is most often used in Bayesian applications, the basic approach need not be confined to
these. Briefly, a complicated d-dimensional density fθ “ fθpθq — which is impractical or impossible
to compute or sample from directly — is approximated in a sensible way by a more analytically
convenient density. In Bayesian statistics, for example, posterior densities given by

fθpθq :“
πpθq ¨ fpx | θq

ş

Θ
πpθq ¨ fpx | θqdθ

are typically unavailable in closed form due to the intractable normalizing constant in the denominator.
In other cases, the complex dependence structure between the components of θ may pose its own
additional challenges.

In the variational Bayes setup, an approximating family of tractable d-dimensional distributions C is
chosen first, and then a unique approximating distribution is selected as

rfθ “ argmin
gPC

DKL pg || fθq (1)

The term “variational” refers to the calculus of variations, since the optimization problem defined
by Equation 1 is solved using techniques borrowed from the calculus of variations [Tran, 2018].
More general notions of variational inference were initially used for neural networks [Peterson, 1987,
Hinton and Van Camp, 1993] before being applied to parametric graphical models by Jordan et al.
[1999]; its application to the Bayesian paradigm then followed naturally.

The classic variational Bayes framework chooses C to be a class of factorial densities — that
is, densities of the form rfθ “

śd
h“1

rfh, so that the marginals in the approximating family are
independent. However, the independence requirement can be quite restrictive, especially when the
true density fθ is believed to induce complicated dependence structures among the θh’s. The present
paper — as well as several others published before and since [Tran et al., 2015, Smith et al., 2020,
Gunawan et al., 2021, Chi et al., 2022] — considers loosening this restriction to allow C to be a class
of multivariate densities with a fixed copula but varying marginals. This idea is motivated by the fact
that one can, at least in principle, compute variational approximations on the marginal distributions
in such a way that the calculations does not “interfere” with with the copula that binds the marginals
together. Tran develops an algorithm for accomplishing this computation using principles from
information geometry, as we discuss below.

2.2 Main Information Geometric Results

Tran introduces Bregman divergences at length, starting with its definition and its basic properties.
Among the latter, the so-called three-point property is highlighted: for any α,β,γ P Rd, a Bregman
divergence Dψp¨ || ¨q satisfies the following characterizing property [Ay et al., 2017]:

Dψ pα || βq ` Dψ pβ || γq ´ Dψ pα || γq “ xβ ´ α,∇ψpβq ´ ∇ψpγqy .

Tran then combines two more fundamental results of information geometry — the projection theorem
and the generalized Pythagorean theorem [Amari, 2016] — into one theorem, which provides the
foundational basis for the copula variational Bayes algorithm:
Theorem 2.1 (Bregman Pythagorean inequality). Let X Ď Rd be closed and convex and let γ P Rd.
Then the Bregman projection of γ onto X , defined by βX :“ argminαPX Dψpα || γq, is unique.
Moreover, for any α P X , we have

Dψpα || βX q ` DψpβX || γq ď Dψpα || γq, (2)
where equality holds if and only if βX ´ α and ∇ψpβX q ´ ∇ψpγq are orthogonal.

1Some authors consider the two terms as synonyms, while others consider variational Bayes to be a special
case of variational inference.
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The first part of Theorem 2.1 — the projection theorem, which asserts the uniqueness of the Bregman
projection βX , also known as the information projection [Nielsen, 2018] — has been proved by
Amari [2016], Ay et al. [2017], and many others, in varying levels of generality. The inequality in
Equation 2 follows from showing that xβX ´ α,∇ψpβX q ´ ∇ψpγqy ď 0. In greater generality,
the condition equivalent for equality to hold may be restated in information-geometric terms as a
requirement that the dual geodesic connecting α and βX be orthogonal to the geodesic connecting
βX and γ [Amari, 2016].

Following a lengthy introduction to copulas, Tran narrows his focus to the KL-divergence and proves
the following theorem:

Theorem 2.2. Let fθpθq “ cpupθqq ¨
śd
h“1 fhpθhq and rfθpθq “ rcpupθqq ¨

śd
h“1

rfhpθhq be two
densities on Rd. Then

DKL

´

rfθ || fθ

¯

“ DKL

´

rcpuq || cpF p rFÐpuqqq

¯

`

d
ÿ

h“1

DKL

´

rfh || fh

¯

(3)

ě

d
ÿ

h“1

DKL

´

rfh || fh

¯

(4)

where cpF p rFÐpuqqq “ rc
´

F p rFÐ
1 pu1qq, . . . , F p rFÐ

d pudqq

¯

.

Equation 3 above is a substantial generalization of the fact [Ma and Sun, 2011] that the KL-divergence
from any copula density cpuq to the independence copula — that is, the copula entropy of cpuq — is
equal to the mutual information contained in the random vector U „ c. The inequality Equation 4
follows immediately from the non-negativity of Bregman divergences.

A reasonable approximation to fθ would be some approximating density rfθ whose marginals
rf1, . . . , rfd minimize Equation 4; however, finding such marginals is typically infeasible because the
true marginals themselves fhpθhq “

ş

fθpθqdθzh are unavailable. In contrast, it is conceivably much
easier to find an approximating density rfθ that directly minimizes Equation 3, since a sensibly chosen
optimization scheme may not require access to the true marginals. In addition, such an approximation
would be expected to produce reasonably good marginal approximations, simply because Equation 3
is an upper bound for Equation 4. This is the motivation behind Tran’s copula variational Bayes
algorithm.

The main idea of the algorithm is to consider a family of distributions rfθ “ rf˚
zh|h ¨ rfh for which the

conditional density rf˚
zh|h is fixed, and then use Theorem 2.2 to determine the optimal marginal rfh

which minimizes the KL-divergence from rfθ to fθ, repeating the process for each k. Tran refers to
each such step as a conditionally variational approximation, and encodes it in the following theorem:

Theorem 2.3. Let rfθ “ rf˚
zh|h ¨ rfh and rf˚

θ “ rf˚
zh|h ¨ rf˚

h be two distributions with the same fixed

conditional density rf˚
zh|h. Then

DKL

´

rfθ || fθ

¯

“ DKL

´

rfθ || rf˚
θ

¯

` DKL

´

rf˚
θ || fθ

¯

(5)

ě DKL

´

rf˚
θ || fθ

¯

(6)

The optimal marginal distribution rfh “ rf˚
h which minimizes Equation 5 is given by

rf˚
h pθhq “

1

ζh
¨

fhpθhq

exp
´

DKL

´

rf˚
zh|h || fzh|h

¯¯ (7)

“
1

ζh
¨ exp

˜

E
rf˚
zh|h

«

log

˜

fθpθq

rf˚
zh|hpθzh | θhq

¸ff¸

(8)

where ζh is the appropriate normalizing constant that makes Equation 7 a density, which makes
Equation 6 equal to ´log pζhq.
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The proof proceeds roughly as follows. First, Tran notes that since rfθ is linear in rfh, it is convex
in rfh, and thus Theorem 2.1 applies, yielding Equation 5; the inequality in Equation 6 follows
trivially from the positivity of Bregman divergences. A calculation using Theorem 2.2 exploits the
fact that rfθ and rf˚

θ differ only in the marginals rfh and rf˚
h , and shows that DKLp rfθ || rf˚

θ q “ 0 is
equivalent to Equation 7; a further calculation establishes that under this choice we obtain DKLp rf˚

θ ||

fθq “ ´log pζhq. Equation 8 then follows from rewriting the KL-divergence as an expectation and
absorbing into it the “constant” fh.

Tran notes that if instead we fix the family rfθ “ rfzh|h ¨ rf˚
h where rf˚

h is fixed and rfzh|h is allowed to
vary, then rfθ is convex over rfzh|h and the optimal conditional distribution rfzh|h “ rf˚

zh|h in Equation 5

is given by the true conditional distribution rf˚
zh|h “ fzh|h. However, he also observes that for most

practical purposes this fact is unusable because fzh|h is typically unknown. In contrast, the density
given by Equation 8 can be computed, at least up to the normalizing constant ζh (see Subsection 2.3).

The conditionally variational approximation yields one optimally approximated marginal rf˚
h given

the fixed conditional rf˚
zh|h, which then yields the updated joint density rf˚

θ “ rf˚
zh|h ¨ rf˚

h . To turn this

step into an algorithm, Tran observes that we have the alternative decomposition rf˚
θ “ rf˚

h|zh ¨ rf˚
zh,

where

rf˚
h|zh “

rf˚
zh|h ¨ rf˚

h
ş

rf˚
zh|h ¨ rf˚

h dθh

is the “reverse conditional”. According to Tran, this decomposition yields the following algorithm:
starting with an initial fixed conditional distribution rf

p0q

zh|h, at iteration ν we set rf pνq :“ rf
pν´1q

zh|h ¨ rf
pνq

h ,

where rf
pνq

h is optimized in accordance with Theorem 2.3. We then calculate the “reverse conditional”

rf
pνq

h|zh “

rf
pν´1q

zh|h ¨ rf
pνq

h
ş

rf
pν´1q

zh|h ¨ rf
pνq

h dθh
(9)

and proceed iteratively until we obtain “convergence” of the sequence of approximated densities
rf

p1q

θ , rf
p2q

θ , . . . in the following sense, at which point the algorithm terminates:

Theorem 2.4. DKLp rf pνq || fθq “ ´log
´

ζ
pνq

h

¯

converges monotonically to a local minimum.

Tran states that the computations required in the algorithm become tractable if one first as-
sumes that the true joint distribution fθ is a member of a “conditional exponential family”;
that is, fθpθq 9 exp

`@

ghpθhq, gzhpθzhq
D˘

for some vector-valued functions gh : R Ñ Rq and
gzh : Rd´1 Ñ Rq . The h’th marginal density is then given by

fhpθhq 9

ż

exp
`@

ghpθhq, gzhpθzhq
D˘

dθzh, (10)

which is generally intractable. However, by fixing a conditional density f˚
zh|h in the same class, the

optimization specified in Equation 8 is available in closed form (up to the normalizing constant),
leading to an optimal approximating marginal that can be computed:

Theorem 2.5. Let rfθ “ rf˚
zh|h ¨ rfh be a distribution such that rf˚

zh|hpθq 9 exp
`@

hhpθhq,hzhpθzhq
D˘

.
If the true distribution takes the form fθpθq 9 exp

`@

ghpθhq, gzhpθzhq
D˘

, then the optimal marginal
distribution in Equation 7 takes the form

rf˚
h pθhq 9 exp

´A

ghpθhq ´ hhpθhq,Eθzh„ rf˚
zh|h

“

gzhpθzhq ´ hzhpθzhq
‰

E¯

. (11)

Tran suggests that Equation 11 is easier to compute than Equation 10, for now the integral is inside
the exponential function.

Finally, Tran proceeds to show directly that several commonly-used instances of mean-field approxi-
mations — variational Bayes, the EM algorithm, the ICM algorithm, and the k-means algorithm —
can all be viewed as special cases of his algorithm.
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2.3 Critical Assessment

To begin with, Tran spends far more time than necessary reviewing concepts that could simply be
referenced in established publications. While it is traditional for papers involving copulas to state
Sklar’s theorem, it is far less common to devote an entire section to a review of standard facts about
copulas, as the author does here. Similarly, an entire section is spent on a review of information
geometry (or more specifically, Bregman divergences), in which Bregman divergences are defined
twice: first for functions on Rd, and then for functions on Lp. The author’s motivation here is
clarity and ease of interpretation, since the first definition allows one to easily visualize Theorem 2.1;
however, we believe the repetition is unnecessary given that this paper was (presumably) not intended
to be a pedagogical reference for information geometry. We do acknowledge, however, that this
section of the paper includes two beautiful figures clearly illustrating Bregman divergences and
Theorem 2.1.

The level of information geometry in the paper is not very deep, being fully confined to the use of
Bregman divergences and the basic properties thereof. While Bregman divergences are certainly
fundamental to information geometry, the field includes a vast number of other important, but mostly
unrelated concepts. Moreover, we think that the author has focused unduly on the general case
of Bregman divergences themselves; although the paper includes multiple pages of introductory
discussion about them, the author actually uses only one particular case — the KL-divergence — in
his algorithm. Moreover, the algorithm cannot directly be extended to other Bregman divergences,
as the fundamental Theorem 2.2 holds only for KL-divergences. Every result about Bregman
divergences mentioned in the paper could just as well have been stated for KL-divergences with no
loss of relevance. Going even further, the paper could have been titled more suitably as “Copula
Variational Bayes inference via KL-divergence”; ironically, such a title might have increased the
paper’s exposure because practicioners are likely much more familiar with KL-divergences than with
the term “information geometry” itself. Additionally, the use of the generalized Pythagorean theorem
in Theorem 2.3 seems vacuous; it is unclear why we should not simply minimize the left-hand side of
Equation 5).

The use of copulas is also rather superficial. Tran’s approach essentially ignores the copula c in
fθpθq “ cpupθqq ¨

śd
h“1 fhpθhq and focuses only on the marginals f1, . . . , fd. He notes [Tran, 2018,

Remark 22] that an alternative approach finds rfθ such that DKLprcpuq || cpF p rFÐpuqqqq approximates
DKLpcpuq || rcpuqq, which is equivalent to finding each of the exact marginals fh; however, this
would involve “copula’s explicit analysis” [sic] and is left for future work — which, based on our
literature review, has not yet materialized. Presumably this is because the aforementioned explicit
analysis is intractable, as we elaborate on in Section 4.

The paper’s biggest flaw, however, is in the algorithm itself — specifically, the need to need to derive
the “reverse conditional” Equation 9 in order to proceed from one step of the algorithm to the next,
and the need to calculate the normalizing constant ζh in Theorem 2.3. Both of these steps appear
to be quite intractable in general, even when the true distributions are members of the “conditional
exponential family” described in Theorem 2.5. While Tran notes that the shift of the integral in
Equation 10 into the exponential function in Equation 11 makes the calculation easier, exactly how
much easier depends on the complexity of the functions gzh and hzh; while the choice of the latter is
up to the user, the choice of the former is not. Because of this, the utility of the algorithm is very
limited outside of standard cases such as Gaussian distributions (Tran’s own example). In any case, it
is also unclear how the calculation of Equation 9 actually leads to the next fixed conditional f pνq

zh|h.
Even in the two theoretical case studies provided by the author — one involving the approximation
of a zero-mean bivariate Gaussian distribution, and the other a finite mixture of bivariate Gaussians —
we could not understand why the very complex calculations involved (particularly in the second case
study) led to a viable algorithm. Nowhere does Tran write out the algorithm explicitly, nor does he
state explicitly that the user must repeat the marginal approximation step for each h’th marginal rfh
(although this latter point is implied by the case studies).

After developing his algorithm, Tran shows directly that several common mean-field approximations
can be viewed as special cases. However, these demonstrations are redundant, because the EM
algorithm, the ICM algorithm, and the k-means algorithm are already known to be special cases of
the standard variational Bayes algorithm that Tran’s algorithm generalizes (see, for example, [Neal
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and Hinton, 1998]), a fact noted only vaguely in the paper. Moreover, the k-means algorithm is itself
known to be a special case of the ICM algorithm [Frey and Jojic, 2005].

Finally, the paper is rife with typos. At one point Tran refers to the Bregman projection as the
“Bayesian projection”; elsewhere, a proof concludes with both a “Q.E.D.” and a square. The choice of
template is quite unsuitable for a lengthy paper with four or more section levels. Moreover, while
the underlying math is not tremendously complicated, Tran’s very cumbersome notational choices,
combined with math-heavy prose and an unnatural writing style, make the paper quite difficult to
follow; with many notations and even phrases repeated nearly verbatim throughout the paper, readers
must constantly retrace their steps to know which section they are currently reading.

In summary, Tran [2018] shows some serious deficiencies which may explain why the paper remains
in preprint form four years after its posting to arXiv.

3 Paper 2: Clustering Multivariate Time Series

The second paper we review is Optimal transport vs. Fisher-Rao distance between copulas for clus-
tering multivariate time series [Marti et al., 2016], which was published as a conference proceeding
in the 2016 IEEE/SP Workshop on Statistical Signal Processing (SSP). At only four pages plus
references, this is a substantially smaller work than Tran [2018].

3.1 Background

Clustering is one of the oldest statistical paradigms. Briefly, one desires to categorize a set of
objects into clusters whose members have more in common with each other than with members of
other clusters. In parametric statistics, random effects models are often used for this purpose. In
non-parametric statistics, likely the most famous example is k-means clustering, in which each of N
given objects is assigned to one of k clusters in such a manner that the distance from that object to
the centroid of the cluster (usually its mean) is minimized. The notion of “distance” here is crucial;
as noted by the authors, any nonparametric clustering algorithm relies on some notion of distance (or
divergence; we use the terms interchangeably) between objects.

Typically, the objects to be clustered are observations in a given dataset, but one can also cluster
more general “objects” such as sets of multivariate time series. Marti et al. [2016] observe that one
can cluster multivariate time series using two broad approaches: one can either compare their entire
distributions, or discriminate based on the dependence inherent within the multivariate observations.
The latter approach requires a notion of distance between copulas (see Section 1); the present paper
tackles that problem using information geometric concepts. In particular, the paper aims to compare
the distances between copulas measured with several information-geometric metrics (generally
distances based on the Fisher-Rao metric) as well as with the 2-Wasserstein metric.2

The authors use a copula-based clustering methodology based on Marti et al. [2016], another very
short paper written by three of the same four authors in the same year. In that paper, the authors
compare the empirical copula to another pre-specified copula in a fully non-parametric fashion by first
computing the 1-Wasserstein distance (also known as the “earth mover’s distance”) between the two,
and then applying any clustering algorithm that takes a dissimilarity matrix [Murphy, 2012] as input.
[Marti et al., 2016] However, because this approach suffers from scaling issues in high dimensions,
the authors of the present paper consider a parametric approach instead, in which parametric copulas
are chosen and the distances between them computed using information-geometric divergences.

2Generally, the p-Wasserstein distance between two probability measures P and Q is given by

WppP || Qq “

ˆ

inf
γPΓpP,Qq

ż

MˆM

dpx, yq
p dγpx, yq

˙1{p

,

where ΓpP,Qq denotes the set of all couplings of P and Q (i.e., joint distributions whose marginals coincide
with P and Q) and d is a metric on M . These distances are widely used in the field of optimal transport.
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3.2 Main Information Geometric Results

The authors begin by introducing the distances they will compare. The first notion of distance is
the Fisher-Rao metric ds2pθq “

řd
i,j gijpθqdθi dθj on the statistical manifold M induced by a

parametric model where

gijpθq “ Eθ
„

B

Bθi
log pfθpXqq

B

Bθj
log pfθpXqq

ȷ

is the Fisher information and the induced distance is Dpθ1, θ2q “
şθ2
θ1

ds [Marti et al., 2016].

This distance is usually intractable in practice, so one typically resorts to other measures of distance;
in contrast to Tran [2018], the authors choose to focus on the class of f -divergences

Df pP || Qq “

ż

f

ˆ

dP
dQ

˙

dQ “

ż

X
f

ˆ

ppxq

qpxq

˙

qpxqdx (12)

for convex differentiable functions f satisfying fp1q “ 0, since these divergences are also
parametrization-invariant in the sense that if h : X Ñ Y is a diffeomorphism and p1pyq “ p1phpxqq :“
ppxq ¨ |J pxq|´1 (and q1pyq is defined similarly), then Df pP || Qq “ Df pP1 || Q1q [Qiao and Mine-
matsu, 2010]. Moreover, f -divergences also provide a second-order approximation to the Fisher-Rao
metric in a certain technical sense (see [Amari and Cichocki, 2010, Theorem 5]).

The authors compare the 2-Wasserstein distance (which is not based on the Fisher-Rao metric3)
and various information-geometric divergences — the Fisher-Rao distance, the KL-divergence, the
Jeffreys distance, the Hellinger distance, and the Bhattacharyya distance — between three bivariate
Gauss copulas (see Section 1) identified by their correlation matrices:

RA “

ˆ

1 0.5
0.5 1

˙

, RB “

ˆ

1 0.99
0.99 1

˙

, and RC “

ˆ

1 0.9999
0.9999 1

˙

.

For such copulas, it is well-known that CRpuq Ñ Mpuq :“ mintu1, . . . , udu as R Ñ 1dˆd (where
the latter convergence is with respect to any matrix norm). The copula Mpuq on the right-hand side
is the comonotonicity copula (or the upper Fréchet-Hoeffding bound) and represents perfect positive
dependence between the components of U „ M . Thus, CRB

and CRC
are intuitively “close” to

each other (in an imprecise sense), as they are both “closer” to the comonotonicity copula than CRA
,

which induces only mild positive dependence.

Surprisingly, CRA
and CRB

are closer to each other with respect to the information-geometric
divergences than are CRB

and CRC
; the latter pair, however, are closer with respect to the 2-

Wasserstein distance. The authors explain this apparently unintuitive result in several related ways.
From a purely computational perspective, the analytical forms of these divergences (which the
authors provide in a table) show that the Fisher-Rao and f -divergences between any CR1

and CR2

are superlinearly increasing functions of |R´1
1 | and |R´1

2 |, and thus become poorly-behaved as either
of these correlation matrices approaches 1dˆd. In contrast, the Wasserstein distance is stable in these
limits.

From an information-geometric perspective, the authors note that we see this result because CRB
and

CRC
are close to the comonotonicity copula. Specifically, the comonotonicity copula is not absolutely

continuous. Since it lacks a density, it does not correspond to a point on the statistical manifold M .
On the other hand, the Wasserstein metrics WppP || Qq are defined only in terms of the distributions
P and Q themselves, rather than their densities; thus, the fact that Mpuq is not absolutely continuous
poses no issue.

The authors also point out that when equipped with the Fisher-Rao metric, the space of symmetric
positive definite matrices (which clearly includes the current statistical manifold as a submanifold) is
a Riemannian manifold of negative sectional curvature [Said et al., 2017]. In contrast, the Wasserstein
geometry of the space is of nonnegative curvature and is flat [Takatsu, 2011]. As a consequence, if
we denote a generic bivariate correlation matrix as

Rρ “

ˆ

1 ρ
ρ 1

˙

,

3We note here that Chizat et al. [2018] defines a metric tensor which interpolates between the Hellinger
distance (a special case of f -divergence) and the squared 2-Wasserstein distance in an attempt to relieve the
restriction of optimal transport being defined only between measures having the same mass [Chizat et al., 2018].
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the 2-Wasserstein distance W2pCRρ1
|| CRρ2

q increases in a nearly linear fashion away from the line
y “ x in r0, 1s2. We can observe this increase both from a surface plot of pρ1, ρ2q ÞÑ W2pCRρ1

||

CRρ2
q provided by the authors, and to a lesser extent, from the closed form expression

W2pCRρ1
|| CRρ2

q “

d

tr
ˆ

Rρ1 `Rρ2 ´ 2

b

R
1{2
ρ1 Rρ2R

1{2
ρ1

˙

as derived by Barbaresco [2011]. In contrast, the curvature of the Fisher-Rao geometry results in a very
high sensitivity of Dpρ1, ρ2q to small changes in ρ1 and ρ2 when these parameters are already close
to 1. The authors note that in small-sample data, the estimation error of the parameters could easily
“exceed” the sensitivity of Dpρ1, ρ2q, rendering this measure useless as a means of discrimination.
On the other hand, the authors observe that all of the information-geometric divergences are locally a
quadratic form of the Fisher information Ipρq [Amari and Cichocki, 2010], and 1{Ipρq provides a
lower bound on the variance of any unbiased estimator pρ of ρ via the Cramér-Rao lower bound.

3.3 Critical Assessment

This interesting paper serves its purpose well. However, at only four pages (plus references), it is
very short and could have been written within a larger paper on differences between Wasserstein and
Fisher-Rao based distances, or merged with the authors’ companion paper of the same length on time
series clustering using the 1-Wasserstein distance [Marti et al., 2016]. The present work contains
almost no information directly related to time series, and seems to be more of a supporting work to
the other paper. On the other hand, both this paper and Marti et al. [2016] were published as IEEE
conference proceedings, and the authors may have been limited by space constraints.

Some elements of the paper could have been expanded. It is understandable that the authors would
choose to focus on Gauss copulas, as these are likely the only non-trivial copulas which have
2-Wasserstein, Fisher-Rao, and related f -divergences available in closed form, thus allowing for
surface plots of W2pCρ1 || Cρ2q and Dpρ1, ρ2q as well as exact computations for specific ρ1 and ρ2.
That said, closed form expressions are provided only for divergences between generic zero-mean
multivariate Gaussian distributions with arbitrary covariance matrices. It would have been preferable
for the authors to actually derive these forms for the bivariate correlation matrices used in the paper, in
order to show more clearly the effect of changes on inputs of ρ1 and ρ2. These calculations are tedious
but not tremendously challenging; we have carried them out ourselves in Table 1. For consistency,
we have also recomputed the specific distances for DpCRA

|| CRB
q and DpCRB

|| CRC
q to three

decimal places.4 The expressions provided in Table 1 show much more clearly the effect of changes
in ρ1 and ρ2 when both are close to 1. For additional clarity, Figure 1 includes reproductions of the
authors’ contour plots (or “heatmaps”) for the Fisher-Rao and 2-Wasserstein distances, as well as
plots that we generated for the remaining distances in Table 1.

We also note that the authors fail to mention the fact that the Fisher-Rao distance and the KL-
divergence are not symmetric in their arguments; we are left wondering whether the same counter-
intuitive divergence measures result from comparing Df pCRB

|| CRA
q with Df pCRC

|| CRB
q —

especially given that the 2-Wasserstein distance, being a metric, is symmetric in its arguments.

There seems to be a self-contradiction in the authors’ comparison of the 2-Wasserstein and Fisher-
Rao metric by the curvatures that they induce on the statistical manifold (Section 3.3 of the paper).
In Subsection 3.2, the authors claim that the Fisher-Rao metric is highly sensitive to changes in
parameters around the upper-right corners of r0, 1s2, while the 2-Wasserstein distance increases
roughly linearly away from the main diagonal; however, the heatmaps of Dpρ1, ρ2q and pρ1, ρ2q ÞÑ

W2pCRρ1
|| CRρ2

q provided by the authors seem to show the opposite; in those, the Fisher-Rao
distance appears to be the more stable of the two. Moreover, in the next paragraph they state that
“Fisher-Rao and related divergences do not suffer from this drawback” due to the connection to the
Crámer-Rao lower bound. This apparent self-contradiction disappears if we assume a typographical
error in which the names of the distances have been switched. However, later on in the discussion
section of the paper, the authors remark that “if the dependence is strong between the time series, the
use of Fisher-Rao geodesic distance and related divergences may not be appropriate. [...] To measure
distance [sic] between copulas, we think that the Wasserstein geometry is more appropriate since it

4Strangely, our values for the Hellinger distances vary somewhat from those provided by the authors, which
we have not been able to reproduce. We surmise that the most likely reason is an implementation error.
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Distance DpCρ1 || Cρ2q DpCRA
|| CRB

q DpCRB
|| CRC

q

Fisher-Rao

d

1
2

ˆ

log
´

pρ1`1qpρ2´1q

ρ21´1

¯2

` log
´

pρ2`1qpρ1´1q

ρ21´1

¯2
˙

2.773 3.256

KL pρ1´ρ2qρ2
ρ22´1

` 1
2 log

´

ρ22´1

ρ21´1

¯

22.562 47.197

Jeffreys pρ1´ρ2q
2

p1`ρ1ρ2q

pρ21´1qpρ22´1q
24.050 49.005

Hellinger
c

1 ´
2p1´ρ21q1{4p1´ρ22q1{4
?

4´2ρ1ρ2´ρ21´ρ22
0.690 0.745

Bhattacharyya 1
2 log

ˆ

1´ 1
2ρ1ρ2´ 1

4ρ
2
1´ 1

4ρ
2
2?

pρ21´1qpρ22´1q

˙

0.646 0.810

W2

b

4 ´ 2
a

pρ1 ´ 1qpρ2 ´ 1q ´ 2
a

pρ1 ` 1qpρ2 ` 1q 0.635 0.090

Table 1: Recreation of [Marti et al., 2016, Table 1] with statistical distances written as explicit
functions of ρ1 and ρ2 and more precise figures.

does not lead to these counter-intuitive clusters.” It is thus quite unclear which class of divergences
the authors are actually advocating for. Were the four authors in complete agreement with each other
on this point?5

At the end of Section 3.1 of the paper, the authors write that “computing the Wasserstein distance
between two probability measures amounts to finding the most correlated copula associated with
these measures”, suggesting that they believe the Wasserstein distance to be an intuitively reasonable
measure of association for multivariate time series. However, this is something of a red herring:
any two multivariate distributions P and Q have their own copulas, both of which are unrelated
to the “most correlated copula” between P and Q that WppP || Qq seeks to find. That said, their
information-geometric arguments explaining the unintuitive divergence calculations between the three
Gauss copulas RA, RB , RC appear to be sound. Amari and Matsuda [2022], whose Section 1 briefly
compares Wasserstein geometry and information geometry, puts it more directly: “[Wasserstein
geometry] reflects the metric of the underlying manifold X on which the probability distributions are
defined. [...] On the other hand, information geometry is constructed independently of the metric of
X .”

In contrast to [Tran, 2018], the present paper seems to be written for non-experts. The idea of
clustering multivariate time series in general was clearly motivated by the financial applications
mentioned in the introduction — which is not surprising, given that three of the four authors work in
capital management. Numerous other concepts are motivated by literal questions (such as “What is a
relevant distance to measure the resemblance of copulas?”) and the technical details are usually kept
to a minimum, despite the fact that the third author has also written a highly technical “elementary”
introduction to information geometry [Nielsen, 2020]. As with Tran [2018], the paper needs editing:
for example, in noting the advantages of Marti et al. [2016], the authors list “non-parametric” and
“robust to noise” twice. The confusion between the 2-Wasserstein and Fisher-Rao distances discussed
above is a much graver example.

5A quote extracted from a subsequent publication [Marti et al., 2017] makes the authors’ position more
explicit: “In (Marti et al., 2016a), authors illustrate in a parametric setting using Gaussian copulas that common
divergences (such as Kullback-Leibler, Jeffreys, Hellinger, Bhattacharyya) are not relevant for clustering these
distributions, especially when dependence is high.”
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Figure 1: Contour plots of pρ1, ρ2q ÞÑ DpCρ1 || Cρ2q for the six distances in Table 1

4 Discussion

The two papers we have discussed attempt combine concepts from both copulas and information ge-
ometry in somewhat different ways. Tran [2018] derives a variational Bayes algorithm that integrates
a fixed copula into an approximating family, and applies information-geometric principles (namely the
generalized Pythagorean theorem for Bregman divergences, specialized to KL-divergences) to derive
the optimal choices of approximating marginal densities. Marti et al. [2016] computes Fisher-Rao and
f -divergences distances between bivariate Gauss copulas and uses information-geometric principles
to explain counterintuitive comparisons to the 2-Wasserstein distance.

If one believes the paper of Tran [2018] is worthy of more attention, there are a number of future
directions. Aside from correcting some of the faults discussed in Subsection 2.3, we think that more
examples of the algorithm in action would be helpful, as both of the author’s case studies involve only
bivariate Gaussian distributions. Despite the repeated use of the term “variational Bayes” throughout
the paper, Tran [2018] does not actually include any Bayesian applications, and it would be interesting
to see how the algorithm performs on real-world data in a Bayesian setting. Tran also remarks that one
could in principle devise an alternative algorithm that finds rfθ such that DKLprcpuq || cpF p rFÐpuqqqq

approximates DKLpcpuq || rcpuqq, which is equivalent to finding each of the exact marginals fh;
however, this would involve “copula’s explicit analysis [sic]” and is left for future work.

The very short paper of Marti et al. [2016] serves its purpose as a simple comparison study between
Fisher-Rao-based divergences and the 2-Wasserstein distance; however, there is much more to be
explored. Ostensibly, this work was motivated by clustering of multivariate time series, and it would
be helpful to cluster real-world time series together using the various divergences. A real-world
application of particular interest would be to analyze financial time series from the “Great Recession”
or other extreme economic downturns, when financial returns within asset classes become highly
correlated with one another.6 Further, most — possibly all — of the divergences compared by the
authors could at least be approximated for other copula families using Monte Carlo sampling; this is
especially true for those divergences that can be written as expectations with respect to one of the the

6Readers familiar with the history of the “Great Recession” will recall that the Gauss copula turned out to be
a notoriously poor choice for modelling such extremes [McNeil et al., 2015].
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underlying copulas. It would be interesting to see if the same counterintuitive clustering results hold
for Archimedean copulas or other well-known non-Gauss copulas, particularly comprehensive ones
— although if they did hold, they could no longer be explained by the negativity or flatness of the
induced curvature of the space of covariance matrices.

On the theoretical side, the main point of Marti et al. [2016] is that the intuitive closeness of the
copulas CRB

and CRC
fails because they are both “close” to the comonotonicity copula M , which is

not absolutely continuous. In principle, the same should hold for bivariate Gauss copulas “close” to
the countermonotonicity copula W pu1, u2q “ maxtu1 ` u2 ´ 1, 0u, and verifying this using such
copulas with correlation coefficient ρ close to ´1 would lend credence to the authors’ argument. It
would also be interesting to redo the calculations using regularized versions of the comonotonity and
countermonotonicity copulas, such as those developed by Björnham et al. [2016], who regularized
them in a way that makes them absolutely continuous.

Beyond the ideas covered in these two papers, there is much to explore. One future path involves
non-parametrics. Non-parametric estimation is an important component of modern copula theory,
where key concepts include rank-based estimators and their roles in empirical copula processes (see
Chen and Huang [2007]). As noted previously, some work has also been done on non-parametric
information geometry, and it would be interesting to see how compatible the two areas are, and
whether the latter work might support the former theory.

We also believe that the idea of exploiting statistical divergences between copulas — be they Bregman
divergences, f -divergences, or another class entirely — has further potential. For example, Lalancette
and Zimmerman [2022] have introduced a new family of copulas C parameterized by the set of
probability densities Fr0,1s supported on the unit interval. Those authors have shown that a number of
popular but challenging desiderata for copulas (such as the ability to sample from them and compute
certain concordance measures such as Spearman’s rho) are very easy for this family; some evidence
suggests that these copulas are a suitable model for angular data (i.e., data on the torus). We wonder
whether this family can be viewed as an “approximating class” (in the sense of variational Bayes) for
more general multivariate distributions; that is, given some statistical divergence Dp¨ || ¨q and a “true”
copula C, one could form the either of the equivalent variational problems

ĂCf “ argmin
Cf PC

DpCf || Cq ðñ rf “ argmin
fPFr0,1s

DpCf || Cq.

If the variational problem admits a solution (be it exact or approximate), it could potentially be
applied to real-world statistical problems by replacing C with its empirical counterpart.

Finally, why do [Tran, 2018] and Marti et al. [2016] appear to be the only papers to date that
explicitly explore the intersection between information geometry and copulas? While it is true
that neither copula theory nor information geometry is a "standard topic" in statistics, one might
have expected more attention to their intersection. We surmise that the main issue is the general
intractability of copulas. For most parametric copulas, the analytical expressions of the densities are
quite complicated. Given how few closed-form expressions there are for divergences, even between
members of “standard” parametric families (e.g., between two Gamma densities), it is not surprising
that almost no results exist for copulas. For example, the Frank copula — among the most popular of
the Archimedean copulas — has a density of the form [Hofert et al., 2012]

cθpuq “

ˆ

θ

1 ´ e´θ

˙d´1 Li´pd´1q pqθpuqq

qθpuq
exp

˜

´θ
d

ÿ

h“1

uj

¸

where qθpuq “ p1 ´ e´θq1´d
śd
h“1p1 ´ e´θuhq and Lispzq “

ř

kě1 z
k{ks. Merely computing this

density at a single u P r0, 1sd is challenging. Determining an f -divergence Df pCθ1 || Cθ2q between
two Frank copulas via Equation 12 is clearly not viable. Most other commonly-used absolutely
continuous copulas suffer from the same problems.

It is interesting to note that far more work has been done in the intersection of copulas and optimal
transport — a field distinct from information geometry, but one with a number of deep theoretical
connections to it [Amari, 2016, Khan and Zhang, 2022]. For example, the papers by Marti et al.
[2017], Bartl et al. [2017], Chi et al. [2022], Mordant and Segers [2022] appear among those written
only within the past five years. We speculate that one reason for this is that (as previously mentioned
in Subsection 3.2) Wasserstein distances are defined on spaces of probability measures, rather than
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on spaces of probability densities (or on the statistical manifold implied by a parametric family of
densities). As such, the ease of computing such distances for copulas relies less on the tractability
of integrals involving the underlying copula densities which, as noted above, can be notoriously
challenging to evaluate, especially in high dimensions.

Another possible reason is that copulas are simply not as appreciated as they could be. When
approximating multivariate data, many statisticians are content to use multivariate normal distributions,
or perhaps the Gauss copula if the marginals are significantly non-Gaussian. This does work
reasonably well when the dependence within the data is not too extreme. Perhaps the intersection of
the cohort that works with data requiring more exotic copulas (most notably in finance and extreme
value theory) and the cohort that is proficient in information geometry is too small to produce much
research.
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