
Report on a Sampling Algorithm for Nested Archimedian Copulas

Robert Zimmerman

May 9, 2021

Contents
1 Introduction 1

2 Archimedean Copulas 2

3 Sampling from Archimedean and Nested Archimedean Copulas 3

4 Simulations 7

5 Discussion 11

A R Code 12

1 Introduction
Copulas are highly useful tools in statistics; they allow us to separate the marginal distributions
in a multivariate distribution from the dependence structures that tie them together. The broad
range of known copulas lets us capture a plethora of dependence structures, well beyond simple
dependence assumptions such as multivariate normality. Copulas have been used prominently in
financial risk theory, in applications such as credit scoring (Frey et al. [2001]), share price modelling
(Ivanov et al. [2017]), and volatility modelling (Ning et al. [2015]), among countless others. Beyond
finance, copulas have found additional applications in fields as diverse as health policy (Candio et al.
[2021]), ecology (French et al. [2019]), hydrology (Bezak et al. [2018]), and even sports psychology
(Ötting et al. [2021]).

In statistics, the ability to sample from hypothetical or unknown distributions is of fundamental
importance, and copulas are certainly no exception. Sampling from univariate distributions is
usually straightforward via inverse transform sampling or methods based on rejection sampling.
In contrast, sampling from multivariate distributions is not a trivial task in general. Any efficient
sampling algorithm must depend upon specific properties of the multivariate distribution being
sampled from. While there exists an algorithm – the conditional sampling method – to sample from
any copula in principle, it is infeasible to implement in practice, as it requires the computation of
all of the mixed partial derivatives of the copula (Cherubini et al. [2004]). The paper which is the
focus of our discussion, A stochastic representation and sampling algorithm for nested Archimedean

1

copulas (Hofert [2012]), presents an algorithm that addresses this problem for a certain class of
copulas used to model hierarchical dependence structures in multidimensional settings.

This report is organized as follows: Section 2 gives a brief overview of copulas and briefly develops
nested Archimedean copulas in the context of sampling, in order to motivate Hofert’s paper. In
Section 3, we describe the theory that underlies the innovations in Hofert’s paper. In Section 4,
we implement Hofert’s simulation algorithm on a range of examples. In Section 5, we summarize
our work, discuss limitations, and suggest future research directions. We provide R code for our
simulations in Appendix A.

2 Archimedean Copulas
A d-dimensional copula C : [0, 1]d → [0, 1] is simply a multivariate distribution function with
standard uniform margins (that is, (U1, . . . , Ud) ∼ C implies Ui ∼ Uniform[0, 1] for each 1 ≤ i ≤ d).
The power of copulas is a consequence of Sklar’s theorem, upon which much of the theory and
applications of copulas rests. The first half of Sklar’s theorem states that every d-dimensional
distribution function with margins F1, . . . , Fd can be written as C(F1(x1), . . . , Fd(xd)) for some
d-dimensional copula C(·, . . . , ·) (Nelsen [2007]). Thus, copulas allow one to “couple” together
marginal distributions into a multivariate distribution, thereby separating completely the marginal
distributions from the dependence structure that connects them.

Although a vast array of copulas are known, many of them lack convenient closed-form expressions,
which can make statistical inference challenging. One famous example of such an implicit copula
(Marcantoni [2014]) is the Gauss copula, which is defined in terms of a d-dimensional multivariate
Normal distribution function with standard Normal margins, as in the statement of Sklar’s theorem.
In contrast, explicit copulas are usually easier to work with. Perhaps the most well-known example
of these is the class of Archimedean copulas – so named because they satisfy a certain property akin
to the Archimedean property of R (Nelsen [2007]). They are particularly useful because of their
functional form: each d-dimensional Archimedean copula can be written as

C(u1, . . . , ud) = ψθ(ψ−1
θ (u1) + · · ·+ ψ−1

θ (ud))

for (u1, . . . , ud) ∈ [0, 1]d, where the function ψθ : [0, 1] × Θ → [0,∞] must satisfy a number of
properties on which we elaborate in Section 3. Such a function is called an (Archimedean) generator.
The ability to represent an Archimedean copula simply in terms of its generator allows us to employ
a broad range of theory that is not otherwise applicable to more general copulas.

The subscript θ on the generator ψθ refers to a univariate parameter of the generator that measures
the “strength” of the dependence between the components of the copula, so that {ψθ : θ ∈ Θ}
defines a parametric family of copulas. Among the most popular and well-studied of these are the
Clayton, Gumbel, Frank, Joe, and Ali-Mikhail-Haq (AMH) families, which are sometimes referred
to as the classical families. Concordance measures such as Spearman’s rho and Kendall’s tau
for any particular Archimedean copula are often expressible as functions of θ (in the latter case,
κ = 1 − 4

∫∞
0 t · (ψ′(t))2 dt holds for any sufficiently regular generator ψ), and typically limiting

values of θ result in the independence copula, the comonotonic copula or the countermonotonic
copula (Genest and MacKay [1986]). Because we will be using other subscripts to distinguish
different generators, we will keep the dependence on θ implicit and simply write ψ to refer to a
generic generator in the sequel.

2

For all of their benefits, Archimedean copulas have some drawbacks as well. For example, it is
evident from the generator form of an Archimedean copula that such copulas are exchangeable (i.e.,
symmetric in their arguments). This symmetry is not necessarily desirable, because it implies that
all pairs of marginals have the same joint dependence structure (Di Bernardino and Rullière [2016]);
this can make estimation of the generator ψ particularly difficult, as the symmetry constraint
becomes harder and harder to satisfy as the as the dimension d grows. Harry Joe observed in
Joe [1997] that one can carefully construct a multivariate copula by nesting generators so that
each bivariate margin is distributed according to a (possibly unique) bivariate Archimedean copula,
resulting in different degrees of dependence between pairs of marginals. For example, to construct a
3-dimensional copula such that the second and third components depend on each other through a
generator ψ1 and whose first component depends on both the second and third through another
generator ψ0, we might take

C(u1, u2, u3;ψ0, ψ1) = ψ0

(
ψ−1

0

(
u1
)

+ ψ−1
0

(
ψ1
(
ψ−1

1 (u2) + ψ−1
1 (u3)

)))
.

The idea of nesting Archimedean copulas was soon formalized into a new class of copulas appropriately
labelled nested Archimedean copulas, which quickly found use in a range of applications, from tourism
management (Zhang et al. [2012]) to hydrology (Serinaldi and Grimaldi [2007]). In a groundbreaking
work, Hofert and Scherer [2011] used these copulas to price collateralized debt obligations in the
wake of the Great Recession.

3 Sampling from Archimedean and Nested Archimedean Copulas
We noted above that sampling from general multivariate distributions is a difficult problem. For
the case of Archimedean copulas, however, Marshall and Olkin [1988] discovered a sampling
algorithm which is substantially simpler. The Marshall-Olkin algorithm exploits the fact that any
generator ψ that defines an Archimedean copula is the Laplace-Stieltjes transform LS[F] of some
univariate distribution function F , thereby reducing the computational challenges to the (relatively)
straightforward task of sampling from F .

As mentioned in Section 2, the function ψ : [0, 1]→ [0,∞] must satisfy several properties in order
for it to be a generator (i.e., in order for the function (u1, . . . , ud) 7→ ψ(ψ−1(u1) + · · ·+ ψ−1(ud))
to actually be a copula). Specifically, it is necessary that ψ be continuous and decreasing with
ψ(0) = 1 and limt→∞ ψ(t) = 0, and moreover that ψ be strictly decreasing on [0, inf{t : ψ(t) = 0}]
(Nelsen [2007]). This is not sufficient, however. A result of Kimberling [1974] shows that a generator
defines an Archimedean copula in all dimensions if and only if (−1)k dk

dtkψ(t) ≥ 0 for all t > 0 and
k ∈ N0 – a property called complete monotonicity. Remarkably, the Bernstein-Widder theorem
(Bernstein et al. [1929], Widder [1941]) states that any completely monotone function ψ(t) can be
written as E

[
e−tX

]
=
∫∞

0 e−tx dF (x), where X is a random variable distributed according to some
distribution F supported on [0,∞). In other words, ψ is the Laplace-Stieltjes transform of F , and
F is therefore the inverse Laplace transform of ψ. We write these statements as ψ = LS[F] and
F = LS−1[ψ], respectively.

It is this deep connection between Archimedean generators and Laplace-Stieltjes transforms that
leads to Marshall and Olkin’s practical algorithm for sampling from a d-dimensional Archimedean
copula generated by ψ. For if ψ(t) =

∫∞
0 e−tx dF (x) where F = LS−1[ψ], then it immediately

3

follows that

C(u) = ψ
(
ψ−1(u1) + · · ·+ ψ−1(ud)

)
=
∫ ∞

0
e−x(ψ−1(u1)+···+ψ−1(ud)) dF (x)

=
∫ ∞

0

d∏
j=1

e−xψ
−1(uj) dF (x) (1)

Equation 1 shows that C(u) is a scale mixture distribution – namely, the distribution G(u | x) =∏d
j=1 e

−xψ−1(uj) on [0, 1]d compounded by F . It is well known how to sample from such a scale
mixture, assuming sampling from F is feasible: one first samples V from the mixing distribution
F (·), and then samples from G(· | V). Clearly, conditional on V , the latter step can be accomplished
by independently sampling Uj | V from the univariate distribution e−V ·ψ−1(·) each for 1 ≤ j ≤ d.
This itself is trivial: since

(
u 7→ e−V ·ψ

−1(u)
)−1

= ψ(−log (u) /V), it follows from the probability
integral transform that ψ(−log (U) /V) ∼ e−V ·ψ

−1(·), where U ∼ Unif[0, 1]. Moreover, from the
elementary fact that −log (U) ∼ Exp(1), we thus obtain the following stochastic representation of
U ∼ C:

U d=
(
ψ

(
R1
V

)
, . . . , ψ

(
Rd
V

))
, (2)

where R1, . . . , Rd
iid∼ Exp(1). The Marshall-Olkin algorithm is exactly the preceding sampling

scheme, shown in Algorithm 1.

Algorithm 1: Marshall-Olkin Algorithm
Input: An Archimedean generator ψ as in Equation 1
Output: A random variate U ∼ C
Sample V ∼ F = LS−1[ψ]
for j = 1 to d do

Sample Rj ∼ Exp(1)
Set Uj = ψ(Rj/V)

end
return U = (U1, . . . , Ud)T

The only potential difficulty in implementing the Marshall-Olkin algorithm is that sampling from
F = LS−1[ψ] may be challenging (even working out the Laplace-Stieltjes transform of an arbitrary
completely monotone function may be a challenge). No fully general method exists for doing this,
and so one must work out a way to sample from F on a case-by-case basis. Fortunately, the
Laplace-Stieltjes transforms of generators for the five classical families of Archimedean generators
are known, as are the transforms for a slew of other Archimedean generators (Joe [2014]). Some
of the transforms – such as variants of the Geometric and the Gamma distributions – are familiar
distributions, while others – such as the Sibuya and the tilted positive stable distributions – are
more esoteric. Importantly though, efficient sampling methods are known for all of them (in fact,
Hofert himself provides a novel sampling scheme for the Sibuya distribution later in Hofert [2012]).

In McNeil [2008], McNeil sought to extend the Marshall-Olkin algorithm to d-dimensional nested
Archimedean copulas with nested completely monotone generators ψ0, ψ1, . . . , ψd−2, focusing (for

4

convenience) on the fully nested Archimedean copulas. With a slight abuse of notation, these take
the recursive form

C(u1, u2, . . . , ud;ψ0, . . . , ψd−2) = ψ0

(
ψ−1

0

(
u1
)

+ ψ−1
0

(
C(u2, . . . , ud;ψ1, . . . , ψd−2)

))
, ui ∈ [0, 1],

(3)
where the outermost generator ψ0 generates the root copula C(·;ψ0) and the generators without
further nesting generate leaf copulas. McNeil first showed that Equation 3 defines a valid copula if
(ψ−1

k ◦ ψk+1)′ is completely monotone for each 0 ≤ k ≤ d− 3 (this sufficient nesting condition is not
necessary, however). Modifying Equation 1 to accommodate Equation 3, we observe that

C(u1, u2, . . . , ud;ψ0, . . . , ψd−2) =
∫ ∞

0
e−xψ

−1
1 (u1)e−xψ

−1
0 (C(u2,...,ud;ψ1,...,ψd−2)) dF0(x). (4)

McNeil’s key insight was that the second term in the integrand is itself a (d− 1)-dimensional nested
Archimedean copula:

e−xψ
−1
0 (C(u2,...,ud;ψ1,...,ψd−2)) = C(e−xψ

−1
0 (u2), . . . , e−xψ

−1
0 (ud);ψ0,1(·;x), . . . , ψ0,d−2(·;x)),

where ψ0,j(t, x) := e−xψ
−1
0 (ψj(t)) is another generator. Thus, we have another scale mixture – this time,

it is the product of e−xψ
−1
1 (u1) and C(e−xψ

−1
0 (u2), . . . , e−xψ

−1
0 (ud);ψ0,1(·;x), . . . , ψ0,d−2(·;x)) that is

now compounded by F0 = LS−1[ψ0]. Applying the same principle as in the Marshall-Olkin algorithm,
to sample from C(u1, u2, . . . , ud;ψ0, . . . , ψd−2), we may first sample V0 ∼ F0, and then independently
sample from e−V0·ψ−1

1 (u1) and C(e−V0ψ
−1
0 (u2), . . . , e−V0ψ

−1
0 (ud);ψ0,1(·;V0), . . . , ψ0,d−2(·;V0)). Evidently,

the last step requires sampling from another nested Archimedean copula. Applying the same principle
recursively to the child copulas that follow, we will eventually arrive at a leaf copula which can
be sampled directly using the Marshall-Olkin algorithm. This observation immediately leads to
McNeil’s recursive algorithm, shown in 2.

Algorithm 2: McNeil’s Algorithm
Input: Archimedean generators ψ0, ψ1, . . . , ψd−2 as in Equation 3
Output: A random variate U ∼ C
Sample V0 ∼ F0 = LS−1[ψ0]
Sample (X2, . . . , Xd)T ∼ C (u2, . . . , ud;ψ0,1(·;V0), . . . , ψ0,d−2(·;V0)) using this algorithm
Sample X1 ∼ Unif[0, 1]
for j = 1 to d do

Set Uj = ψ0(−log (Xj) /V0)
end
return U = (U1, . . . , Ud)T

While the McNeil algorithm was theoretically groundbreaking, it involved tedious computational
demands that made it impractical to use in large dimensions. The paper of our focus, A stochastic
representation and sampling algorithm for nested Archimedean copulas (Hofert [2012]), presents an
algorithm that improves significantly upon the McNeil algorithm to allow for efficient sampling from
nested Archimedean copulas. As with the Marshall-Olkin algorithm, Hofert identifies the primary
difficulty in the McNeil algorithm as sampling from the Laplace-Stieltjes transform of the parent
generator of each nested copula; the specific functional form of each generator depends on that of

5

its parent, so that when the number of dimensions d is large, the number of function compositions
required to evaluate each new generator becomes unfeasible.

To recursively apply McNeil’s algorithm requires sampling a mixing variable Vlj for every leaf copula
at level lj . For lj = 1, this is simply a matter of sampling from V0 ∼ F0. If lj = 2 and k refers to
the leaf copula in question, then this requires sampling V0,k ∼ LS−1[ψ0,k(·;V0)]. For lj ≥ 3, the
procedure continues recursively, where each scale random variable Vlj must be sampled from an
inverse Laplace-Stieltjes transformation of its predecessor – which therefore depends on all of the
generators from ψ0 down to ψlj in the hierarchical structure. The key observation in Hofert [2012]
(which was also noted earlier in McNeil [2008]) is that

e−xψ
−1
k,k+1(ψk,j(t;x′);x′) = ψk+1,j(t;x), x, x′ > 0, (5)

in which the subscripts (k, j) are such that k refers to the generator of the parent copula, while j
refers to to the generator of the child copula. Thus, sampling Vlj in fact only requires knowledge of
the copula at level lj and that of the corresponding parent copula; evaluating each of the generators
down the tree is not actually required.

This insight leads to a stochastic representation in the same spirit as 2, which requires a description
of the notation used by Hofert. For a general d-dimensional nested Archimedean copula C with root
copula ψ0 which includes m leaf copulas, the set of component indices {1, . . . , d} can be partitioned
into disjoint subsets J1, . . . , Jm such that Ji contains the indices of the components of U which
share the i’th leaf copula. If lj denotes the level of the leaf copula in which the j’th component
resides, then lj = lj′ whenever j and j′ are in the same subset Ji, and the same scaling random
variable V is used to sample the jth and j′th components from LS−1[e−V ψ

−1
i (ψl(t))], where i refers

to the generator of the parent copula of components j and j′, and l refers to the generator of the
child copula in which components j and j′ reside. Thus, for U ∼ C, we have that

U =
(
ψl1

(
R1
Vl1

)
, . . . , ψld

(
Rd
Vld

))
,

where R1, . . . , Rd
iid∼ Exp(1). Hofert’s algorithm is thus summarized in Algorithm 3.

The remainder of Hofert [2012] discusses how to sample specific Laplace-Stieltjes transforms for
members of the five Archimedean families mentioned in 2 (including their implementations in the
copula library in R), and presents benchmark tests for sampling from several examples of nested
Archimedean copulas with increasingly complex hierarchies. Hofert demonstrates that his algorithm
runs quickly and efficiently, even in relatively high dimensions.

6

Algorithm 3: Hofert’s Algorithm
Input: Archimedean generators ψ0, ψ1, . . . , ψd−2 and a hierarchy of parent and child copulas
Output: A random variate U ∼ C
Sample V0 ∼ F0 = LS−1[ψ0]
Set C0 to be the root copula generated by ψ0
for all components u of C0 which are nested Archimedean copulas do

Set C1 with generator ψ1 to be the nested Archimedean copula u
Sample V01 ∼ F01 = LS−1[ψ01(·;V0)]
Set C0 ← C1, ψ0 ← ψ1, and V0 ← V01 and continue

end
for all other components u of C0 do

Sample R ∼ Exp(1)
Set the component of U corresponding to u to ψ0(R/V0)

end
return U = (U1, . . . , Ud)T

4 Simulations
In this section, we reproduce one of the simulation studies in Hofert [2012], and provide several
additional ones of our own. While applying Hofert’s algorithm is easy if we know how to sample
from the Laplace-Stieltjes transforms of the relevant generators, it can be performed only if the
generators and their hierarchy do define a legitimate copula; this is usually checked by verifying the
sufficient nesting condition for the pair of generators ψk and ψk+1 that respectively characterize
each parent and child copula at the k’th level of the hierarchy. This is trivial when both ψk and
ψk+1 are in exactly one of the five Archimedean families mentioned in 2, for Joe [1997] shows that
the sufficient nesting condition is satisfied provided that the parameter θk of ψk is bounded above
by the parameter θk+1 of the ψk+1. When the two generators live in different families, however, the
sufficient nesting condition must be manually verified, either by checking the complete monotonicity
of each pair (ψ−1

k ◦ ψk+1)′ or by exploiting known analytical results for the relevant families on a
case-by-case basis, as was done by Hofert [2010] for several examples of mixed pairs.

We have implemented Hofert’s algorithm to sample from five different nested Archimedean copulas.
Our first three are 4-dimensional fully nested copulas of the form in Equation 3, where all nested
generators are from the same family. Figure 1, Figure 2, and Figure 3 show illustrate the AMH
family, the Clayton family, and the Gumbel family (respectively). We have chosen the parameter
values in order to create interesting changes in the dependence structures at deeper hierarchical
levels (ensuring, of course, that the sufficient nesting condition is satisfied).

In Figure 4, we have reproduced Hofert’s example of a nested Archimedean copula with generators
in different families. This example, which Hofert also presented in Hofert [2010], is a 4-dimensional
fully tested copula with generators belonging to the AMH family, the Clayton family, and the family
{ψθ(t) = (log (t+ e))1/θ : θ ∈ (0,∞)} (a family referred to as “20”, due to its placement in Nelsen
[2007]’s large table of one-parameter Archimedean copulas).

Finally, in Figure 5, we plot an 8-dimensional nested Archimedean copula with all generators from
the Frank family, where each parameter θj is chosen so that τ(θj) = 0.1(j + 1), where τ(·) is
Kendall’s tau written as a function of the parameter θ (for this family, a linearly spaced set of

7

values for Kendall’s tau corresponds to a set of exponentially spaced values for θ). For bivariate
pairs involving lower-order components, we observe joint distributions resembling the independence
copula; on the other hand, as we move up and to the right of the scatterplot matrix, we, we observe
stronger and stronger dependence pairs involving higher-order components, as the nested copulas
approach the comonotonicity copula (Nelsen [2007]).

8

U10.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U20.6
0.8
1.0

0.6 1.0

0.2
0.4
0.6

0.2 0.6

U36.0e−13
8.0e−13
1.0e−12
1.2e−12
6.0e−13

0.0e+00
2.0e−13
4.0e−13
6.0e−13

0.0e+00

U44e−13
6e−13
8e−13
4e−13

0e+00
2e−13
4e−13

0e+00

Figure 1: 1000 samples from a four-dimensional fully nested Archimedean copula with generators
belonging to the Ali-Mikhail-Haq families, with parameters θ0 ≈ 0, θ1 = 0.5, and θ2 ≈ 1

U10.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U20.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U30.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U40.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

Figure 2: 1000 samples from a four-dimensional fully nested Archimedean copula with generators
belonging to the Clayton family, with parameters θ0 = 1, θ1 = 5, and θ2 = 10

9

U10.6
0.8
1.0

0.6 1.0

0.2
0.4
0.6

0.2 0.6

U20.6
0.7
0.80.6 0.8

0.4
0.5
0.6

0.4 0.6

U30.65
0.70
0.75

0.650.75

0.50
0.55
0.60

0.500.60

U4
0.65
0.70
0.75

0.65 0.75

0.50
0.55
0.60

0.50 0.60

Figure 3: 1000 samples from a four-dimensional fully nested Archimedean copula with generators
belonging to the Gumbel family, with parameters θ0 = 1, θ1 = 5, and θ2 = 10

U10.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U20.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U30.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U40.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

Figure 4: Reproduction of Figure 5 (left) in Hofert [2012]: 1000 samples from a four-dimensional
fully nested Archimedean copula with generators belonging to the Ali-Mikhail-Haq, Clayton, and
{ψθ(t) = (log (t+ e))1/θ : θ ∈ (0,∞)} families

10

U1
0.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U2
0.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U3
0.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U4
0.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U5
0.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U6
0.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U7
0.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

U8
0.6
0.8
1.0

0.6 1.0

0.0
0.2
0.4

0.0 0.4

Figure 5: 1000 samples from an eight-dimensional fully nested Archimedean copula with generators
belonging to the Frank family, with parameters θ0, . . . , θ6 chosen such that τj = 0.1(j + 1) for
j = 0, . . . , 6

11

5 Discussion
In this report, we have summarized the ideas underlying Marius Hofert’s paper A stochastic
representation and sampling algorithm for nested Archimedean copulas. We began with a brief
exposition of copulas themselves – focusing on Archimedean copulas and their nested variants –
and then discussed the problem of sampling from such copulas. To summarize, Marshall and Olkin
[1988] showed how to sample from Archimedean copulas by providing a stochastic representation of
the random variable to be sampled in terms of other quantities that are (relatively) easy to calculate
and sample from. While McNeil [2008] provided the first formal algorithm for sampling from nested
Archimedean copulas, Hofert substantially increased the practicality of this algorithm by deriving
a stochastic representation of the random variable to be sampled in a spirit similar to Marshall
and Olkin, thereby recasting McNeil’s algorithm in a way that avoided most of the challenging
computations.

Hofert’s paper was published in 2012. In the near-decade since then, a number of papers have
been published which relate to sampling from Archimedean copulas, by Hofert as well as others.
Grothe and Hofert [2015] extended Archimedean Lévy copulas to nested versions, and Hofert et al.
[2018] did the same for Archimax copulas; both papers allude to sampling algorithms for their
respective nested copulas which follow the same approach as Hofert [2012]. Härdle et al. [2013]
adapted the algorithm to handle time series of nested Archimedean copulas. On the inferential
side, Hofert and Pham [2013] used similar strategies to develop explicit forms for the densities of
nested Archimedean copulas in arbitrary dimensions, and Górecki et al. [2014] used the stochastic
representation as an ingredient in deriving the consistency of an estimator for nested Archimedean
copulas (the parameters and the structure). More recently, Ng et al. [2021] used neural networks to
represent the latent variables in the stochastic representation (denoted by the Vlj ’s in Section 3),
and provided sampling algorithms modified to this new structure.

While Hofert’s algorithm alleviates much of the computational burdens of McNeil’s algorithm for
sampling from an arbitrary nested Archimedean copula, it is still limited by the need to derive and
then sample from inverse Laplace-Stieltjes transforms of arbitrary generators – both of the generators
ψ0, . . . , ψd in the specification of the copula, and (much more challengingly) of the “connecting”
generators ψil(t;V) = e−V ψ

−1
i (ψl(t)). Those who opt to use generators outside of the classical families

(for which most of the known results apply to) must resort to their own facilities. While Hofert [2010]
proposed a number of numerical schemes for approximating inverse Laplace-Stieltjes transforms,
these methods are both inexact and computationally expensive.

Nested Archimedean copulas themselves are also limited in that not every choice of nesting structure
and set of generators actually defines a valid copula. Unlike the case for vanilla Archimedean copulas,
there is no universal condition on the generators that characterizes the validity of the resulting
copula; in some scenarios, one can imagine the sufficient nesting condition being too restrictive to
be relied upon. The sufficient nesting condition can be difficult to check for pairs of generators
in different parametric families (Hofert’s copula library only allows for the construction of nested
Archimedean copulas with generators in the same classical family, for which the sufficient nesting
condition is trivial to verify). Thus, further avenues of work could involve designing exact algorithms
for calculating inverse Laplace-Stieltjes transforms and for verifying the sufficient nesting condition
for mixed families of generators.

12

A R Code

knitr::opts_chunk$set(echo = FALSE, cache = TRUE, warning = FALSE, message = FALSE,
fig.pos = "!h")

library(copula)
Sampling from a 4-dimensional nested Archimedean copula with AMH
generators

N <- 1000 # number of samples

Set our generator parameters
theta0 <- .Machine$double.eps
theta1 <- 0.5
theta2 <- 1 - .Machine$double.eps

Define our Archimedean generators
psi.AMH <- function(t, theta) {

(1 - theta)/(exp(t) - theta)
}

Sample V0 and V01
V0 <- 1 + rgeom(n = N, p = 1 - theta0)
V01 <- V0 + rnbinom(n = 1, size = V0, prob = (1 - theta1)/(1 - theta0))
V12 <- V01 + rnbinom(n = 1, size = V01, prob = (1 - theta1)/(1 - theta0))

Sample (U1, U2, U3, U4)
R1 <- rexp(n = N)
R2 <- rexp(n = N)
R3 <- rexp(n = N)
R4 <- rexp(n = N)
U1 <- psi.AMH(R1/V0, theta0)
U2 <- psi.AMH(R2/V01, theta1)
U3 <- psi.AMH(R3/V12, theta2)
U4 <- psi.AMH(R4/V12, theta2)
U <- cbind(U1, U2, U3, U4)
AMHplot4D <- splom2(U, cex = 0.1)

AMHplot4D

Sampling from a 4-dimensional nested Archimedean copula with Clayton
generators

N <- 1000 # number of samples

13

Set our generator parameters
theta0 <- 1
theta1 <- 5
theta2 <- 10
alpha01 <- theta0/theta1
alpha12 <- theta1/theta2

Define our Archimedean generator
psi.C <- function(t, theta) {

(1 + t)^(-1/theta)
}

Sample V0 and V01
V0 <- rgamma(n = N, shape = 1/theta0, rate = 1)
V01 <- retstable(alpha = alpha01, V0 = V0, h = 1)
V12 <- retstable(alpha = alpha12, V0 = V01, h = 1)

Sample (U1, U2, U3, U4)
R1 <- rexp(n = N)
R2 <- rexp(n = N)
R3 <- rexp(n = N)
R4 <- rexp(n = N)
U1 <- psi.C(R1/V0, theta0)
U2 <- psi.C(R2/V01, theta1)
U3 <- psi.C(R3/V12, theta2)
U4 <- psi.C(R4/V12, theta2)
U <- cbind(U1, U2, U3, U4)
Claytonplot4D <- splom2(U, cex = 0.1)

Claytonplot4D

Sampling from a 4-dimensional nested Archimedean copula with Gumbel
generators

N <- 1000 # number of samples

Set our generator parameters
theta0 <- 1
theta1 <- 5
theta2 <- 10
alpha01 <- theta0/theta1
alpha12 <- theta1/theta2

Define our Archimedean generators
psi.G <- function(t, theta) {

exp(-t^(1/theta))

14

}

Sample V0 and V01
V0 <- rstable1(n = N, alpha = 1/theta0, beta = 1, gamma = cos(pi/(2 * theta0))^theta0,

delta = 1 * (theta0 == 1))
V01 <- rstable1(n = 1, alpha = alpha01, beta = 1, gamma = (cos(alpha01 *

pi/2) * V0)^(1/alpha01), delta = V0 * (alpha01 == 1))
V12 <- rstable1(n = 1, alpha = alpha12, beta = 1, gamma = (cos(alpha12 *

pi/2) * V01)^(1/alpha12), delta = V01 * (alpha12 == 1))

Sample (U1, U2, U3, U4)
R1 <- rexp(n = N)
R2 <- rexp(n = N)
R3 <- rexp(n = N)
R4 <- rexp(n = N)
U1 <- psi.G(R1/V0, theta0)
U2 <- psi.G(R2/V01, theta1)
U3 <- psi.G(R3/V12, theta2)
U4 <- psi.G(R4/V12, theta2)
U <- cbind(U1, U2, U3, U4)
Gumbelplot4D <- splom2(U, cex = 0.1)

Gumbelplot4D

Sampling from a 4-dimensional nested Archimedean copula with a
AMH(Clayton(20)) generator structure (20 is 4.2.20 in p.118 of Nelson
(2007))

Set our generator parameters
theta0 <- copAMH@iTau(0.2)
theta1 <- copClayton@iTau(0.4)
theta2 <- 1.3773

Define our Archimedean generators
psi0 <- function(t) {

(1 - theta0)/(exp(t) - theta0)
}
psi1 <- function(t) {

(1 + t)^(-1/theta1)
}
psi2 <- function(t) {

(log(t + exp(1)))^(-1/theta2)
}

alpha <- theta1/theta2

15

N <- 1000 # number of samples

Sample V0
V0 <- 1 + rgeom(n = N, p = 1 - theta0)

Sample V01
V <- sapply(X = 1:N, FUN = function(n) rgamma(n = 1, shape = V0[n], rate = 1/(1 -

theta0)))
Stilde <- sapply(X = 1:N, FUN = function(n) retstable(alpha = 1/theta1,

V0 = 1, h = V[n]^theta1))
V01 <- Stilde * V^theta1

Sample V12
h <- exp(1) - 1
m <- function(V) {

for the fast rejection algorithm
psi <- function(t) {

exp(-V * log(1 + t)^alpha)
}
c <- 1/psi(h)
logc <- log(c)
Flogc <- floor(logc)
Clogc <- ceiling(logc)
if (log(c) <= 1) {

return(1)
} else if (logc > 1 && Flogc * c^(1/Flogc) <= Clogc * c^(1/Clogc)) {

return(Flogc)
} else if (logc > 1 && Flogc * c^(1/Flogc) > Clogc * c^(1/Clogc)) {

return(Clogc)
}

}
m <- Vectorize(m)

mV01 <- m(V01)
V12 <- rep(0, times = N)

for (i in 1:N) {
fast rejection algorithm
for (k in 1:mV01[i]) {

rej <- T
while (rej) {

Vtilde <- rgamma(n = 1, shape = rstable1(n = 1, alpha = alpha,
beta = 1, gamma = (cos(alpha * pi/2) * V01[i]/mV01[i])^(1/alpha),
delta = 0), rate = 1)

U <- runif(n = 1)

16

if (U <= exp(-h * Vtilde)) {
standard rejection algorithm
rej <- F

}
V12[i] <- V12[i] + Vtilde

}
}

}

Sample (U1, U2, U3, U4)
R1 <- rexp(n = N)
R2 <- rexp(n = N)
R3 <- rexp(n = N)
R4 <- rexp(n = N)
U1 <- psi0(R1/V0)
U2 <- psi1(R2/V01)
U3 <- psi2(R3/V12)
U4 <- psi2(R4/V12)
U <- cbind(U1, U2, U3, U4)

NACplot4D <- splom2(U, cex = 0.1) # and produce a pairs plot

NACplot4D

Sampling from a 4-dimensional nested Archimedean copula with Gumbel
generators
N <- 1000 # number of samples

Set our generator parameters
tau <- seq(0.1, 0.8, length.out = 8)
theta <- sapply(X = tau, FUN = function(t) copFrank@iTau(t))
alpha <- theta[1:7]/theta[2:8]

Define our Archimedean generators
psi.F <- function(t, theta) {

-log(1 - (1 - exp(-theta)) * exp(-t))/theta
}

Sample V0 and V01
V <- matrix(0L, nrow = N, ncol = 8)
V[, 1] <- rlog(n = N, Ip = exp(-theta0))
for (j in 2:7) {

V[, j] <- rF01Frank(V[, j - 1], theta[j - 1], theta[j], r = 1, approx = 10000)
}

Sample (U1,...,U8)

17

U <- matrix(0L, nrow = N, ncol = 8)
for (j in 1:7) {

U[, j] <- psi.F(rexp(n = N)/V[, j], theta[j])
}
U[, 8] <- psi.F(rexp(n = N)/V[, 7], theta[7])

Frankplot8D <- splom2(U, cex = 0.1)

Frankplot8D

18

References

Serge Bernstein et al. Sur les fonctions absolument monotones. Acta Mathematica, 52:1–66, 1929.

Nejc Bezak, Katarina Zabret, and Mojca Šraj. Application of copula functions for rainfall interception
modelling. Water, 10(8):995, 2018.

Paolo Candio, Andrew J Hill, Stavros Poupakis, Anni-Maria Pulkki-Brännström, Chris Bojke, and
Manuel Gomes. Copula models for addressing sample selection in the evaluation of public health
programmes: An application to the leeds let’s get active study. Applied Health Economics and
Health Policy, pages 1–8, 2021.

Umberto Cherubini, Elisa Luciano, and Walter Vecchiato. Copula methods in finance. John Wiley
& Sons, 2004.

Elena Di Bernardino and Didier Rullière. On an asymmetric extension of multivariate archimedean
copulas based on quadratic form. Dependence Modeling, 4(1), 2016.

Justin T French, Hsiao-Hsuan Wang, William E Grant, and John M Tomeček. Dynamics of animal
joint space use: a novel application of a time series approach. Movement ecology, 7(1):1–12, 2019.

Rüdiger Frey, Alexander J McNeil, and Mark Nyfeler. Copulas and credit models. Risk, 10
(111114.10), 2001.

Christian Genest and R Jock MacKay. Copules archimédiennes et families de lois bidimensionnelles
dont les marges sont données. Canadian Journal of Statistics, 14(2):145–159, 1986.

Jan Górecki, Marius Hofert, and Martin Holena. On the consistency of an estimator for hierarchical
archimedean copulas. In 32nd International Conference on Mathematical Methods in Economics,
pages 239–244, 2014.

Oliver Grothe and Marius Hofert. Construction and sampling of archimedean and nested archimedean
lévy copulas. Journal of Multivariate Analysis, 138:182–198, 2015.

Wolfgang Karl Härdle, Ostap Okhrin, and Yarema Okhrin. Dynamic structured copula models.
Statistics & Risk Modeling, 30(4):361–388, 2013.

Marius Hofert. Sampling nested Archimedean copulas with applications to CDO pricing. PhD thesis,
Universität Ulm, 2010.

Marius Hofert. A stochastic representation and sampling algorithm for nested archimedean copulas,
2012.

Marius Hofert and David Pham. Densities of nested archimedean copulas. Journal of Multivariate
Analysis, 118:37–52, 2013.

Marius Hofert and Matthias Scherer. Cdo pricing with nested archimedean copulas. Quantitative
Finance, 11(5):775–787, 2011.

19

Marius Hofert, Raphaël Huser, and Avinash Prasad. Hierarchical archimax copulas. Journal of
Multivariate Analysis, 167:195–211, 2018.

Eugen Ivanov, Aleksey Min, and Franz Ramsauer. Copula-based factor models for multivariate
asset returns. Econometrics, 5(2):20, 2017.

Harry Joe. Multivariate models and multivariate dependence concepts. CRC Press, 1997.

Harry Joe. Dependence modeling with copulas. CRC press, 2014.

Clark H Kimberling. A probabilistic interpretation of complete monotonicity. Aequationes mathe-
maticae, 10(2):152–164, 1974.

Enrico Marcantoni. Collateralized Debt Obligations: A Moment Matching Pricing Technique Based
on Copula Functions. Springer Science & Business Media, 2014.

Albert W Marshall and Ingram Olkin. Families of multivariate distributions. Journal of the American
statistical association, 83(403):834–841, 1988.

Alexander J McNeil. Sampling nested archimedean copulas. Journal of Statistical Computation and
Simulation, 78(6):567–581, 2008.

Roger B Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.

Yuting Ng, Ali Hasan, Khalil Elkhalil, and Vahid Tarokh. Generative archimedean copulas. arXiv
preprint arXiv:2102.11351, 2021.

Cathy Ning, Dinghai Xu, and Tony S Wirjanto. Is volatility clustering of asset returns asymmetric?
Journal of Banking & Finance, 52:62–76, 2015.

Marius Ötting, Roland Langrock, and Antonello Maruotti. A copula-based multivariate hidden
markov model for modelling momentum in football. AStA Advances in Statistical Analysis, pages
1–19, 2021.

Francesco Serinaldi and Salvatore Grimaldi. Fully nested 3-copula: procedure and application on
hydrological data. Journal of Hydrologic Engineering, 12(4):420–430, 2007.

DV Widder. The laplace transformf. Princeton Mathematical Series, 1941.

Hui Zhang, Junyi Zhang, and Masashi Kuwano. An integrated model of tourists’ time use and
expenditure behaviour with self-selection based on a fully nested archimedean copula function.
Tourism Management, 33(6):1562–1573, 2012.

20

	Introduction
	Archimedean Copulas
	Sampling from Archimedean and Nested Archimedean Copulas
	Simulations
	Discussion
	R Code

