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1 Introduction

Markov chain Monte Carlo (MCMC) algorithms constitute a broad class of methods which yield samples from
probability distributions. These techniques have become ubiquitous in Applied Statistics since they were
originally conceived in the early 1950s ([Met+53]). While other more direct sampling methods can be used
to sample from simple univariate distributions, MCMC is essentially the only choice when the distribution
from which we want to sample – hereafter referred to generally as the target distribution – is unwieldy.

The basic structure of an MCMC algorithm is very simple. Such an algorithm constructs a stochastic
process {Xn} by sampling, at the n’th iteration, a random variable Yn from some proposal distribution
(which is much easier to sample from) and accepting the proposal as Yn = Xn (otherwise, Xn = Xn−1)
according to a rule that makes {Xn} a Markov chain; under certain conditions, the stationary distribution
of this Markov chain is exactly the target distribution. Approximate samples from the target can then be
extracted as XB , XB+1, . . . for sufficiently large B.

While MCMC can theoretically be used to (approximately) sample from virtually any target distribution,
sampling can still be arduous when the target is difficult to compute or is multimodal, particularly in high
dimensions. The former scenario is often the case in the Bayesian setting, in which we are given some
data assumed to follow some parametric distribution, as well as a prior distribution on one or more of the
parameters, and we want to obtain draws from the posterior distribution. This requires us to compute the
full likelihood function at every iteration of the algorithm, which can be prohibitively expensive when the
sample size is large (and is compounded when the algorithm gets stuck in a mode and therefore rejects most
proposals).

As such, the development of new MCMC techniques (which has blossomed since the since the early 1990s)
has been driven by the need for faster algorithms, along with the necessary convergence theory to support
it. Here, “faster” essentially means that the algorithm explores the support of the target distribution
more quickly, which ultimately leads to faster convergence to the target distribution. One well-known
set of techniques used to accomplish that are adaptive MCMC methods, which (at the cost of certain
theoretical guarantees) are faster because they automatically “re-learn” better parameter values while they
run ([RR09]).

Meanwhile, the field of optimal transport has been growing in popularity recently as well. The theory
began with an (apparently simple) optimization problem posed in the late 1700s by Gaspard Monge in the
late 1700s ([Mon81]), who was interested in the cheapest way to move one configuration of sand to another
([San15]). The problem attracted renewed interest the 1940s with the generalization of Monge’s problem by
Kantorovich ([Kan58]), and has seen a major development starting from the 1980s. It has found applications
in diverse fields such as economics, imaging, traffic, urban planning ([San10]), and cosmology.

Matthew D. Parno, in his PhD thesis at MIT together with his advisor Youssef M. Marzouk (who we
hereafter refer to as the authors), have integrated the theory of optimal transport into MCMC in order to
produce a fast MCMC sampler. The algorithm and underlying theory were published in 2017 as the paper
Transport map accelerated Markov chain Monte Carlo ([PM18]), which is the focus of this report. Their
method lends itself well to parallelization, although the authors have not experimented with this in the paper
and only briefly remarked on the potential. We discuss more in Section 5.
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The basic idea at the heart of their method is to use transport maps to iteratively transform the usual
Metropolis-based proposal distributions into non-Gaussian proposals that explore the target density more
efficiently, which can be considered a type of adaptive MCMC approach. This approach constructs transport
maps which are solutions of convex optimisation problems, and evaluates those maps in order to draw from
the proposal distribution. Solutions to convex optimizations can be constructed efficiently, and the lower
triangular structure of the maps simplifies their evaluation. Thus, the algorithm is efficient. Moreover, the
authors prove that the resulting Markov chain converges (in a strong sense) to the target distribution under
relatively weak assumptions – a desirable requirement of MCMC algorithms in general.

The remainder of this report is organized as follows. Section 2 lays out the technical background required
to mathematically present the main results of the paper. Section 3 summarizes these results and the accom-
panying MCMC algorithm. Section 4 is devoted to the authors’ proof that the algorithm is ergodic. Finally,
Section 5 discusses future directions of research.

2 Technical Background

2.1 Markov Chain Monte Carlo

In the framework of MCMC, we are interested in obtaining samples θ(1), θ(2), . . . distributed according a
target distribution defined by a measure µπ which has a density π(θ) (more concisely, we say that say that
we want to “sample from π”). Typically, π is difficult – or impossible – to sample from directly, usually
because the domain is multidimensional and/or π is only known up to its normalizing constant. In MCMC,
we construct a Markov chain {θ(k)}k whose stationary distribution is exactly π without facing these problems.

At heart, essentially every MCMC algorithm involves repeating a variant of the so-called Metropolis
accept/reject step in order to produce the desired Markov chain. At each iteration of the algorithm a
proposal random variable θ′ is drawn according to a conditional proposal density q(· | θ), where θ is the
sample obtained from the previous iteration; usually, θ is used as a parameter of q. When this proposal
density is symmetric in the sense that q(θ′ | θ) = q(θ | θ′), the proposal θ′ is accepted as a new sample with

probability min
(

1, π(θ′)
π(θ)

)
; the resulting algorithm is called the Metropolis algorithm. On the other hand,

when q(· | θ) is not symmetric, then the acceptance probability can be modified as min
(

1, π(θ′)q(θ′|θ)
π(θ)q(θ|θ′) )

)
and

this algorithm is called the Metropolis-Hastings algorithm.

MCMC is not an ideal sampling method, and is only suitable when direct sampling is impossible. For
example, the random variables produced by MCMC algorithms are correlated, and therefore not independent
draws from any distribution. More importantly, the stationary distribution µθ is only reached asymptotically,
so that the random variables produced are only approximately distributed according to µθ. Moreover, it
is not even guaranteed in the first place that the Markov chain converges to µθ, where convergence in this
sense refers to the chain being ergodic.

Definition 1 (Ergodicity). Let {Xn} be a Markov chain on some state space X with stationary measure µθ
and n-step transition kernel Pn(x, ·) = P (Xn ∈ · | X0 = x). Then {Xn} is said to be ergodic if Pn converges
to µθ in total variation; that is, if

lim
n→∞

sup
A⊆X

|Pn(x,A)− µθ(A)| = 0, for µθ-a.e. x ∈ X .

When the state space X is finite, then the Markov chain is always ergodic ([Ros95]). More generally, the
so-called “fundamental theorem of Markov chains” states that if a Markov chain is irreducible and aperiodic
with µθ as a stationary measure, then the chain is ergodic. In Metropolis algorithms and Metropolis-Hastings
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algorithms, the stationarity of µθ is essentially guaranteed by the construction of the Metropolis acceptance
probability, and the other two criteria are usually satisfied as well.

While results like the fundamental theorem provide asymptotic guarantees, the practical ability of the
Markov chain produced by an MCMC algorithm to reasonably approximate the stationary distribution is
governed by the proposal distribution’s size and spatial orientation, which are difficult to tune properly
([HST01]). The idea of adaptive MCMC, devised in the early 2000s, uses the history of the process to tune
the proposal distribution on-the-fly. For example, it is known that for a standard Metropolis algorithm with

a d-dimensional N (0,Σ) proposal, the optimal choice for Σ (under certain regularity conditions) is 2.382

d Σ0,
where Σ0 is the covariance of the target distribution µθ ([RR01]). Of course, Σ0 is almost always unknown;
a typical adaptive version of the algorithm therefore estimates Σ0 by the empirical covariance matrix Σn
based on the samples produced up to the n’th step of the algorithm.

Unfortunately, the chains produced by adaptive MCMC algorithms are non-Markovian, and hence do
not preserve the stationarity of µπ. As such, the fundamental theorem does not apply, and convergence to
µπ is not guaranteed. However, [RR07] show that convergence of the adaption is satisfied under certain
conditions – namely, that the algorithm satisfies the diminishing adaptation property and that the family of
transition kernels induced by the algorithm is simultaneously strongly aperiodically geometrically ergodic.

Definition 2 (Diminishing adaptation property). An adaptive MCMC algorithm has the diminishing adap-
tation property when the total variation distance between successive transition kernels Pγ(n) and Pγ(n+1)

converges to 0 in probability:

sup
x∈Rn

sup
A⊆X

|Pγ(n+1)(x,A)− Pγ(n)(x,A)| P−→ 0.

Definition 3 (Simultaneously strongly aperiodically geometrically ergodic). A family of transition kernels
{Pγ} parameterized by a vector of map parameters γ ∈ Γ is simultaneously strongly aperiodically geometri-
cally ergodic if there exists a Borel set C ⊆ Rn, a drift function V : Rn → [1,∞) with supx∈C V (x) < ∞,
and scalars δ > 0, λ < 1, and b <∞ such that the following two conditions hold:

1. (Minorization) For each γ̄ ∈ Γ, there is a probability measure νγ̄(·) defined on C with Pγ̄(x, ·) ≥ δνγ̄(·)
for all x ∈ C.

2. (Simultaneous drift) The inequality
∫
Rn V (x)Pγ̄(x,dx) ≤ λV (x) + b1C(x) holds for all γ̄ ∈ Γ and

x ∈ Rn.

The following theorem, which appears as Theorem 3 in [RR07], is used by the authors to prove that
their transport map MCMC algorithm is ergodic:

Theorem 1. Consider an adaptive MCMC algorithm which satisfies diminishing adaptation and whose
family of transition kernels is simultaneously strongly aperiodically geometrically ergodic with drift function
V satisfying E [V (X0)] <∞. Then the adaptive MCMC algorithm is ergodic.

2.2 Optimal Transport

The field of optimal transport, dating back to the work of Gaspard Monge in the late 18th century, was
motivated by an ostensibly simple optimization problem: that of finding the cheapest way to move one con-
figuration of sand to another ([San15]). In the modern formulation, we are concerned with the existence of a
specific transport map between two Borel probability measures µθ and µr on Rn – that is, any transformation
T : Rn → Rn such that µr = T]µθ (i.e., µr is the pushfoward measure of µθ).

There may be infinitely many transport maps between two given probability measures, or there may be
none at all; the latter case occurs when, for example, µθ = δa for some a ∈ R and µr is non-atomic, since
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T]δa = δT (a) ([San15]). In the former case, one can define a cost function c : Rn × Rn → R and choose the
particular transport map T which solves the Monge problem:

T = arg min
µr=T]µθ

∫
Rn
c(θ, T (θ)) dµθ(θ).

The minimum may not exist for general cost functions. However, for the quadratic cost function c(x, y) =
1
2 |x−y|

2, Brenier’s theorem ([Bre91]) asserts that such a map T exists, and is unique and monotone µθ-a.e.
Maps which solve the Monge problem are called optimal transport maps. Other cost functions yield other
maps; one particular example that we will use later is the Knothe-Rosenblatt rearrangement:

Definition 4 (Knothe-Rosenblatt rearrangement). Let θ = (θ1, . . . , θn) ∼ µθ and r = (r1, . . . , rn) ∼ µr, and
let Tt be the optimal transport maps corresponding to the cost function

ct(θ, r) =

n∑
j=1

tj−1|θi − ri|2. (1)

The limiting map Tt as t→ 0 is called the Knothe-Rosenblatt arrangement between µθ and µr.

The Knothe-Rosenblatt arrangement exists and is uniquely defined when µ is absolutely continuous with
respect to Lebesgue measure. Moreover, it features an extremely useful property: its Jacobian ∇T is lower
triangular and has positive diagonal entries µ-a.e. The authors take advantage of this property, discussed
further in Section 3.

3 Summary of Main Contribution

The authors integrate transport maps by choosing an additional measure µr that is easy to sample from,
which they call a reference measure. For example, they typically take µr = N (0, I). Then, they choose a
transport map T̃ such that µr is approximately the pushforward measure T̃]µθ. Next, they construct an
MCMC sampler which operates at each iteration in the following fashion: first, it samples a proposal r′ from
µr on the “reference space” using a freely-chosen proposal density qr(r

′ | r), and then computes the pullback
of this proposal through T̃ , producing a sample θ′ = T̃−1(r′) distributed according to a proposal density
qθ(θ

′ | θ) on the “target space”. This target-space proposal density is fully determined by qr and T̃ . The
proposal θ′ is then accepted using the standard Metropolis-Hastings accept/reject criterion. The algorithm
is made adaptive by fine-tuning the transport map T̃ after every several iterations (by way of solving an
optimization problem), based on the current sample. The full algorithm is presented in Algorithm 1; we
highlight some of the technical foundations below.

Why use a transport map at all? Primarily because the choice of an appropriate map T̃ results in a
proposal density qθ which explores the target density π more efficiently, while still capturing the structure
of µθ. Next we address the choice of map T̃ . While the optimal transport map Tt induced by (1) in the
Knothe-Rosenblatt rearrangement is appealing due to the convenient properties discussed in Section 2, the
authors instead seek a practical approximation of Tt which shares the same desirable properties; namely,
a map T̃ such that ∇T̃ is lower triangular and for which µr ≈ T̃ µθ. The authors justify the use of such
an approximation with three considerations. First, there are computational issues in using the sequence of
weights {ti} in (1). Second, finding an exact map Tt can be difficult, especially if the target contains many
nonlinear dependencies that are not present in the reference distribution. Third, we can impose regularity
conditions on an approximation (i.e., that it be a C1-diffeomorphism as well as further constraints) which
may not hold otherwise.

The question now becomes how to find a suitable approximation T̃ of the Knothe-Rosenblatt rearrange-
ment. It is assumed that both µθ and µr are absolutely continuous with respect to Lebesgue measure on Rn,
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with densities π and ρ, respectively. The idea is to choose a density π̃(θ) which depends on some map T̃ , and
then to choose T̃ by minimizing the distance between π̃(θ) and π(θ). More specifically, with the requirement
that T̃ be monotone and differentiable µθ-a.e., the authors choose π̃(θ) to be the density of the pullback
of µr through T̃ (which the authors refer to as the map-induced density) which, by the change-of-variables
formula (see Remark 2.6 of [PC19]), takes the form

π̃(θ) = ρ(T̃ (θ)) · | det∇T̃ (θ)|. (2)

They then choose T̃ as the map (living in some subspace of lower triangular functions from Rn to Rn) that
minimizes the Kullback-Leibler divergence between π and π̃, which is given by

DKL(π‖π̃) = Eπ
[
log π(θ)− log ρ

(
T̃ (θ)

)
− log

∣∣det∇T̃ (θ)
∣∣] .

Taking the expectation over π is very beneficial, for if θ(1), θ(2), . . . , θ(K) iid∼ π, then we can approximate the
expectation with a sample average, ignore the log π(θ) term (since π is fixed), and choose

T̃ = arg min
T∈T

1

K

K∑
k=1

[
− log ρ

(
T̃ (θ(k)

)
− log

∣∣det∇T̃ (θ(k)
∣∣] ,

where T is some space of lower-triangular functions from Rn to Rn. The choice of T is determined by the
properties required for the map-induced density to exist (i.e., the maps must be differentiable and monotone),
and the need for the resulting MCMC sampler to be ergodic, which requires that the maps be bi-Lipschitz;
that is,

λmin‖θ′ − θ‖ ≤ ‖T̃ (θ′)− T̃ (θ)‖ ≤ λmax‖θ′ − θ‖ for some 0 < λmin ≤ λmax <∞. (3)

The authors handle the two inequalities here separately. With the ultimate choice of T̃ , the lower bound

is equivalent to ∂T̃i
∂θi
≥ λmin for i = 1, . . . , n, which makes det∇T̃ (θ) > 0. The equivalent condition can

be replaced in practice by the weaker condition that ∂T̃i
∂θi

∣∣
θ(k) ≥ λmin for i = 1, . . . , n and k = 1, . . . ,K.

While many choices of T̃ can yield unbounded derivatives as ‖θ‖ → ∞, the upper bound can be enforced
by choosing a sufficiently large R > 0, and constructing a map T̃R which is identical to T̃ inside the ball of
radius R centered at 0, but linear outside it.

In practice, the set of candidate maps T must be finite-dimensional. Therefore, we can parameterize the
i’th component of a candidate map T̃ (θ) by a vector γi ∈ RMi and write the component as T̃i(θ, γi). The
complete map T̃ (θ) is then parameterized by γ̄ = [γ1, . . . , γn]. The authors choose to parameterize each
component T̃i with multivariate polynomial expansions (although any map which is linear in the coefficients
γ̄ will do). When the reference density µr = N (0, I), the optimization problem reduces to

arg min
T∈T

n∑
i=1

K∑
k=1

[
1

2
T̃ 2
i (θ(k))− log

∂T̃i
∂θi

∣∣∣∣∣
θ(k)

]
,

which separates into n individual convex optimization problems which can be solved in parallel, each given
by

min
γi∈RMi

K∑
k=1

[
1

2
T̃ 2
i (θ(k); γi)− log

∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(k)

]
s.t.

∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(k)

≥ λmin ∀k ∈ {1, . . . ,K}.

With this choice of T̃ , the authors define a MCMC algorithm by taking the reference density ρ to be a
standard Metropolis-Hastings proposal on the reference space qr(r

′ | r); the map-induced density defined by
(2) is a density on the target space, which is given by

qθ,γ̄(θ′ | θ) = qr

(
T̃ (θ′) | T̃ (θ)

)
·
∣∣ det∇T̃ (θ′)

∣∣. (4)

5



The authors go a step further by making the algorithm adaptive, in the sense of updating the maps T̃ .
The sampler is initialized by a simple map T̃0, and updates the parameters γi after every KU steps. This
is performed efficiently by introducing a regularization term g(γi) into the objective function, which ensures
that the map does not prematurely get stuck in one particular region of the target space. The authors suggest
a quadratic penalty term centered on the coefficients of the identity map: g(γi) = kR‖γi−γId

i ‖2, where kR is
a user-defined regularization parameter. With this regularization term in place, each optimization problem
(in dimension i) becomes

min
γi∈RMi

kR‖γi−γId
i ‖2+

K∑
k=1

[
1

2
T̃ 2
i (θ(k); γi)− log

∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(k)

]
s.t.

∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(k)

≥ λmin ∀k ∈ {1, . . . ,K}.

(5)

Thus, the transport map based MCMC algorithm can be written out in full as Algorithm 1:

Algorithm 1: MCMC algorithm with adaptive map

Input : Initial state θ0;
Initial vector of transport map parameters γ̄0;
Reference proposal qr(· | r(k));
Number of steps KU between map adaptations;
Total number of steps L;
Regularization parameter kR;
Minimum bi-Lipschitz threshold λmin

Output: MCMC samples of the target distribution, {θ(1), θ(2), . . . , θ(L)}
1 Set state θ(1) = θ0;

2 Set parameters γ̄(1) = γ̄0;
3 for k ← 1 to L− 1 do

4 Compute the reference state, r(k) = T̃ (θ(k); γ̄(k));

5 Sample the reference proposal, r′ ∼ qr(· | r(k);

6 Compute the target proposal sample, θ′ = T̃−1(r′; γ̄(k));
7 Compute the acceptance probability

αγ̄(k)(θ′, θ) = min

{
1,

π(T̃−1(r′; γ̄(k)))

π(T̃−1(r(k); γ̄(k)))

qr(r
(k) | r′)

qr(r′ | r(k))

det∇T̃−1(r′; γ̄(k))

det∇T̃−1(r(k); γ̄(k))

}
(6)

8 Set θ(k+1) = θ′ with probability α(θ′, θ); else set θ(k+1) = θ(k);
9 if k ≡ 0 (mod KU ) then

10 for i← 1 to n do

11 Update γ
(k+1)
i by solving

min
γi∈RMi

kR‖γi − γId
i ‖2 +

k+1∑
j=1

[
1

2
T̃ 2
i (θ(j); γi)− log

∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(j)

]

s.t.
∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(j)

≥ λmin ∀j ∈ {1, . . . , k + 1}

12 else
13 Set γ̄(k+1) = γ̄(k);

14 return Target samples {θ(1), θ(2), . . . , θ(L)}
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4 Proof of Ergodicity

The primary theoretical contribution in [PM18] is that the Markov chain produced by Algorithm 1 is
ergodic – that is, it converges to the target distribution π(θ). The proof, which we summarize in this section,
relies on Theorem 1. In particular, the authors verify the three conditions of that theorem (i.e., diminishing
adaptation, minorization, and simultaneous drift) in three separate propositions.

Theorem 2 (Ergodicity of Algorithm 1). The Markov chain produced by Algorithm 1 is ergodic for the
target distribution π(θ) when γ̄ is constrained to a compact set within which T̃ (θ; γ̄) is guaranteed to satisfy
the bi-Lipschitz condition in 3 for all θ ∈ Rn.

The proof assumes that the target density π(θ) is finite, continuous, and super-exponentially light, where
the latter term means that

lim sup
‖θ‖→∞

θ

‖θ‖
· ∇ log π(θ) = −∞.

Note that the map-induced density π̃ need not satisfy this requirement. The authors further assume that
the reference proposal density qr(r

′ | r) is Gaussian with bounded mean. They denote Γ for the space of
map parameters γ̄ such that T̃ (θ; γ̄) satisfies the bi-Lipschitz condition (3), and write

Pγ̄(θ,A) =

∫
A

(
αγ̄(θ′, θ) · qθ,γ̄(θ′ | θ) + r(θ) · δθ(θ′)

)
dθ′

for the transition kernel of the chain at the k’th iteration, where qθ,γ̄(θ′ | θ) is the map-induced density on
the target space given by (4), αγ̄(θ′, θ) is the Metropolis acceptance probability given by (6), and r(θ) =
1 −

∫
α(θ′, θ)qθ,γ̄(θ′ | θ) dθ′ is the probability that the chain remains at θ. For any current value x ∈ Rn

and parameterization γ̄ ∈ Γ, they write the set of proposals y ∈ Rn which are guaranteed to be accepted
as Aγ̄(x) = {y ∈ Rn : αγ̄(θ′, θ) = 1}. Similarly, the authors write Rγ̄(x) for Aγ̄(x)C , the set of proposals
y ∈ Rn which can possibly be rejected.

The following three technical lemmas, stated here without proof, are used in the subsequent proofs of
Propositions 1, 2, and 3.

Lemma 1 (Bounded target space proposal). For any map coefficents γ̄ ∈ Γ, the map-induced proposal
qθ,γ̄(θ′ | θ) is bounded as

kLgL(θ′ − θ) ≤ qθ,γ̄(θ′ | θ) ≤ kUgU (θ′ − θ),

where kL = k1λ
n
min, kU = k2λ

n
max, gL(x) = g1(λmaxx), and gU (x) = g2(λminx).

Lemma 2. Let V (x) = cV π
−α(x) be a drift function defined for some α ∈ (0, 1), where the constant

cV = supx π
α(x) is chosen so that infx V (x) = 1. Then the following holds:

lim sup
‖x‖→∞

sup
γ̄

∫
Rn V (y)Pγ̄(x, dy)

V (x)
< lim sup
‖x‖→∞

sup
γ̄

∫
Rγ̄(x)

qθ,γ̄(y | x) dy.

Lemma 3 (Nonzero acceptance probability). The proposal has a nonzero probability of acceptance; equiv-
alently, ∫

Rγ̄(x)

qθ,γ̄(y | x) dy < 1.

The following three propositions are key to the authors’ proof of Theorem 2.

Proposition 1 (Diminishing adaptation of Algorithm 1). Let the map parameters γ̄ be restricted to a
compact subset of Γ. Then the sequence of transition kernels defined by the update step in lines 9-13 of
Algorithm 1 satisfies the diminishing adaptation condition.
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Proof. When the MCMC chain is not at an adaption step, γ̄(k+1) = γ̄(k). Thus, to show diminishing
adaptation, we need to show that the difference between transition kernels at step K and K +KU decreases
as K →∞. Mathematically, we require

lim
K→∞

P
(

sup
x∈Rn

‖Pγ̄(K)(x, ·)− Pγ̄(K+KU )‖TV ≥ δ1
)

= 0

for any δ1 > 0. Because the maps are linear in γ̄ for a fixed x, the mapping from γ̄ to Pγ̄(x,A) is continuous
for any A ⊆ X . Combined with the fact that qθ,γ̄ is bounded, it suffices to prove that

lim
K→∞

P
(
‖γ(K+KU )
i − γ(K)

i ‖ ≥ δ
)

= 0, (7)

for any δ > 0 and all i ∈ {1, 2, . . . , n}.

To prove (7), the authors use the fact that γ̄(K) is the minimizer of the objective function (5), which is
based on a K-sample Monte Carlo approximation of the Kullback-Leibler divergence. With the convention
log(0) = −∞, they define the objective function

f
(k)
i (γi) =

1

k
g(γi) +

1

k

k∑
j=1

(
1

2
T̃ 2
i (θ(j); γi)− log

∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(j)

)

so that γ
(K)
i = arg min

f

(K)
i (γi) and γ

(K+KU )
i = arg min

f

(K+KU )
i (γi) for all i ∈ {1, 2, . . . , n}. It follows that

for all γi,

P
(
|f (K+KU )
i (γi)− f (K)

i (γi)| ≥ δ2
)

= P

∣∣∣∣∣∣ 1

K

K+KU∑
j=K+1

(
1

2
T̃ 2
i (θ(j); γi)− log

∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(j)

)∣∣∣∣∣∣ ≥ δ2


≤ 1

Kδ2
E

∣∣∣∣∣∣
K+KU∑
j=K+1

(
1

2
T̃ 2
i (θ(j); γi)− log

∂T̃i(θ; γi)

∂θi

∣∣∣∣∣
θ(j)

)∣∣∣∣∣∣


K→∞−−−−→ 0. (8)

Here the inequality is due to Markov’s inequality; the expectation is finite because the map is bi-Lipschitz,
the proposal density is bounded by Gaussian densities, and the map is linear for large ‖θ‖. It remains to

show that this implies the convergence of ‖γ(K+KU )
i − γ(K)

i ‖. To this end, let C(K)
δ2

= {γi : f
(K)
i (γi)− δ2 ≤

f
(K)
i (γ

(K)
i ) + δ2}. Since γ

(K)
i ∈ C(K) and f

(K)
i is convex, as δ2 → 0 we will have C(K)

δ2
→ {γ(K)

i }. Thus, for
any δ > 0 there exists a δ2 such that

sup
γi,γ′i∈C

(K)
δ2

‖γi − γ′i‖ < δ. (9)

For any such δ2 > 0, (8) implies that

lim
K→∞

P
(
γ

(K+KU )
i ∈ C(K)

δ2

)
= 1,

which combined with (9) yields (7), as desired.

Proposition 2 (Minorization condition for Algorithm 1). There is a scalar δ and a set of probability
measures νγ̄ defined on C such that Pγ̄(x, ·) ≥ δνγ̄(·) for all x ∈ C and γ̄ ∈ Γ.

Proof. The proof follows Lemma 6.1 in [Atc06]. For a > 0, let ga be the density of the d-dimensional
Normal distribution with mean 0 and covariance matrix aId. Because the drift of the algorithm is bounded
by δ and γ̄ ∈ Γ, we can find ε1 > 0 and k1 > 0 such that infγ∈Γ qθ,γ(θ′ | θ) ≥ k1gε1(θ′ − θ). We take

R > 0 and C = B(0, R), and define τ = minγ∈Γ minθ′−θ,θ∈C
π(θ′)qθ,γ(θ′|θ)
πθqθ,γ̄(θ|θ′) > 0. Choosing ε = τk1 and

νγ̄(A) =
∫
A∩C gε1 (z) dz∫
C
gε1 (z) dz

, we have

Pγ̄(x,A) ≥ inf
γ∈Γ

Pγ(x,A) ≥ ενγ̄(A)

for all x ∈ C and γ̄ ∈ Γ.
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Proposition 3 (Simultaneous drift of Algorithm 1). For all points x ∈ Rn and all feasible map parameters
γ̄ ∈ Γ, there are scalars λ and b such that

∫
Rn V (x)Pγ̄(x,dx) ≤ λV (x) + b1C(x).

Proof. By the proof of Lemma 6.2 in [Atc06], it suffices to show that

lim sup
‖x‖→∞

sup
γ̄∈Γ

∫
Rn V (y)Pγ̄(x, dy)

V (x)
< 1, (10)

and

sup
x∈Rn

sup
γ̄∈Γ

∫
Rn V (y)Pγ̄(x, dy)

V (x)
<∞. (11)

Combining Lemma 2 and Lemma 3 immediately yields (10). With the choice of drift function V (x) =
cV π

−α(x) for α ∈ (0, 1), the authors show that∫
Rn V (y)Pγ̄(x,dy)

V (x)
≤ 1 +

∫
Aγ̄(x)

π−α(y)

π−α(x)
qθ,γ̄(y | x) dy +

∫
Rγ̄(x)

π−α(y)

π−α(x)

π(y)qθ,γ̄(x | y)

π(x)qθ,γ̄(y | x)
qθ,γ̄(y | x) dy. (12)

Within the region of possible rejection Rγ̄(x), the Metropolis acceptance probability π(y)
π(x) < 1, so the inte-

grand of the right-most term is bounded above by π−α(y)
π−α(x)qθ,γ̄(y | x). Two applications of the upper bound

from Lemma 1 reduce (12) to∫
Rn V (y)Pγ̄(x, dy)

V (x)
≤ 1 + k2

U

∫
Aγ̄(x)

gU (x− y) dy + k2
U

∫
Rγ̄(x)

gU (y − x) dy

≤ 1 +

∫
gU (x− y) dy

= 1 + k2
U

<∞.

Taking the supremum over all x ∈ Rn and γ̄ ∈ Γ yields (11).

Proof of Theorem 2. The transport MCMC algorithm satisfies the diminishing adaptation property by Propo-
sition 1. It also satisfies the minorization condition and simultaneous drift conditions by Propositions 2 and
3, respectively, and its induced family of transition kernels is therefore simultaneously strongly aperiodically
geometrically ergodic. Since the drift function V (x) specified in Lemma 2 satisfies supx∈C V (x) <∞, we can
initialize the algorithm by sampling X0 from some distribution supported on C to ensure that E [V (X0)] <∞.
Hence, by Theorem 1, the transport MCMC algorithm is ergodic.

5 Future Directions

Improving the efficiency of MCMC algorithms is a highly active field of research, due in particular to the new
prominence of Bayesian problems featuring extremely large datasets, for which standard MCMC samplers
are prohibitively expensive. A standard method for reducing large computation times is to use a divide-
and-conquer strategy in which the computation is parallelized ; that is, to split up the computations among
a group of solvers working independently, and then to aggregate the results of the computations in some
fashion.

The idea of parallelizing MCMC in the Bayesian setting was pioneered in 2014 by Scott et. al. ([Sco+16]),
and the problem has been tackled repeatedly since then. Perhaps surprisingly, splitting up the MCMC iter-
ations among a series of “submachines” – in which each submachine produces draws from a modified target
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distribution – is not difficult at all. Rather, the difficulty lies in recombining the submachine draws into draws
from the true target distribution. In recent years, creative statisticians have combined the theory of MCMC
with other areas of statistics in pursuit of this goal, leading to parallelized MCMC-based algorithms which
integrate neural networks ([MBK19]), decision trees ([Wan+15]) and Gaussian processes ([NS+18]), to
name only a few.

The above approaches parallelize their algorithms by splitting up the dataset of observations into subsets
and essentially performing standard MCMC on each machine. In contrast, in [PM18] the authors suggest
that their transport map MCMC algorithm can be parallelized in a different way; namely, by solving indepen-
dently each of the n optimization problems defined by (5) – one for each dimension of the parameter space.
They apply their parallelized algorithm to three Bayesian problems: a biochemical oxygen demand model,
a predator-prey system, and an inference problem based on maple sap exudation). Their results compare
favourably with those obtained from several other adaptive MCMC algorithms. However, the datasets used
in these examples appear to be quite small – for example, the dataset used in the first problem contains a
mere 20 observations.

We can summarize the situation as such: the previously-described MCMC algorithms parallelize well
with respect to big data, while transport map MCMC parallelizes well with respect to high-dimensional
data. This naturally leads us to wonder whether the latter scheme can be parallelized in the big data space
as well.

A first step in answering this question would be to empirically compare the transport map MCMC
algorithm to other algorithms – both parallelized and otherwise – when running on a Bayesian problem with
a large dataset. The authors have made their implementations of transport map MCMC available online
at their MUQ (“MIT Uncertainty Quantification”) Library; however, their implementation is written in
C++. Therefore, for practical purposes we should first implement transport map MCMC in the R statistical
programming language, in order to compare the method more directly with other recent techniques.

If the transport map MCMC performs at least as well as those recent parallelized MCMC schemes, this
would be a “win” for transport map MCMC, because most of those other schemes – especially the ones that
integrate machine learning algorithms – have to date provided almost no theoretical guarantees. On the
other hand, if transport map MCMC does appear to suffer when the number of observations becomes very
large, then we propose to explore ways to modify the scheme to allow us to parallelize in the traditional sense
(i.e., with the dataset split across submachines) as well as in the dimensionality of the parameter space.
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(2015), pp. 58–63.

[Wan+15] Xiangyu Wang et al. “Parallelizing MCMC with random partition trees”. In: Advances in
Neural Information Processing Systems. 2015, pp. 451–459.

[Sco+16] Steven L Scott et al. “Bayes and big data: The consensus Monte Carlo algorithm”. In: Inter-
national Journal of Management Science and Engineering Management 11.2 (2016), pp. 78–
88.

[NS+18] Christopher Nemeth, Chris Sherlock, et al. “Merging MCMC subposteriors through Gaussian-
process approximations”. In: Bayesian Analysis 13.2 (2018), pp. 507–530.

[PM18] Matthew D Parno and Youssef M Marzouk. “Transport Map Accelerated Markov Chain Monte
Carlo”. In: SIAM/ASA Journal on Uncertainty Quantification 6.2 (2018), pp. 645–682.

[MBK19] Diego Mesquita, Paul Blomstedt, and Samuel Kaski. “Embarrassingly parallel MCMC using
deep invertible transformations”. In: arXiv preprint arXiv:1903.04556 (2019).
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