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1 Introduction

Let U1, U2, . . . , Un
iid∼ FU with E [Ui] = µ and Var (Ui) = σ2 < ∞, and let Xn = (

∑
i Ui − nµ)/

√
nσ2 be

the standardized sample mean of the Ui’s. The classical (Lindeberg-Lévy) central limit theorem (CLT) —

perhaps the most important theorem in statistics — says that Xn
d−→ Z ∼ N (0, 1). The standard proof

of this result uses characteristic functions, a technique dating to the work of Laplace [Fischer, 2010]: one
simply writes φXn(t) =

(
φ(Ui−µ)/σ(t/

√
n)
)n

and expands the inner quantity as 1 − σ2t2/2n + O(n−3/2),

so that the whole expression converges pointwise to e−t
2/2 = φZ(t). With pointwise convergence of the

characteristic functions established, the proof concludes with an appeal to the inversion theorem [Lévy,
1926], which roughly asserts a one-to-one correspondence between distributions and characteristic functions.1

Lévy proved that the convergence of FXn to Φ is uniform under relatively weak regularity conditions, and
Gnedenko [1954] showed the same for the convergence of the densities fXn to ϕ.

The CLT was put on rigorous footing in the early 1900s, and since then, various extensions of it have
been developed to the extent that modern probability theorists typically refer to “CLTs” instead of “the
CLT”. It is, of course, an asymptotic result; while it is easy to see that convergence is slower when FU is
highly skewed or kurtotic, the classical CLT gives no indication of how much FXn(x) and Φ(x) will differ for
finite n and for any given x ∈ R. The study of convergence rates for the CLT began in the 1940s with Berry
and Esseen, who independently established that supx∈R |FXn(x)− Φ(x)| ≤ Cρ/(σ3

√
n), where ρ = E

[
|Ui|3

]
and C is a universal constant [Berry, 1941, Esseen, 1943, Bergström, 1944] which has been steadily reduced
over the subsequent years. While such results are certainly informative, their applicability to practical
statistical inference is limited because they concern only the absolute error of the approximation, rather
than the relative error. Thus, as Wallace [1958] notes, “Berry’s bound on the error is usually intolerable
except for very large errors.”

A different line of work, originating several decades earlier, carefully adds “correction terms” to Φ(x) in
order to reduce the error of its approximation to FXn(x). According to Wallace [1958], an asymptotic expan-
sion of a sequence {fn(·) : X → R}n≥1 is a formal power series

∑∞
j=0 n

−j/2Aj(·) whose partial sums provide

an approximation of any fn(·).2 The asymptotic expansion is valid when
∣∣∣fn(x)−∑r

j=0 n
−j/2Aj(x)

∣∣∣ ≤
n−(r+1)Cr(x) for any r, where Cr(x) is constant in n. In other words — to paraphrase Wallace [1958] —
validity means that the error committed by approximating fn(y) by the rth partial sum is of the same order
of the (r + 1)th neglected term. The label “formal” is applied to the power series because in many cases,∑∞

j=0 n
−j/2Aj(x) will diverge for some or all x, and the utility of the power series arises from its partial

sums, an insight that originates with Stirling, Euler, and Maclaurin [Dingle, 1973].

According to Fischer [2010], the application of asymptotic expansions to probability began with Bessel
and was advanced by Chebyshev, who was apparently the first to exploit the Hermite polynomials.3 It was
Charlier and Edgeworth, working contemporaneously, who set the stage for the modern theory. Charlier,
starting from Laplace’s innovations and apparently unaware of the work of his contemporaries, developed a

1One can obtain a proof using moment generating functions in essentially the same fashion.
2While Barndorff-Nielsen and Cox [1989] provide a considerably more general definition, the definition here suffices for our

exposition.
3Thiele and Hausdorff also made contributions, which were not properly recognized at the time [Fischer, 2010].
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series expansion for general “error probabilities” which implied

fXn(x) = ϕ(x)

1 +
∞∑
j=3

cj
j!
Hj(x)

 ,

where Hj(·) is the jth Hermite polynomial and the coefficients cj depend on the cumulants κj and n. The
coefficients satisfy cj = O(n−(j−2)/2) only for j < 6 and become quite irregular thereafter, rendering the so-
called Charlier A-series (or the Charlier-Gram series) of limited use as an asymptotic expansion. Charlier’s
“proof” that his expansion was valid was deeply flawed [Cramér, 1972]; moreover, Szeg [1939] later showed
that the series itself converges only when the underlying distribution FU has quickly decaying tails.

At about the same time Edgeworth, who in turn was apparently unaware of Charlier’s work [Fischer,
2010], established an expansion that was essentially a rearrangement of Charlier’s series, taking the form

fXn(x) = ϕ(x)

1 +
∞∑
j=1

qj(x)

nj/2

 ,

where each qj(·) is a linear combination of Hi(·)s and powers of κis, but importantly, is free of n [Edgeworth,
1905]. In contrast to Charlier’s series, Edgeworth’s series truly was valid under relatively weak conditions
— a result first rigorously shown by Cramér [1928] — and the series proved ripe for extension and modifi-
cation. Edgeworth also provided a glimpse into future statistical applications of his series. While Cramér
added several theoretical results on Edgeworth expansions to the literature over the subsequent years, there
were no major developments in the area of (statistical) asymptotic expansions for several more decades,
with some notable exceptions: Daniels introduced the saddlepoint approximation (to be detailed below)
in Daniels [1954], while Chambers [1967] developed Edgeworth expansions for the multivariate case in the
relatively modern context of Monte Carlo simulations. The lone book on the topic was the reference book
of Bhattacharya and Rao [1976], which compiled most results known at the time. It appears that the poten-
tial utility of Edgeworth expansions and saddlepoint approximations was not appreciated by the statistical
community as a whole.

In 1979, Barndorff-Nielsen and Cox (henceforth referred to as “the authors”) published a paper [Barndorff-
Nielsen and Cox, 1979] whose stated goal was to (re)-introduce Edgeworth expansions and saddlepoint
approximations in both the univariate and multivariate cases, and to emphasize their possible uses for sta-
tistical applications via several real-world examples (and a multitude of theoretical ones). We investigate
their findings in this report. In Section 2, we derive the Edgeworth expansion and saddlepoint approxima-
tions presented by the authors in the univariate and bivariate cases. In Section 3, we examine the statistical
applications provided by the authors, starting with four simple case studies and then moving onto deeper
results related to conditional inference and likelihood ratio tests (LRTs). Finally, in Section 4 we provide a
brief assessment of the paper and its impact on future research.

2 Edgeworth and Saddlepoint approximations

In their 1979 paper, the authors simply state the univariate Edgeworth expansion and briefly describe how
the univariate saddlepoint approximation follows, with a view to preparing the reader for the bivariate and
multivariate generalizations presented thereafter, from which the statistical applications of the approxima-
tions follow. As pointed out by Reid [1988], the primary challenge in deriving the multivariate extensions
arises from introducing concise and readable notation for the error terms, because the number of terms in
each summand explodes combinatorially with the dimension being considered.
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In the two following subsections, we briefly explain how each approximation is derived in the univariate
case, and then state the bivariate extension; together, these are enough to describe expansions of condi-
tional densities, which are the main tools used in the statistical applications of the paper. We omit the
general multivariate versions presented by the authors, since they are direct extensions of the bivariate
ones. Throughout, we mostly maintain the original notation used by the authors despite some of their
unconventional choices,4 since consistently transcribing the mathematical content into modern form is quite
challenging, and unnecessary for the purposes of this report. Much of their notation used in the multivariate
setup was superseded by tensor notation (and Einstein notation in particular) by McCullagh [1987], which
the authors themselves adopted in Barndorff-Nielsen and Cox [1989].

2.1 The direct Edgeworth expansion

Let U1, U2, . . . , Un
iid∼ fU (·) with E [U ] = κ1, Var (U) = κ2, higher-order cumulants κ3, κ4, . . ., and cumulant

generating function

KU (t) = log
(
E
[
etU
])

=
∞∑
j=1

κj
tj

j!

If Xn = (
∑

i Ui − nκ1)/
√
nκ2 is the standardized sample mean, then the cumulant generating function of

Xn is given by

KXn(t) =

∞∑
j=2

nκj
j!

(
t

√
nκ2

)j
=
t2

2
+ ρ3

t3

6
√
n
+ ρ4

t4

24n
+O

(
n−3/2

)
,

where the standardized cumulants are defined as ρj := κj/κ
j/2
2 , j ≥ 3. To obtain the mgf, we exponentiate,

extract a factor of et
2/2, write the remaining factor as a second-order Taylor series, and expand, relegating

all powers of 1/
√
n beyond 3 to the error term:

MXn(t) = exp

(
t2

2

) ∞∑
k=0

1

k!

(
ρ3

t3

6
√
n
+ ρ4

t4

24n
+O

(
n−3/2

))k
= exp

(
t2

2

)[
1 + ρ3

t3

6
√
n
+ ρ4

t4

24n
+ ρ23

t6

72n
+O

(
n−3/2

)]
= L{ϕH0}(−t) +

ρ3
6
√
n
L{ϕH3}(−t) +

ρ4
24n

L{ϕH4}(−t) +
ρ23
72n

L{ϕH6}(−t) +O
(
n−3/2

)
where L{ϕHj}(t) =

∫∞
−∞ e−txϕ(x)Hj(x) dx is the (two-sided) Laplace transform of ϕ(x)Hj(x), and Hj(x)

is the jth Hermite polynomial.5 Taking the inverse Laplace transform and factoring out ϕ(x) yields the
density

fXn(x) = ϕ(x)

(
1 +

ρ3
6
√
n
H3(x) +

ρ4
24n

H4(x) +
ρ23
72n

H6(x) +O
(
n−3/2

))
. (1)

In (1) we have the basic Edgeworth approximation for the standardized sample mean in one dimension
(or as the authors call it, the direct Edgeworth expansion), which clearly agrees with the classical CLT

4For example, they regard the mgf of a random variable X as MX(t) = E
[
e−tX

]
instead of MX(t) = E

[
etX

]
, a choice that

was gently criticized by Daniels in his discussion of the paper and tacitly revised by the authors in Barndorff-Nielsen and Cox
[1989] only ten years later. Henry Daniels seemed to be amusingly particular about the notational choices made by his former
student Cox. He also quibbles with the use of y for the size of a random sample in his contribution to the discussion of Cox
[1958].

5The Laplace transforms – or Fourier transforms, when one uses characteristic functions instead of mgfs – are rarely written
out explicitly like this in the literature on Edgeworth expansions; in the 1979 paper, the authors omit it entirely and simply call
it “inverting”. However, we find that this representation makes it easy to see how the inverse Laplace transform immediately
recovers the density.
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upon taking n → ∞. Of course, the foregoing procedure is not valid for any arbitrary density fU (·); in
the appendix of the paper, the authors cite Bhattacharya and Rao [1976] for regularity conditions on the
characteristic function of U which validate the expansions here and in the rest of the paper.

In two dimensions, let (U1, V1), . . . , (Un, Vn)
iid∼ fU,V (·, ·), with cumulants κlm and standardized cumulants

ρlm. Putting Xn = (
∑

i Ui − nκ10)/
√
nκ20 and Yn = (

∑
i Vi − nκ01)/

√
nκ02, the mgf is exponentiated

and manipulated in the same fashion as before. Applying this technique directly, however, presents a
problem: in the univariate case, the term of order O(

√
n) in the expansion of KXn(t) vanished because

κ1(Xn) = E [Xn] = 0, but in KXn,Yn(t) it remains, because ρ11 = κ11/
√
κ01κ10 ̸= 0 in general. To remedy

this, the authors take a clever sidestep by defining Y ′
n = (Yn−ρ11Xn)/

√
1− ρ211, which is uncorrelated with

Xn by construction. Then the basic Edgeworth expansion yields

fXn,Y ′
n
(x, y) = ϕ2(x, y)

(
1 +

(HTρ)[3](x, y)

6
√
n

+
(HTρ)[4](x, y)

24n
+

[
(HTρ)[3]

]2
(x, y)

72n
+O

(
n−3/2

))
, (2)

where and ϕ2(·, ·) is the standard bivariate normal density and

[
(HTρ)[j]

]l
(x, y) :=

∑
k0+···+kj=l
k0,...,kj≥0

(
l

k0, · · · , kj

) j∏
i=0

[(
j

i

)
ρi,j−i

]ki
Hkii(x)Hki(j−i)(y) (3)

with (HTρ)[j](x, y) :=
[
(HTρ)[j]

]1
(x, y).6 Letting y′ = (y − ρ11x)/

√
1− ρ211, a simple change of variables

applied to (2) gives the bivariate Edgeworth expansion

fXn,Yn(x, y) =
ϕ2(x, y

′)√
1− ρ211

(
1 +

(HTρ′)[3](x, y′)

6
√
n

+
(HTρ′)[4](x, y′)

24n
+

[
(HTρ′)[3]

]2
(x, y′)

72n
+O

(
n−3/2

))
,

(4)
where ρ′ij in the analogue of (3) is the (i, j)th standardized cumulant of (Xn, Y

′
n). The authors note that the[

(HTρ′)[j]
]k

(x, y′) terms can be written in terms of (x, y), but the required transformation uses generalized
Hermite polynomials and is not elaborated upon.

The authors end by noting briefly how the Edgeworth expansion of a conditional density arises from
inserting the univariate and bivariate expansions into the right side of fYn|Xn

(y | x) = fXn,Yn(x, y)/fXn(x).
This expansion is then given by the authors without any derivation whatsoever, but the details can
be inferred7 from the standard formula

(∑∞
k=0 bkx

k
)
/
(∑∞

k=0 akx
k
)
= a−1

0

∑∞
k=0 ckx

k, where ck = bk −
a−1
0

∑k
j=1 ck−jaj (as stated in Gradshteyn and Ryzhik [2014], using

√
n in place of x). Some tedious but

straightforward accounting yields

fYn|Xn
(y | x) = ϕ(y′)√

1− ρ211

(
1 +

1

6
√
n

(
(HTρ′)[3](x, y′)− ρ3,0H3(r)

)
+

1

n
A(x, y′) +O

(
n−3/2

))
, (5)

where

A(x, y′) =
(HTρ′)[4](x, y′)− ρ40H3(x)

24
+

[
(HTρ′)[3]

]2
(x, y′)− ρ230H6(x)

72
−ρ30H3(x)(H

Tρ′)[3](x, y′)− ρ230H
2
3 (x)

36
.

6The authors describe the implementation of (3) in words, rather than providing an explicit formula as we do here. It follows
from two applications of the multinomial theorem, followed by the relevant adjustments to the involved Hermite polynomials.

7Typically when power series representations of functions are divided, care must be taken to ensure that the ratio actu-
ally converges in some neighborhood; however, in the case of asymptotic expansions, convergence is of no concern and the
manipulations can be done in a rather carefree fashion.
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2.2 The saddlepoint approximation

The Edgeworth expansions (1) and (4) certainly approximate fXn and fXn,Yn more accurately than ϕ and
ϕ2, respectively, but their behaviour can be unpalatable in the tails of the distributions. For example, they
can yield negative values in the tails — an infamous drawback noted by Daniels [1954]. Apart from the
problem of negative values, the approximations can be quite poor away from the mean, which corresponds
to x = 0 in (1); writing that equation as fXn(x) = ϕ(x)

(
1 + ρ3H3(x)/6

√
n+O(n−1)

)
and noting that every

non-constant polynomial is unbounded, we see that when |x| ≫ 0, the convergence to 1 of the second term
as n→ ∞ will be slowed considerably by the relatively large value of H3(x), unless one is fortunate enough
to start with a distribution for which ρ3 = 0 (i.e., with zero skewness) — but even then, the problem would
remain for higher-order cumulants.

On the other hand, when x = 0 the latter issue completely disappears, simply because the odd Hermite
polynomials vanish at 0. This results in a pleasing expansion in powers of n rather than

√
n; in particular,

the one-term approximation is accurate to order O(n−2). In turn, this suggests a modification: supposing
that we are interested in approximating fXn(x) at some particular x = x∗, construct a new density g(·)
such that g(0) = fXn(x

∗) — but which otherwise preserves the basic characteristics of the original density
fXn(·) — and then apply an Edgeworth expansion to g(·). At first glance, one might think to choose the
shifted density g(·) = fXn(· + x∗); such a choice would be doomed to fail, however, because then X∗

n ∼ g
would have κ1(X

∗
n) ̸= 0 in general, resulting in an extra term in its cumulant generating function.

We fare much better if instead we exponentially tilt fXn(·) — that is, we embed it inside the natural
exponential family {fXn(·;λ) : λ ∈ R} with fXn(x;λ) = exp (λx− nKU (λ)) fXn(x), in which the particular
choice λ = 0 returns the original density. According to Butler [2007], this technique was first presented
in Esscher [1932], and is sometimes called the Esscher transform. In slightly more generality (which will
be relevant later) suppose that U1, . . . , Un ∼ fU (x;λ0) with cumulants κ1(0), κ2(0), . . ., so that now Xn =
(
∑

i Ui−nκ1(0))/
√
nκ2(0), and our aim is to approximate fXn(x

∗;λ0). Putting r = r(x) =
√
nκ2(0)x+nκ1(0),

simple manipulations yield

fXn(x;λ0) = exp (nKU (λ)− nKU (λ0) + r(λ− λ0)) fXn(x;λ) (6)

We are thus free to optimize the choice of λ, and since we intend to perform an Edgeworth expansion of
fXn(x;λ), the best choice λ∗ is that which makes x∗ equal to the mean of fXn(·;λ∗). Using (6), this means
that we insist on

x∗ =

∫
x · exp (−nKU (λ

∗) + nKU (λ0)− r(λ∗ − λ0)) fXn(x;λ0) dx =

√
n

κ2(0)

(
K ′
U (λ

∗) + κ1(0)
)
, (7)

or equivalently,
r∗ = −nK ′

U (λ
∗), (8)

where the involvement of the derivative K ′
U (·) follows from a standard result about exponential families.

Such a λ∗ is found by solving (either exactly or approximately) the equation K ′
U (λ

∗) =
√
κ2(0)/nx

∗ + κ1(0).

The authors point out that from a statistical perspective this corresponds to finding the MLE of λ given
the “data” x∗ under the exponential family model fXn(·;λ); this correspondence will have consequences in
hypothesis testing applications.

With λ∗ chosen as such, an Edgeworth expansion of fXn(x
∗;λ∗) applied to (6) yields

fXn(x
∗;λ0) = exp (nKU (λ

∗)− nKU (λ0) + r∗(λ∗ − λ0))
ϕ(0)√
κ∗2/κ2(0)

(
1 +

ρ∗4
24n

H4(0) +
ρ∗3

2

72n
H6(0) +O

(
n−2

))

=
exp (nKU (λ

∗)− nKU (λ0)− nK ′(λ∗)(λ∗ − λ0))√
2πκ∗2/κ2(0)

(
1 +

3ρ∗4 − 5ρ23
∗

24n
+O

(
n−2

))
, (9)
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and (9) is the basic saddlepoint approximation. As the authors note, there is an alternative method of
deriving (9) which was shown by Daniels [1954]. One writes the density as the inverse Fourier transform of
the characteristic function ψS∗

n
(t) and deforms the contour of integration to pass through the solution λ∗

of (7), thereby defining a saddlepoint in the complex plane [Platt, 1996]. It is to this fact that the saddle-
point approximation owes its name (although the authors themselves also used the term “tilted Edgeworth
expansion”, which did not seem to catch on in the literature).

As with the univariate case, the bivariate saddlepoint approximation exploits the fact that the bivariate
Edgeworth expansion (4) evaluated at the point (0, 0) gives an approximation with error of order O(n−1).
Writing θ = (λ, ψ)⊤, we again begin by embedding fXn,Yn(·, ·;θ0) inside the natural exponential family
{fXn,Yn(·, ·;θ) : θ ∈ R2}, where fXn,Yn(x, y;θ) = exp

(
θ⊤(x, y)− nKU,V (θ)

)
fXn,Yn(x, y;θ0). Now putting

r = r(x) =
√
nκ20(0)x+ nκ10(0) and s = s(y) =

√
nκ02(0)y + nκ01(0), we have in analogy with (6) that

fXn,Yn(x, y;θ0) = exp (nKU,V (θ)− nKU,V (θ0) + (r, s)(θ − θ0)) fXn,Yn(x, y;θ). (10)

Aiming to approximate (10) at the point (x∗, y∗)⊤, we now choose θ∗ such that(
x∗

y∗

)
=

√
n

(
∇KU,V (θ

∗)−
(
κ10(0)
κ01(0)

))
⊙
(√

κ20(0)√
κ02(0)

)
, (11)

or equivalently t∗ = −n∇KU,V (θ
∗), where t∗ := (r∗, s∗)⊤. Applying the bivariate Edgeworth expansion (4)

of fXn,Yn(x, y;θ
∗) to the rightmost term in (10) then yields

fXn,Yn(x
∗, y∗;θ0) =

exp
(
nKU,V (θ

∗)− nKU,V (θ0) + tT (θ∗ − θ0)
)

2π
√
|∇∇TKU,V (θ∗)| / |∇∇TKU,V (θ0)|

(
1 +

(HTρ∗′)[4](x∗, y∗′)

24n
+O

(
n−2

))
.

(12)
Obtaining a saddlepoint approximation for the conditional density fYn|Xn

(· | ·;θ0) is less straightforward.
Assuming an exponentially-tilted joint density of the form

fXn,Yn(x, y;θ0) = exp
(
nKU,V (λ

′′, ψ′′)− nKU,V (λ0, ψ0) + t⊤(θ′′ − θ0)
)
fXn,Yn(x, y;λ

′′, ψ′′) (13)

for some λ′′, ψ′′ as in (10) automatically imposes a marginal density of the form

fXn(x;θ0) = exp
(
nKU,V (λ

′, ψ0)− nKU,V (λ0, ψ0) + r(λ′ − λ0)
)
fXn(x;λ

′, ψ0) (14)

for some λ′. There are thus several ways to choose the free parameters λ′, λ′′, ψ′′ that are involved; more-
over, there is nothing to preclude combining an Edgeworth expansion of fXn,Yn(·, ·;θ0) with a saddlepoint
approximation of fXn(·;θ0), or vice-versa.

The authors discuss two approaches to evaluating the conditional density fXn,Yn(· | ·;θ0) at (y∗ | x∗).
The first approach applies separate saddlepoint approximations to fXn(x;λ

′, ψ0) and fXn,Yn(x, y;λ
′′, ψ′′),

which means choosing (λ′′, ψ′′)⊤ = θ∗ as implicitly defined in (11). For the remaining parameter, we choose
the λ′ = λ∗(0) obtained by solving (7) in λ∗, but with the expectation now taken with respect to fXn(·;λ, ψ0),

holding ψ0 fixed; equivalently, λ∗(0) is the MLE of λ under the hypothesis ψ = ψ0 [Pedersen, 1979]. With

these choices respectively inserted into (13) and (14), we divide the former by the latter and obtain

fYn|Xn
(y∗ | x∗;θ0)

=
exp

(
nKU,V (λ

∗, ψ∗)− nKU,V (λ
∗
(0), ψ0) + r∗(λ∗ − λ∗(0)) + s∗(ψ∗ − ψ0)

)
√
2π |∇∇TKU,V (ψ∗, λ∗)| /κ∗20(0)κ02(0)

(
1 +

B(r∗, s∗′)

24n
+O

(
n−2

))
,

(15)

where B(r, s′) = (HT ρ̂′)[4](r, s′) − 3ρ̂4,0 + 5ρ̂23,0, the latter two terms being calculated with respect to λ∗(0),

as in (9). The authors refer to this equation as the double saddlepoint approximation.
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The second approach instead chooses ψ′′ = ψ0 and λ′ = λ′′ = λ∗(0), where λ
∗
(0) is again obtained as the

MLE of λ under ψ = ψ0. These choices render the exponential terms in (13) and (14) identical, so that they
entirely cancel one another out upon division, leaving us with

fYn|Xn
(y∗ | x∗;θ0) =

fXn,Yn

(
x∗, y∗; (λ∗(0), ψ0)

)
fXn

(
x∗; (λ∗(0), ψ0)

) .

We now apply Edgeworth expansions to both numerator and denominator, yielding an expansion in powers
of 1/

√
n. The authors do not state the resulting expression in the paper, but it is given by Pedersen [1979],

and is essentially obtained via (4) and (1) and the same division rule for infinite series that was noted toward
the end of Section 2.1. The authors call this variation the single saddlepoint approximation (or the mixed
Edgeworth saddlepoint approximation).

3 Applications to statistical inference

Throughout their development of the Edgeworth expansions and saddlepoint approximations, the authors
offer several brief examples of these methods applied to simple densities, in order to provide intuition to
the reader rather than to showcase the power of the approximations in real-life statistical situations. For
example, after introducing the univariate saddlepoint approximation, the authors repeat a popular example

given by Daniels [1954]: if Y1, . . . , Yn
iid∼ Exp(1), then the saddlepoint approximation to the density of

nȲn ∼ Gamma(1, n) is

fnȲn(y) =
yn−1e−y√
2π/n(n/e)n

(
1 +O(n−1)

)
.

Remarkably, the denominator in the leading term is Stirling’s approximation of (n− 1)!, and moreover the
density would be exact upon renormalization.8

Following their exposition of the double and single saddlepoint approximations in the bivariate case,
the authors give two more simple examples of how their approximations of conditional densities lead to
expressions which are exact, up to a normalizing constant. Interesting as they are, basic examples like
these — in which the density being approximated is already available in closed form for comparison —
are by construction unsuitable in any real-world situation, simply because no one would want to use an
approximation when the exact result is already at hand. Hence, we omit further discussion of these, and
instead, we report on the statistical applications provided by the authors in order to highlight the power of
the approximations to statistical inference.

3.1 Some special cases of statistical interest

Following their main exposition of the Edgeworth and saddlepoint approximations, the authors demonstrate
their statistical applicability with four relatively simple examples, all of which deal with exponential families.

The first involves modelling a time-inhomogeneous Poisson process in which, given event occurrences at
times 0 < t1 < · · · < tn < T , one seeks to test whether a log-quadratic rate function more suitably describes
the data than a log-linear one. To this end, the authors test the hypothesis that ψ = 0 in the rate function
exp

(
α+ βt+ ψt2

)
, conditional on n events having occurred in the interval (0, T ).9 Conditioning on the

8In his discussion of the paper, Daniels asserted that the only densities for which the renormalized saddlepoint approximation
is exact are the normal, inverse Gaussian, and gamma. A rigorous proof of this claim was published several years later by Blæsild
and Jensen [1985].

9Notably, Pedersen [1979] applies the single saddlepoint approximation to the same model in a more detailed study.
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number of events r =
∑n

i=1 ti effectively fixes the parameter α, reducing the setup to a two-dimensional
problem with sufficient statistic

(∑n
i=1 ti,

∑n
i=1 t

2
i

)
. The authors apply the direct Edgeworth expansion in

(5) to s =
∑n

i=1 t
2
i , yielding an approximate normal density from which confidence intervals and p-values

can be extracted. The authors apply this method to the record of major freezes of Lake Constance in
Western Europe, described in Steinijans [1976], who had performed the same hypothesis test on this data
under an unrefined bivariate normal approximation to

(
1
n

∑n
i=1 ti,

1
n

∑n
i=1 t

2
i

)
. While both studies reject the

hypothesis that ψ = 0, the p-value obtained using the double saddlepoint approximation is about 0.008,
while that from the bivariate normal approximation is effectively zero at Φ−1(−25.2). The authors attribute
this difference to Steinijans’ application of the bivariate normal approximation to an inappropriate range. In
fact, the discussion of the authors’ paper includes a note from a representative of the Forestry Commission
confirming an error in a formula used by Steinijans; once the mistake is accounted for, the discrepancy
between the two p-values is quite minimal.

The next simple example involves the von Mises distribution (or as the the authors call it, the circular
normal distribution). The aim is to compare the “basic” distribution, where f(α) ∝ exp (λ1 cosα+ λ2 sinα),
with an extension10 where f(α) ∝ exp (λ1 cosα+ λ2 sinα+ ψ1 cos 2α+ ψ2 sin 2α). As in the previous ex-
ample, given iid data A1, A2, . . . , An, the authors obtain an approximate conditional density of the random
vector (

∑n
i=1 cos 2Ai,

∑n
i=1 sin 2Ai) given r = (

∑n
i=1 cosAi,

∑n
i=1 sinAi) by applying a 4-dimensional exten-

sion of the single saddlepoint approximation. Following some rather tedious calculations, the authors show
that to a first-order approximation, what results is a bivariate normal density; from this two statistics can be
extracted, which, under the assumption ψ1 = ψ2 = 0, are independently normally distributed with known
variances. From these, an approximate hypothesis test of ψ1 = ψ2 = 0 can thus be constructed on the basis
of a χ2

(2) test statistic.

The third example involves testing for conformity with the gamma distribution (with unknown shape and
scale) – an exponential family distribution with sufficient statistics (

∑n
i=1Xi,

∑n
i=1 log (Xi)) – against a more

complicated exponential family distribution with sufficient statistics
(∑n

i=1Xi,
∑n

i=1 log (Xi) ,
∑n

i=1X
2
i

)
.

Once again, the authors use the single saddlepoint method to approximate a conditional density, this time
of
∑n

i=1X
2
i | (

∑n
i=1Xi,

∑n
i=1 log (Xi)). To a first-order approximation, what results is a univariate nor-

mal density; thus, a statistic can be constructed which follows a standard normal distribution, yielding a
straightforward z-test. Interestingly, the numerator of the test statistic contains a difference of the sample
squared coefficient of variation and the MLE of that under the hypothesized gamma distribution; the authors
therefore refer to this construction as a “dispersion test”. However, they also note that the test performs
rather slowly, based on the results of a simulation study by their colleague D. Pregibon, and hence they do
not advise its use in practical situations.

The last example pertains to a bioassay logistic regression model, in which three dose levels d ∈ {−1, 0, 1}
are administered to n patients each, yielding responses of Y

(d)
1 , . . . , Y

(d)
n

iid∼ Bernoulli (expit(−λ− ψd)), for

each d. To perform inference on the slope parameter ψ, the authors define the statistics Ad =
∑n

i=1 Y
(d)
i

and find that the joint probability mass function of (A−1, A0, A1) – which is simply a product of binomial
masses – can be written in terms of the total number of respondents R =

∑1
d=−1Ad and the difference

S = A1 − A−1, specifically as a function of λR − ψS. From here, the authors are finally in a position to
apply their double saddlepoint method, and by doing so they obtain an approximation to the conditional
mass function of S | R. The exact conditional distribution is available in closed form, which is compared
with the double saddlepoint approximation in a table with n = 16 and λ = 1; however, no derivations of
the approximation (nor of the exact mass function) are included. In most cases, the relative errors of the
saddlepoint approximation lie between 2% and 7%.

10Gatto and Jammalamadaka [2007] refers to this as a “Generalized von Mises” distribution, itself a specification of the

general family of densities proportional to exponentials of trigonometric polynomials f(α) ∝ exp
(∑k

j=1 aj cos jα+ bj cos jα
)
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3.2 Applications to conditional likelihood inference and likelihood ratio tests

The authors’ first major statistical example pertains to conditional likelihood inference, in which inference
for one subset of unknown model parameters is performed while regarding the remaining unknowns as
nuisance parameters. In exponential family models, nuisance parameters can be removed via conditioning on
sufficient statistics [Davison, 2003]. Thus, approximate conditional inference can be carried out by leveraging
approximate conditional densities via the double saddlepoint approximation. The authors demonstrate this
for the two-parameter case, which aligns with the discussion that leads to (15).

With the same setup — but dropping the subscripts on λ0 and ψ0 for notational simplicity — we are
now interested in approximating the conditional likelihood function of ψ in terms of the observed sufficient
statistics s =

∑
i Yi and r =

∑
iXi, conditioning on the latter equality and regarding λ as the nuisance

parameter. Writing λ̂ψ for the MLE of λ holding ψ fixed, taking the logarithm of the leading term of (15)
yields an approximate conditional log-likelihood

ℓ(ψ; s | r) ≈ 1

2
log (κ20)− nKU,V (λ̂ψ, ψ)− rλ̂ψ − sψ + C, (16)

where κ20 is calculated based on (λ̂ψ, ψ) and C is free of λ. Differentiating with respect to ψ yields an
approximate conditional likelihood equation of the form

nκ01 = s− κ11κ30 − κ20κ21
2κ220

(17)

where the joint cumulants κij are evaluated at (λ̂ψ, ψ). The authors observe that (17) is essentially the
unconditional likelihood equation from (7), adjusted by the correction term on the right.11 To illustrate,
the authors consider a 2 × 2 contingency table with entries xij and unknown cell probabilities πij . With
the parameters λ = (log (π22/π12) , log (π22/π21)) and ψ = log (π12π21/π11π22), the authors define sufficient
statistics s = x11 and r = (x1·, x·,1) and work out the details to determine the approximate conditional
likelihood equation ℓ(ψ; s | r), showing that obtaining the required maximizer of ψ essentially amounts to
solving a quadratic equation in π11. They apply the idea to a study by Fisher [Fisher, 1935, 1962] on twins
of criminals and demonstrate that for that particular application, the approximate conditional likelihood
equation (as a function of ψ) — and its maximizer ψ̂ — are nearly indistinguishable from their exact
counterparts.

Another important application of the saddlepoint approximation involves approximating the distribution
of the LRT statistic under the null hypothesis. The result is in essence a generalization of Wilks’ theorem.
Starting with the assumption that Y1, . . . , Yn are independent and identically distributed according to the
exponentially tilted density f(y;λ) = e−yλf(y)/M(λ), the goal is to test H0 : λ = λ0 using an LRT. The
LRT statistic is

Pn = −2nȲn(λ− λ0)− 2n(K(λ)−K(λ0))

and K ′(λ) = −Ȳn. We write p for the observed value of Pn. From (9) and two changes of variables (first
from S∗

n to nȲn, and then from nȲn to Pn), we obtain the saddlepoint approximation

fPn(p;λ0) =
e−p/2

2
√
2πn

∑
λ∈Ap

1

|λ− λ0|
√
K ′′(λ̂)

(
1 +

c

n
+O(n−2)

)
,

where c is a function of λ0 and Ap = {λ : −2nȳn(λ− λ0)− 2n(K(λ)−K(λ0)) = p}, and further manipula-
tions12 yield

fPn(p;λ0) =
e−p/2√
2πp

(
1 +

c(1− p)

n
+O(n−3/2)

)
.

11It is rather unclear how the authors arrive at this equation, despite their hint that it follows from differentiation of (16)
with respect to ψ. We could not find a reproduction of this formula in our review of the subsequent literature.

12The authors simply refer to these manipulations as “Taylor expansions” without providing details. This is quite an under-
statement of the fully rigorous argument, given by, e.g., Theorem 8.2.1 of Kolassa [2006].
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One defect of the above approximation is that its mean is 1− 2c/n+O(n−3/2), which, although correct in
the limit, is somewhat unsatisfactory as an approximation of the true mean. However, making the further
change of variables from Pn to P ′

n := Pn/(1−c/n) and then Taylor expanding (to second-order) the resulting
exponential and the square-root terms yields

fP ′
n
(p′;λ0) =

e−p
′/2

√
2πp′

e−cp
′/2n
√
1− c/n

(
1 +

c(1− p(1− c/n))

n
+O(n−3/2)

)
=
e−p

′/2

√
2πp′

(
1 +O(n−3/2)

)
.

Thus, P ′
n

·∼ χ2
(1) to order n−3/2, and indeed, this approximation evidently has a much more palatable mean

of 1+O(n−3/2). The authors generalize the above slightly to the two-parameter case. The idea of rescaling
the LRT statistic — in this case, by the factor (1 − c/n) — to produce a better approximation to the
asymptotic chi-square distribution dates back to Bartlett [1937]; the factor is usually called the Bartlett
correction in his honour. This derivation via the saddlepoint approximation is considerably simpler than
the notoriously complicated method published earlier by Lawley [1956].

4 Discussion

This is a well-written, deep, and groundbreaking paper. While relatively little of the underlying theory
included was completely new, the paper was perhaps the first to compile the basic results on Edgeworth
expansions and saddlepoint approximations into a concise and complete exposition, emphasizing their po-
tential for statistical uses — particularly with regard to conditional inference and likelihood ratio tests for
exponential family models. The greatest contributions of the paper are the new connections to statistical
inference, particularly to conditional likelihood (which we addressed in STA4508H) and to LRTs.

From the outset, the paper was very well-received — all of the eminent statisticians who contributed
to the discussion acknowledged its value. It has also been highly influential; it has been cited almost
ubiquitously by subsequent publications on Edgeworth expansions and saddlepoint approximations, and it
helped to provoke an explosion of work in the 1980s, especially on approximating distributions themselves
in the tails. Edgeworth expansions and saddlepoint approximations have been used in countless statistical
applications since then, and at least three textbooks on the topic of such asymptotic expansions have been
published since 1990. The research continues — for example, Tang and Reid [2021] have recently studied
the saddlepoint approximation in high dimensions.

The paper does have one major shortcoming: its lack of detailed calculations. While explaining every
step would be cumbersome, one wishes that the authors had included more detail in the appendix. In
general, the derivation of the saddlepoint approximation is explained in too little detail, and is not much
improved in Barndorff-Nielsen and Cox [1989]. The steps, which are not that lengthy, are much more clearly
explained in Wallace [1958] and Reid [1988]. Other results provided without details, such as (17), are simply
mystifying. In fairness, the publication constraints of the day may have precluded a great deal of detail; it
was impossible to submit appendices of arbitrary length for online access, as we would do today. A second,
more minor shortcoming of the paper involves the authors’ unconventional notational choices, many of which
they revised in their 1989 monograph on the subject.

Only by actually tracing through the mathematical details in works like this is it possible to truly appre-
ciate how much tedious algebra had to be carried out behind the scenes in the days before computational
tools. For example, Wallace [1958] notes that determining just one fourth-order term for an expansion related
to the Behrens-Fisher problem required one hundred pages of algebra by Welch [Aspin, 1948]. Barndorff-
Nielsen and Cox seem to understate the amount of computational work involved, presenting a real challenge
to novices grappling with this landmark work. Then again, for mathematical geniuses like the authors,
perhaps it really was that easy.
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