
How to Estimate 1 and Other Interesting Quantities1

Mini-Project for STA3431
Robert Zimmerman

Second-Year PhD Student, Department of Statistical Sciences
1005054600

In applied statistics, we often need to generate random numbers in order to perform simulations of
complicated systems whose solutions are hard to compute explicitly. For example, MCMC-based methods
draw random variables from pre-specified distributions, producing Markov chains with desirable asymptotic
properties. True randomness is usually unobtainable outside of physical methods (such as generating random
bits based on radioactive decay), but a wide variety of methods known as pseudo-random number generators
(PRNGs) have been designed to output sequences of numbers on a computer that appear to be random.
In the setup typically used for statistical purposes, PRNGs output a sequence of numbers which appear to
follow a Uniform[0, 1] distribution. The past few decades have seen a growth of interest in randomness tests
such as the Marsaglia Diehard tests ([MT+02]), which attempt in various ways to test sequences of PRNG
outputs for randomness. Some of these tests measure the complexity and are grounded in information theory,
while others are based on statistical tests.

During the course of a previous assignment, we tested a PRNG of our choice using several tests including
the Wald–Wolfowitz runs test, Shapiro-Wilk test, and Anderson-Darling test. While the distributions of the
test statistics of the first two under the null hypothesis have easy closed forms, a literature search revealed
no such form for the Anderson-Darling test. However, despite this, Anderson and Darling were able to derive
an asymptotic distribution for the test statistic in [AD+52], which we present later. We wondered how it
might be possible to sample from it, since direct sampling using the inverse cdf method is completely out of
the question. Thus, this distribution is a good candidate to apply MCMC algorithms, which are typically
used to sample from complicated distributions.

The Anderson-Darling test is a goodness-of-fit test that examines whether a set of (ordered) data arises
from an arbitrary specified distribution F . More specifically, the test statistic

An = n

∫ ∞

−∞

(Fn(x)− F (x))2

F (x)(1− F (x))
dx

is computed and compared against the theoretical distribution of An ([AD54]), where Fn(x) =
1
n

∑n
j=1 1xi≤x

is the empirical distribution function, and the data are sorted in increasing order (with no repeated values).
In the particular case of the uniform distribution, F (x) = x · 1x∈[0,1] + 1x>1, and under the null hypothesis

that x1, . . . , xn
iid∼ Uniform[0, 1], the test statistic reduces to the well-known2

An = n

∫ ∞

−∞

(Fn(x)− x)2

x(1− x)
dx = −n− 1

n

n∑
j=1

(2j − 1) log(xj · (1− xj)).

What is the distribution of An? For n = 1, simple algebra shows that

P(A1 < z) =
√
1− 4e−1−z for z > log(4)− 1.

As mentioned above, a closed form for the distribution of An for larger (but finite) values of n is not
known. Remarkably, however, the asymptotic distribution of An as n → ∞ was shown by Anderson and

1While the objective of this mini-project (which we hope we have fulfilled) was to find an interesting and challenging
quantity to compute, we recognize that the quantity 1 is neither challenging to compute nor particularly interesting. A more
descriptive–but less provocative–title might be “How to Estimate the Expectation of Functionals with Respect to the Limiting
Distribution of the Anderson-Darling Test Statistic for Uniformity Under the Null Hypothesis”.

2In [AD+52], to which we refer below, the authors develop their asymptotic theory based on the more general statistic
n
∫∞
−∞(Fn(x)− F (x))2 · ψ(F (x)) dx, where ψ(·) is some non-negative weighting function. Taking ψ ≡ 1, for example, recovers

test statistic for the Cramèr-von Mises criterion, which is often used as an alternative to the Kolmogorov-Smirnoff test.

1

Darling in [AD+52] to be

lim
n→∞

P(An < z) =

√
2π

z

∑
j≥0

(
− 1

2

j

)
(4j + 1)e−

(4j+1)2π2

8z

∫ ∞

0

e
z

8(1+w2)
−w2(4j+1)2π2

8z dw. (1)

In the sequel, we denote this cdf as F∞, and in a slight abuse of notation, we write A∞ for an arbitrary

random variable distributed as F∞. With a sample X1, . . . , XM
iid∼ F∞, we can estimate expectations of

functionals with respect to F∞ using the standard Monte Carlo estimate 1
M

∑M
j=1 h(Xj). In particular, we can

estimate the expectation of X ∼ F∞ by E [X] ≈ 1
M

∑M
j=1 Xj and the variance by Var(X) ≈ 1

M

∑M
j=1 X

2
j −

(1
M

∑M
j=1 Xj)

2. Estimating these quantities allows us to evaluate the quality of our sampling methods,
because their true values are known; moreover, they are extremely simple quantities, as we demonstrate
below.

In [AD+52], Anderson and Darling showed that for the particular Gaussian process x(t) =
∑

j≥1 Zj
fj(t)√
j(j+1)

where Z1, Z2, . . .
iid∼ N (0, 1) and {fj(t)}j≥1 is orthonormal on [0, 1], it is possible to write3

A∞ =

∫ 1

0

z2(t) dt =
∑
j≥1

Z2
j

j(j + 1)
. (2)

Thus, the monotone convergence theorem yields

E [A∞] = E

∑
j≥1

Z2
j

j(j + 1)

 =
∑
j≥1

E
[
Z2
j

]
j(j + 1)

=
∑
j≥1

1

j(j + 1)
=

∑
j≥1

(
1

j − 1
− 1

j

)
= 1.

Furthermore,

E
[
A2

∞
]
= E

∑
j≥1

Z4
j

j2(j + 1)2
+ 2

∑
j≥1

∑
i<j

X2
i X

2
j

i(i+ 1)j(j + 1)


=

∑
j≥1

E
[
Z4
j

]
j2(j + 1)2

+ 2
∑
j≥1

∑
i<j

E
[
X2

i

]
E
[
X2

j

]
i(i+ 1)j(j + 1)

=
∑
j≥1

3

j2(j + 1)2
+ 2

∑
j≥1

1

j(j + 1)

∑
i<j

1

i(i+ 1)

=
∑
j≥1

3

j2(j + 1)2
+ 2

∑
j≥1

j − 1

j2(j + 1)

= (π2 − 9) + 2

(
2− π2

6

)
=

2π2

3
− 5.

Again, we have appealed to the monotone convergence theorem, and then manipulated the sums using simple

fractions. Thus, Var(A∞) = E
[
A2

∞
]
− E [A∞]

2
= 2π2

3 − 6 = 0.57973

Now, all of the methods of sampling from distributions that we have learned require us to know their
densities (up to a normalizing constant), rather than their cdfs. Marsaglia in [Mar04] made an important
contribution by deriving an efficient method to calculate the theoretical cdfs of An and A∞. We mimic his
approach and derive a similar method to calculate the limiting density f∞.

3Their development of this result, which essentially uses functional analysis and Donsker’s theorem, also leads to the

functional form of F∞. After proving Equation 2, they derive the moment generating function of
∑

j≥1

Z2
j

j(j+1)
, and use the

complex inversion formula from the theory of Laplace transforms to recover F∞.

2

To begin with, Marsaglia rewrote Equation 1 as

F∞(z) =
1

z

∑
j≥0

(
− 1

2

j

)
(4j + 1)f(z, j),

where

f(z, j) =
√
2πe−tj

∫ ∞

0

e
z

8(1+w2)
−w2tj dw, tj =

(4j + 1)2π2

8z

=
√
2πe−tj

∫ ∞

0

∑
n≥0

zne−w2tj

8n(1 + w2)nn!
dw

=
∑
n≥0

dj,n(z) · zn

8nn!
, dj,n(z) =

√
2πe−tj

∫ ∞

0

e−w2tj

(1 + w2)n
dw

Marsaglia provided the initial values dj,0(z) = πe−tj/
√

2tj and dj,1(z) = π
√

π/2 · erfc(√tj). His insight was
that the functions {dj,n(z)}n≥2 satisfy the recursion

dj,n+1(z) =
(n− 1

2 − tj) · dj,n(z) + tj · dj,n−1(z)

n
,

which makes calculating F∞ easy; the terms
dj,n(z)·zn

8nn! rapidly approach 0 as n grows, so f(z, j) can be
approximated by only a few of those terms without loss of precision.

It is now up to us to calculate the derivative of F∞. To begin with, the product rule and yet another
application of the monotone convergence theorem (respectively) yield

f∞(z) =
dF∞(z)

dz
= − 1

z2

∑
j≥0

(
− 1

2

j

)
(4j + 1)f(z, j) +

1

z

d

dz

∑
j≥0

(
− 1

2

j

)
(4j + 1)f(z, j)

= − 1

z2

∑
j≥0

(
− 1

2

j

)
(4j + 1)f(z, j) +

1

z

∑
j≥0

(
− 1

2

j

)
(4j + 1)

∂f(z, j)

∂z

=
∑
j≥0

(
− 1

2

j

)
(4j + 1)

(
1

z
· ∂f(z, j)

∂z
− f(z, j)

z2

)
.

Now,
∂f(z, j)

∂z
=

∑
n≥0

d

dz

(
dnz

n

8nn!

)
=

∑
n≥0

d′j,n(z) · zn + dj,n(z) · nzn−1

8nn!
.

With {dj,n(z)}n already available and

d′j,0(z) =
ddj,n(z)

dz
=

πe−tj

√
2z

(√
tj +

1

2
√
tj

)
and d′j,1(z) =

ddj,n(z)

dz
=

πe−t
√
t√

2z
,

we can identify a new recursion by differentiating Marsaglia’s recursion:

d′j,n+1(z) =
(n− 1

2 − tj) · d′j,n(z) + t′j · (dj,n−1(z)− dj,n(z)) + tj · d′j,n−1(z)

n
, t′j = − (4j + 1)2π2

8z2
.

Thus,

f∞(z) =
∑
j≥0

(
− 1

2

j

)
(4j + 1)

1

z

∑
n≥0

d′j,n(z) · zn + dj,n(z) · nzn−1

8nn!
− 1

z2

∑
n≥0

dj,n(z) · zn

8nn!


=

∑
j≥0

(
− 1

2

j

)
(4j + 1)

∑
n≥0

d′j,n(z) · zn−1 + dj,n(z) · (n− 1)zn−2

8nn!

 .

3

We have implemented this function in R efficiently; while the calculations of the functions {dn}n and {d′n}n
do require loops due to their recursive definitions, we have computed the remainder of f∞(z) purely through
vectorization, without using any loops. We have plotted f∞ in Figure 1 below using our implementation. We
note that these plots are visually indistinguishable from Marsaglia’s plots of the same function in [Mar04],
which gives us some assurance that our implementation is correct.4 We observe that f∞ is smooth and
unimodal, but the mode (at around 1) is quite peaked.

Figure 1: Plot of f∞ for x ∈ (0, 10)

With f∞ defined, we can finally start simulating from it. Our goal is to obtain estimates Î and V̂ of

E [A∞] = 1 and Var(A∞) = 2π3

3 − 6, respectively. Because the functional form of f∞ is complicated, direct
sampling methods such as rejection sampling (which relies on bounding f∞ above by another density) or
importance sampling (which relies on writing f∞ = f∞

g g for some easily-sampled density g with supp(g) ⊇
(0,∞)) are out of reach. An auxiliary variable sampler, which requires f∞ to have bounded support, is also
unusable. Thus, we rely on MCMC methods. In particular, we use a random-walk Metropolis algorithm,
a Metropolis-Hastings algorithm, and parallel tempering. While the latter method is well-suited to multi-
modal densities, it is still interesting to observe its performance on f∞.

To implement the random-walk Metropolis algorithm, we pick an initial value X0 ∼ |N (0, 1)|, and
proceed by simulating Yn ∼ N (Xn−1, σ

2), generating Un ∼ Uniform[0, 1], and accepting Xn = Yn when

Un < min
(
1, f∞(Yn)

f∞(Xn−1)

)
. Taking M = 5000 and B = 1000, we obtain Î = 0.9602 with an approximate

95% confidence interval (0.8699, 1.0504), and V̂ = 0.5694 with an approximate 95% confidence interval
(0.1870, 0.9517). Surprisingly, despite the width of the latter interval, our estimate of the variance is closer

to the true value than our estimate of the mean is: |V̂ − 2π2

3 + 6| ≈ 0.01 while |Î − 1| ≈ 0.04. Nevertheless,
both estimates are very accurate, and the true values fall well within our confidence intervals. The trace
plots and autocorrelation plots, shown in Figure 2 in Appendix A, reveal very little autocorrelation and what
appears to be quite good mixing.

4Marsaglia included a supplementary file (which we did not view), that calculated F∞ using the C language. Completely
apart from the fact that we know almost no C, we find it much more rewarding to program these functions on our own from
scratch.

4

Next, we use a Metropolis-Hastings algorithm with (very) asymmetric proposal density Lognormal(x, σ2x).
That is, our proposal density is

q(x, y) =
1

xyσ
√
2π

exp

(
− (log y − x)2

2σ2x

)
.

We have chosen this distribution because the log-normal density very roughly has a shape similar to that
of f∞, the two densities share the same support, and simply because it is unusual (and yet satisfies the
requirements of a Metropolis-Hastings proposal distribution).

To implement the Metropolis-Hastings algorithm, we again pick an initial value X0 ∼ |N (0, 1)|, and
proceed by simulating Yn ∼ Lognormal(Xn−1, σ

2Xn−1), generating Un ∼ Uniform[0, 1], and accepting Xn =

Yn when Un < min
(
1, f∞(Yn)·q(Yn,Xn−1)

f∞(Xn−1)·q(Xn−1,Yn)

)
. Again taking M = 5000 and B = 1000, we obtain Î = 0.9798

with an approximate 95% confidence interval (0.9032, 1.0563), and V̂ = 0.5056 with an approximate 95%
confidence interval (0.1988, 0.8123). Our estimates are in line with those produced by the random-walk
Metropolis algorithm above (here Î is slightly more accurate, while V̂ is slightly less so), and our confidence
intervals are in fact slightly narrower. The trace plots and autocorrelation plots, shown in Figure 3 in
Appendix A, exhibit roughly the same features as those generated previously (with perhaps slightly better
mixing).

To implement parallel tempering, we first define the range of “temperatures” τj = j, for j = 1, . . . ,m.

After picking initial values X01, . . . , X0m
iid∼ |N (0, 1)|, we run m chains in parallel, where we alternate

between the following two steps:

1. For each τ , simulate Yn,τ ∼ N (Xn−1,τ , σ
2), generating Un,τ ∼ Uniform[0, 1] and accept Xn,τ = Yn,τ

when Un,τ < min
(
1,

f∞(Yn,τ)
f∞(Xn−1,τ)

)
2. Choose τ and τ ′ at random, generate Un ∼ Uniform[0, 1], and swap Xn,τ and Xn,τ ′ when Un <

min

(
1,

f∞(Xn,τ′)1/τ ·f∞(Xn,τ)
1/τ′

f∞(Xn,τ)1/τ ·f∞(Xn,τ′)1/τ
′

)

Due to the “for” loops required to calculate f∞(z), our choices of m and M are necessarily restricted to
allow for a practical running time). Thus we choose m = 10 and take M = 1000 and B = 200. With these,
we obtain the estimates

Î =



0.8837
1.0636
1.3037
1.2170
1.1733
1.1803
1.2995
1.3014
0.9079
0.2789


and V̂ =



0.2629
0.2646
0.3283
0.3332
0.3181
0.2792
0.3442
0.3199
0.4271
0.3512


.

Interestingly, the best estimate of E [A∞] comes from the chain corresponding to τ = 2 rather than τ = 1
(as expected), for which the estimate is much worse. On the other hand, the best estimate of Var(A∞)
comes from the chain corresponding to τ = 9 (although it is still not very good). The trace plots and
autocorrelation plots are shown for each chain in Figure 4. While most of the plots look very similar to each
other, we do note that both the trace plot and the autocorrelation plot corresponding to τ = 10 look quite
poor, which is in agreement with the estimate Î produced by that chain.

5

References

[AD+52] Theodore W Anderson, Donald A Darling, et al. “Asymptotic theory of certain “goodness of fit”
criteria based on stochastic processes”. In: The annals of mathematical statistics 23.2 (1952),
pp. 193–212.

[AD54] Theodore W Anderson and Donald A Darling. “A test of goodness of fit”. In: Journal of the
American statistical association 49.268 (1954), pp. 765–769.

[MT+02] George Marsaglia, Wai Wan Tsang, et al. “Some difficult-to-pass tests of randomness”. In:
Journal of Statistical Software 7.3 (2002), pp. 1–9.

[Mar04] George Marsaglia. “Evaluating the Anderson-Darling Distribution”. In: Journal of Statistical
Software, Articles 9.2 (2004), pp. 1–5. issn: 1548-7660. doi: 10.18637/jss.v009.i02. url:
https://www.jstatsoft.org/v009/i02.

6

https://doi.org/10.18637/jss.v009.i02
https://www.jstatsoft.org/v009/i02

Appendix A: Additional Plots

Figure 2: Diagnostic plots for random-walk Metropolis

Figure 3: Diagnostic plots for Metropolis-Hastings

7

Figure 4: Diagnostic plots for parallel tempering

8

Appendix B: R Code

library(forecast)

library(tidyverse)

library(gridExtra)

N <- 150 # number of terms for inner num over n

J <- 50 # number of terms for outer sum over j

erfc <- function(x) {2*pnorm(-sqrt(2)*x)} # complementary error function

coeffs <- function(z,j) # calculate the functions d_{j,n}(z) and d'_{j,n}(z)

{

t <- (4*j + 1)^2*pi^2/(8*z)

tp <- -(4*j + 1)^2*pi^2/(8*z^2)

d <- vector(length=(N+1))

d[1] <- pi*exp(-t)/sqrt(2*t) # d0

d[2] <- pi*sqrt(pi/2)*erfc(sqrt(t)) # d1

dp <- vector(length=(N+1))

dp[1] <- pi*exp(-t)*(sqrt(t) + 1/(2*sqrt(t)))/(z*sqrt(2)) # d'0

dp[2] <- pi*exp(-t)*sqrt(t)/(z*sqrt(2)) # d'1

for (n in 2:N) # use our recursions

{

d[n+1] <- ((n-1 - 1/2 - t)*d[n] + t*d[n-1])/(n-1)

dp[n+1] <- ((n-1 - 1/2 - t)*dp[n] + tp*(d[n-1] - d[n]) + t*dp[n-1])/(n-1)

}

return(rbind(d, dp))

}

g <- function(z,j) # auxiliary function for use in sapply later

{

C <- coeffs(z,j)

d <- C[1,]

dp <- C[2,]

return(choose(-1/2, j)*(4*j + 1)

*sum((dp*z^(-1:(N-1)) + (-1:(N-1))*d*z^(-2:(N-2)))

/(8^(0:N)*factorial(0:N)))) # always vectorize!

}

f <- function(z) # calculate f_infinity

{

if (z <= 0)

{

return(0)

} else

{

s <- sum(sapply(c(0:J), FUN=g2 <- function(j) g(z,j)))

return(s)

}

}

9

x <- as.array(seq(0.1, 10, 0.05))

y <- apply(X=x, MARGIN=c(1), FUN=f)

Z <- data.frame(x, f_inf = y)

ggplot(data=Z, aes(x=x, y=f_inf)) + geom_line(color='blue')

Some MCMC algorithms

varfact <- function(x) {2*sum(acf(x, plot=FALSE)$acf)-1} # to compute varfact

Random-walk Metropolis

acc <- 0 # keep track of acceptance counts

M <- 5000 # number of simulations

B <- M/5 # number of burn-offs

sigma <- 1.8 # for scaling

X <- vector(length=M)

X[1] <- abs(rnorm(n=1)) # initalize X

for (j in 2:M)

{

Y <- X[j-1] + rnorm(n=1, mean=0, sd=sigma) # propose new X

if (runif(1) < min(1, f(Y)/f(X[j-1])))

{

X[j] <- Y

acc <- acc+1

} else

{

X[j] <- X[j-1]

}

}

accrate <- acc/M

Y <- X[(B+1):M] # burn-off first B samples

Ihat <- mean(Y) # estimate 1

CI_Ihat_l <- Ihat - 1.96*sd(Y)*sqrt(varfact(Y)/(M-B))

CI_Ihat_r <- Ihat + 1.96*sd(Y)*sqrt(varfact(Y)/(M-B))

varhat <- var(Y) # estimate 2*pi^2/3 - 6

CI_varhat_l <- varhat - 1.96*sd(Y^2)*sqrt(varfact(Y^2)/(M-B))

CI_varhat_r <- varhat + 1.96*sd(Y^2)*sqrt(varfact(Y^2)/(M-B))

D <- data.frame(n=1:(M-B), X=Y, VarX=Y^2 - mean(Y)^2)

tr_X <- ggplot(D, aes(n, y=X)) + geom_path()

tr_VarX <- ggplot(D, aes(n, y=VarX)) + geom_path()

acf_X <- ggAcf(D$X, lag.max=10000)

acf_VarX <- ggAcf(D$VarX, lag.max=10000)

grid.arrange(tr_X, tr_VarX, acf_X, acf_VarX, nrow=2)

RWM output

> Ihat

[1] 0.9601668

> CI_Ihat_l

[1] 0.8699388

> CI_Ihat_r

10

[1] 1.050395

> varhat

[1] 0.5693503

> CI_varhat_l

[1] 0.1870014

> CI_varhat_r

[1] 0.9516992

> accrate

[1] 0.3046

Metropolis-Hastings with weird log-Normal proposal

acc <- 0 # keep track of acceptance counts

M <- 5000 # number of simulations

B <- M/5 # number of burn-offs

sigma <- 1.5 # for scaling

X <- vector(length=M)

X[1] <- abs(rnorm(n=1)) # initalize X

q <- function(x,y) {return(dexp(x=y, rate=sigma*x))} # proposal distribution

q <- function(x,y) {return(dlnorm(x=y, meanlog=x, sdlog=sigma*x))} # proposal distribution

for (j in 2:M)

{

Y <- rlnorm(n=1, meanlog=X[j-1], sdlog=sigma*X[j-1]) # propose new X

if (runif(1) < min(1, (f(Y)*q(Y, X[j-1]))/(f(X[j-1])*q(X[j-1],Y))))

{

X[j] <- Y

acc <- acc+1

} else

{

X[j] <- X[j-1]

}

}

accrate <- acc/M

Y <- X[(B+1):M] # burn-off first B samples

Ihat <- mean(Y) # estimate 1

CI_Ihat_l <- Ihat - 1.96*sd(Y)*sqrt(varfact(Y)/(M-B))

CI_Ihat_r <- Ihat + 1.96*sd(Y)*sqrt(varfact(Y)/(M-B))

varhat <- var(Y) # estimate 2*pi^2/3 - 6

CI_varhat_l <- varhat - 1.96*sd(Y^2)*sqrt(varfact(Y^2)/(M-B))

CI_varhat_r <- varhat + 1.96*sd(Y^2)*sqrt(varfact(Y^2)/(M-B))

> Ihat

[1] 0.9797862

> CI_Ihat_l

[1] 0.9032351

> CI_Ihat_r

[1] 1.056337

> varhat

[1] 0.5055809

11

> CI_varhat_l

[1] 0.1988189

> CI_varhat_r

[1] 0.8123429

> accrate

[1] 0.2852

Parallel tempering

gT = function(x, tau) {

if (tau < 1 || tau > maxtau)

{

return(0)

} else

{

return(f(x)^(1/tau))

}

}

M <- 1000

B <- M/5

sigma <- 1 # proposal scaling

maxtau <- 10 # maximum temperature

X <- matrix(rep(0,M*maxtau), ncol=maxtau)

Z <- abs(rnorm(n=maxtau)) # initialize Markov chain

accX <- rep(0, maxtau) # counts probabilities for each chain

acctau <- 0 # acceptance counts for temperature swaps

for (j in 2:M)

{

print(j)

for (tau in 1:maxtau)

{

Y <- Z[tau] + rnorm(n=1, mean=0, sd=sigma)

if (runif(1) < min(1, gT(Y, tau)/gT(Z[tau], tau)))

{

X[tau] <- Y

accX[tau] <- accX[tau] + 1

}

}

m <- sample(1:maxtau, size=1) # pick random temperatures

n <- sample(1:maxtau, size=1)

if (runif(1) < min(1, (gT(Z[m],n)*gT(Z[n],m))/(gT(Z[n],n)*gT(Z[m],m))))

{ # propose to swap Xtau with Xtau'

t <- Z[m]

Z[m] <- Z[n]

Z[n] <- t

acctau <- acctau + 1

}

12

X[j,] <- Z

}

Ihat <- vector(length=maxtau)

varhat <- vector(length=maxtau)

CI_Ihat_l <- vector(length=maxtau)

CI_Ihat_r <- vector(length=maxtau)

for (tau in 1:maxtau)

{

Ihat[tau] <- mean(X[((B+1):M),tau]) # burn-off first B samples

varhat[tau] <- var(X[((B+1):M),tau]) # burn-off first B samples

CI_Ihat_l[tau] <- Ihat[tau] - 1.96*sd(X[((B+1):M),tau])*sqrt(varfact(X[((B+1):M),tau])/(M-B))

CI_Ihat_r[tau] <- Ihat[tau] + 1.96*sd(X[((B+1):M),tau])*sqrt(varfact(X[((B+1):M),tau])/(M-B))

}

D <- data.frame(n=1:(M-B), X1=X[((B+1):M),1],

X2=X[((B+1):M),2],

X3=X[((B+1):M),3],

X4=X[((B+1):M),4],

X5=X[((B+1):M),5],

X6=X[((B+1):M),6],

X7=X[((B+1):M),7],

X8=X[((B+1):M),8],

X9=X[((B+1):M),9],

X10=X[((B+1):M),10])

tr_X1 <- ggplot(D, aes(n, y=X1)) + geom_path()

tr_X2 <- ggplot(D, aes(n, y=X2)) + geom_path()

tr_X3 <- ggplot(D, aes(n, y=X3)) + geom_path()

tr_X4 <- ggplot(D, aes(n, y=X4)) + geom_path()

tr_X5 <- ggplot(D, aes(n, y=X5)) + geom_path()

tr_X6 <- ggplot(D, aes(n, y=X6)) + geom_path()

tr_X7 <- ggplot(D, aes(n, y=X7)) + geom_path()

tr_X8 <- ggplot(D, aes(n, y=X8)) + geom_path()

tr_X9 <- ggplot(D, aes(n, y=X9)) + geom_path()

tr_X10 <- ggplot(D, aes(n, y=X10)) + geom_path()

acf_X1 <- ggAcf(D$X1, lag.max=1000, main = NULL)

acf_X2 <- ggAcf(D$X2, lag.max=1000, main = NULL)

acf_X3 <- ggAcf(D$X3, lag.max=1000, main = NULL)

acf_X4 <- ggAcf(D$X4, lag.max=1000, main = NULL)

acf_X5 <- ggAcf(D$X5, lag.max=1000, main = NULL)

acf_X6 <- ggAcf(D$X6, lag.max=1000, main = NULL)

acf_X7 <- ggAcf(D$X7, lag.max=1000, main = NULL)

acf_X8 <- ggAcf(D$X8, lag.max=1000, main = NULL)

acf_X9 <- ggAcf(D$X9, lag.max=1000, main = NULL)

acf_X10 <- ggAcf(D$X10, lag.max=1000, main = NULL)

grid.arrange(tr_X1, acf_X1,

tr_X2, acf_X2,

tr_X3, acf_X3,

tr_X4, acf_X4,

tr_X5, acf_X5,

tr_X6, acf_X6,

tr_X7, acf_X7,

13

tr_X8, acf_X8,

tr_X9, acf_X9,

tr_X10, acf_X10, nrow=10)

14

