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1 Background

In ordinary linear regression, the R-squared statistic is typically used for model selection, as it is an intuitive
measure of goodness-of-fit (although often misunderstood [Kva85]). However, the R-squared statistic does
not generalize easily to every generalized linear model (GLM); in particular, it loses its interpretation (and
usefulness) for logistic regression, where the response is dichotomous rather than continuous. Hence, other
measures must be used in the model building process. There are several “pseudo-R-squared” statistics in
use, but they are more difficult for non-statisticians to interpret, and each comes with its own drawbacks; for
example, the popular McFadden’s R-squared and similar measures are defined in terms of the log-likelihoods
of the “null” model (an intercept-only model) and the current fitted model [All13]. Other goodness-of-fit
statistics, such as the Kolmogorov-Smirnov statistic or Akaike’s Information Criterion, apply more widely,
but may also be difficult to interpret intuitively.

In this paper, we discuss the c-statistic (or the concordance statistic), a measure of statistical discrimi-
nation that is particularly well suited to logistic regression. It is often used in industry, but is not commonly
discussed in the statistical literature in the context of regression models. For example, it does not appear in
McCullagh and Nelder’s seminal 1989 treatise on GLMs [MN89], and may have been popularized by Hosmer
and Lemeshow in their treatise on logistic regression in the 2000s [HL00]. The idea of discrimination, how-
ever, is not new, and the equivalent concept of the ROC curve (as discussed briefly below) was first developed
during World War II. [FUW06] The c-statistic, a very easily interpretable and powerful tool for model selec-
tion, measures how well a logistic regression model can discriminate between positive and negative outcomes.

More precisely, we recall that in the logistic regression setting, we have a sequence of data {(xi, yi)}ni=1 ⊂
Rd × {0, 1} where we assume yi to be a realization of a Y |X = xi ∼ Bernoulli(p(xi)) random variable, and

we wish to estimate p via the logit link function η(p(X)) = log( p(X)
1−p(X) ) = XTβ, which is done via the

standard Fisher Scoring method. Suppose we have arrived at such an estimate p̂; we use it to score a subset
of our data (typically one held-out for validation purposes) and thus obtain the estimated probability p̂(xi)
for each i.1 Call a pair (yi, yj) of observed responses a 0-1 pair if yi = 0 and yj = 1. We say that this 0-1
pair of observations is concordant if p̂(xj) > p̂(xi), discordant if p̂(xj) < p̂(xi), and tied if p̂(xj) = p̂(xi). In
words, the 0-1 pair is concordant when the model assigns a higher probability to the observation for which
the event did occur than to the observation for which the event did not occur.2

Let C = |{(i, j) ∈ {1, 2, . . . , n}2 : yi < yj and p̂(xi) < p̂(xj)}| be the number of concordant 0-1 pairs,
let T = |{(i, j) ∈ {1, 2, . . . , n}2 : yi < yj and p̂(xi) = p̂(xj)}| be the number of tied 0-1 pairs, and let
P = |{i ∈ {1, 2, . . . , n} : yi = 1}| and N = |{i ∈ {1, 2, . . . , n} : yi = 0}| be the number of positive and

negative responses, respectively. Then the c-statistic is calculated as c = C+T/2
PN . That is, it is the number

of concordant pairs plus half the number of ties, expressed as a proportion of the total number of 0-1 pairs.
In words, the c-statistic is the proportion of opposite outcomes in the data which the model “agrees” with
(i.e., discriminates correctly). This is easily visualized with a table. If, for instance, there are three positive
examples {yP1 , yP2 , yP3} and four negative examples {yN1 , yN2 , yN3 , yN4} whose scores are compared in the
following table, then the c-statistic is simply the number of “>” signs plus half the number of “=” signs

1In practice, it is computationally cheaper to obtain the estimated log-of-odds log
(

p̂(xi)
1−p̂(xi)

)
, which would yield equivalent

results owing to the monotonicity of the logit function.
2In theory, assuming independent observations, if our model includes at least one continuous covariate independent of

any others, then the probability of a tie should be 0. However, the finite precision arithmetic used in all computer GLM
implementations makes ties relatively common when dealing with millions of observations.



divided by the total number of cells (in this case, 7
12 ≈ 0.583):
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p̂(xP1

) > p̂(xN1
) p̂(xP2

) = p̂(xN1
) p̂(xPn) > p̂(xN1

)
yN2

p̂(xP1
) < p̂(xN2

) p̂(xP2
) > p̂(xN2

) p̂(xP3
) < p̂(xN2

)
yN3 p̂(xP1) > p̂(xN3) p̂(xP2) > p̂(xN3) p̂(xP3) = p̂(xN3)
yN4 p̂(xP1) > p̂(xN4) p̂(xP2) < p̂(xN4) p̂(xPn) < p̂(xNn)

While the R-squared statistic measures how well a linear regression model fits the data, the c-statistic
measures how well a logistic regression model discriminates the data. Thus, a c-statistic of 1

2 corresponds to
a random guess, which clearly has no discriminatory power. On the other hand, a c-statistic of 1 corresponds
to perfect discrimination. In practice, the c-statistic is never less than 1

2 , and therefore some authors even
define it as a [ 12 , 1]-valued function. Indeed, many GLM implementations initialize the Fisher Scoring algo-

rithm with β(0) = 0, producing an intercept-only “null” model for which p̂(xi) = eβ0

1+eβ0
is constant for each

xi, necessarily yielding a tie for every pair of observations3. Hence, the c-statistic here simply reduces to
0+PN/2

PN = 1
2 . At each subsequent iteration, the algorithm can only produce a vector of coefficient estimates β̂

with at least as high a log-likelihood as that of the null model. In Section 2, we will show how to (artificially)
achieve the extreme c-statistics of 0 and 1 on any binary dataset, and we will perform basic model selection
on the mathcat data using the c-statistic, measuring our success via the cross-entropy.

The c-statistic has a wide variety of useful applications. For example, consider a logistic regression model
that predicts the odds of developing some fatal disease; the results of this model might be used to decide
whether to undertake some expensive preventive treatment. A low c-statistic suggests that the model would
likely fail to distinguish adequately between patients who will develop the disease and those who will not,
and such failures of prediction might lead to needless treatment and/or fatal omission of treatment.
The c-statistic is automatically output by SAS using the well-known PROC LOGISTIC procedure; how-
ever, it is not included in any standard functions or libraries in R. Note that c-statistic is equivalent to the
area under the Receiver Operating Characteristic (ROC) curve (often used in binary classification machine
learning tasks), which essentially measures the model’s statistical power as a function of its Type I error
[HM82]. Therefore, certain R libraries which approximate the area under the ROC curve can be used to
estimate the c-statistic. However, these implementations typically approximate the area under the curve
using the Trapezoid Rule, which can sometimes yield a somewhat different result from a direct calculation.
In Appendix I, we have provided our own implementation as the function cstat, which is very inefficient
from a computational perspective (with its nested for loop), but provides a transparent calculation of the
c-statistic. A much faster method calculates the tensor product of the vectors induced by the positive and
negative examples, which we include in Appendix II.

Despite its usefulness, the c-statistic does have some drawbacks. For example, it gives no information
about how much the model discriminates positives from negatives, and could potentially lead to overfitting if
relied on too heavily, as we will show in Section 2. The practice of “c-hacking”4 – incrementally nudging up
the c-statistic as much as possible by introducing nearly colinear explanatory variables and/or questionable
interaction terms – is especially vulnerable to overfitting. Certainly, one should not rely solely on the c-
statistic in the model-building process; rather, it is helpful in conjunction with other measures like AIC and
traditional model diagnostic tools such as cross-validation, residual plots, and so forth.

3In this case, of course, p̂ is simply the proportion of positive observations in the data.
4This is not standard terminology (yet).



2 Examples

Given any data {(xi, yi)}ni=1 ⊂ Rd×{0, 1}, it is easy to see that the “estimates” p̂(xi) = yi should produce a
c-statistic of 1, while p̂(xi) = 1− yi produce a c-statistic of 0. We demonstrate this below, using the cstat

function on a random sequence in {0, 1}:

cstat(cbind(noise, noise))

[1] 1

cstat(cbind(noise, 1-noise))

[1] 0

This example suggests that relying on the c-statistic alone for model selection on a reasonably-sized
dataset can be dangerous; as the c-statistic approaches 1, the closer we get to achieving a perfect discrim-
ination of our sample data. Realistically, a complete separation of all possible data generated from the
underlying distribution is likely unobtainable, assuming that our response is not a deterministic function of
our explanatory variables. Having obtained a c-statistic which is very close to 1, we have likely overfit our
data.5

To demonstrate a more interesting use of the c-statistic, we perform a simple model selection on the
mathcat data, in which we aim to predict the probability of a student passing a course (as indicated by the
binary response passed) given several other explanatory variables. We split the data into a 70% modelling
sample and a 30% hold-out sample for validation, measuring our model’s accuracy on the validation sample
using the cross-entropy loss function, defined as

L(y, π̂) = − 1

n

n∑
i=1

yi log(π̂i) + (1− yi) log(1− π̂i).

In spite of our earlier warning, we rely solely on the c-statistic for guiding our variable selection process
for the purposes of demonstration. For convenience, we also define the wrapper functions cstat model and
CE model, both of which both accept a ”glm” object and format the predicted and actual responses into an
array from which the c-statistic and the cross-entropy can be easily calculated (the former via the cstat

function).

We begin with an intercept-only model0, whose c-statistic agrees with our discussion in Section 1. We
also take note of the model’s cross-entropy on the validation sample:

> model0 <- glm(passed ~ 1, family="binomial", data=mathcat.train)

> cstat_model(model0)

[1] 0.5

> CE_model(model0, mathcat.test, "passed")

[1] 0.6609283

Next, we create model1 by adding in the variable hsengl representing a student’s High School English
grade6:

> model1 <- glm(passed ~ hsengl, family="binomial", data=mathcat.train)

> cstat_model(model1)

[1] 0.6004891

5However, it is usually considerably difficult to achieve a nearly-perfect c-statistic on “real” data, even if we are not
concerned with overfitting. This can be easier when modelling with highly imbalanced datasets with a sufficiently large number
of observations (such datasets may may arise in rare events modelling, for example).

6Of course, we know that hsengl is not a particularly strong predictor in the presence of others available in the dataset. In
practice, we would begin with a variable which we already believed to be highly predictive of the response based on our prior
knowledge – in this case, our experience in STA2101H.



The addition of hsengl alone results in a model which discriminates about 20% more accurately than
a random guess, which is not very impressive. In place of hsengl, we try the categorical variable course

representing the course type. However, the resulting c-statistic decreases slightly:

> model2 <- glm(passed ~ course, family="binomial", data=mathcat.train)

> cstat_model(model2)

[1] 0.5697554

We try hsengl and course together, and we obtain a more satisfying c-statistic:

> model3 <- glm(passed ~ hsengl + course, family="binomial", data=mathcat.train)

> cstat_model(model3)

[1] 0.6303533

Thus, hsengl and course provide more discrimination together than they do separately. Now we try
adding in an interaction term between these two variables:

> model4 <- glm(passed ~ hsengl + course + hsengl*course, family="binomial", data=mathcat.train)

> cstat_model(model4)

[1] 0.6311141

The c-statistic is virtually unchanged, indicating that the interaction has little effect on the model’s
discrimination ability. Note that it is possible for the c-statistic to actually decrease following the inclusion
of additional terms in the model. This highlights a difference between the c-statistic and measures such as
R-squared, which cannot decrease when additional terms are included in a linear regression model. Often, a
decrease in the c-statistic is caused by the introduction of extraneous interaction terms (as was almost the
case here).

Instead of the interaction, we add in the variable hsgpa representing a student’s High School GPA:

> model5 <- glm(passed ~ hsengl + course + hsgpa, family="binomial", data=mathcat.train)

> cstat_model(model5)

[1] 0.7821467

This is a considerable improvement; our model now discriminates over 56% more accurately than a
random guess. We try an interaction between course and hsgpa:

> model6 <- glm(passed ~ hsengl + course + hsgpa + hsgpa*course,

+ family="binomial", data=mathcat.train)

> cstat_model(model6)

[1] 0.7824728

Aiming for a slightly more parsimonious model, we find that we can remove the separate course and
hsgpa terms7 and retain the previous c-statistic:

> model7 <- glm(passed ~ hsengl + hsgpa*course, family="binomial", data=mathcat.train)

> cstat_model(model7)

[1] 0.7824728

At this point, we are satisfied with the discriminatory ability we have achieved with our model. We could
continue on and “c-hack” our way to a higher c-statistic if we so desired:

> model34 <- glm(passed ~ poly(hsgpa, 4) + poly(hsengl, 4) + i_hscalc

+ + i_Elite*sqrt_hsengl + i_Catchup*sqrt_hsengl + i_Elite*hsengl

+ + i_Catchup*hsengl + i_Elite*log_hsengl*hsgpa + i_Catchup*log_hsengl*hsgpa

7We reject the insistence of some textbook authors that interaction terms should not be included without their main effects.



+ , family="binomial", data=mathcat.train)

Warning message:

glm.fit: fitted probabilities numerically 0 or 1 occurred

> cstat_model(model34)

[1] 0.8002446

Of course, this model is absurd; for only a slight increase in the c-statistic, we have reduced ourselves
to a nonsensical model which overfits our data so badly that R even warns us that we have succeeded in
interpolating some of our data at machine precision. We content ourselves with model5, and find that our
validation cross-entropy has reduced considerably from that of model0:

> CE_model(model7, mathcat.test, "passed")

[1] 0.4962625

We also confirm that the improvement in our c-statistic agrees with an improvement in the AIC:

> model0$aic

[1] 375.8341

> model7$aic

[1] 321.6649
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Appendix I - R Code

Note that the following does not include the commands already shown in Section 2 above.

set.seed(1729)

cstat <- function(scored) # accepts an array with rows (y_i, p(x_i))

{

ones <- scored[which(scored[,1] == 1),2] # keep track of the 1's in the data

zeros <- scored[which(scored[,1] == 0),2]

onecount <- length(ones) # count how many 1's we have

zerocount <- length(zeros)

Ccount <- 0

for (i in 1:onecount)

{

for (j in 1:zerocount)

{

Ccount <- Ccount + (ones[i] > zeros[j]) + 0.5*(ones[i] == zeros[j]) # count pair by pair

}

}

return(Ccount/(onecount*zerocount))

}

cstat_model <- function(model){(as.numeric(cstat(cbind(as.numeric(model$y), predict(model)))))}

CE_model <- function(model, data, resp)

{

y <- as.numeric(data[[resp]])

phat <- predict(model, newdata=data, type="response") # can't use predicted log-odds this time!

return(-1*mean(y*log(phat) + (1-y)*log(1-phat)))

}

noise <- round(runif(n=100)) # a random sequence in {0,1}

mathcat <- read.table("http://www.utstat.utoronto.ca/~brunner/data/legal/mathcat.data.txt")

# some potential transformations to try out

mathcat$passed <- as.numeric(mathcat$passed) - 1

mathcat$i_Elite <- as.numeric(mathcat$course == "Elite")

mathcat$i_Catchup <- as.numeric(mathcat$course == "Catch-up")

mathcat$i_hscalc <- as.numeric(mathcat$hscalc == "Yes")

mathcat$log_hsengl <- log(mathcat$hsengl)

mathcat$log_hsgpa <- log(mathcat$hsgpa)

mathcat$sqrt_hsengl <- sqrt(mathcat$hsengl)

mathcat$sqrt_hsgpa <- sqrt(mathcat$hsgpa)

# randomly split our data into 70/30 training/validation samples

mathcat.train <- mathcat[1:floor(nrow(mathcat)*0.7), ]

mathcat.test <- mathcat[(floor(nrow(mathcat)*0.7)+1):nrow(mathcat), ]



Appendix II - Alternate Implementation

The following code computes the c-statistic much more efficiently, using the kronecker function included in
the base R package:

cstat2 <- function(scored) # still takes in an array with rows (y_i, p(x_i))

{

ones <- scored[which(scored[,1] == 1),2]

zeros <- scored[which(scored[,1] == 0),2]

op <- kronecker(ones, zeros, "-")

return(sum(1*(op > 0) + 0.5*(op == 0))/(length(ones)*length(zeros)))

}
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