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Hidden Processes in Real Data

@ Real-world time series often exhibit abrupt or gradual changes in behavior
that are driven by unobserved states (i.e., latent variables)

¥ Astronomy: Flaring and quiescence in stellar X-ray light curves
> Latent variable: flare intensity or state

‘& Ecology: Animal movement switching between foraging and resting
> Latent variable: behavioral mode

I Finance: Stock returns alternating between volatility regimes
> Latent variable: market state

X Bioinformatics: Coding vs. non-coding DNA regions
> Latent variable: genomic structure

& Speech: Recognizing spoken units from acoustic signals
» Latent variable: spoken unit
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Enter Hidden Markov Models

@ Hidden Markov models give us a structured way to model time-dependent
processes whose behavior depends on a hidden state that evolves over time
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Figure: A graphical model of the standard discrete-time HMM dependence structure
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Example: African Elephant Movement

@ The figure below shows an African elephant’s tracks in Mali over several days
[Wall et al., 2014]

@ It is believed that elephants typically spend time in either of two states:
encamped and exploratory

Robert Zimmerman An Introduction to HMMs



Hidden States Revealed

@ [McClintock and Michelot, 2018] fit a 2-state HMM to the observed data,
allowing ecologists to classify the elephant’s state at each time point and
predict its future states
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Example: Momentum in Football (aka Soccer) Matches

@ The figure below shows a bivariate time series of the number of shots on goal
(top) and the ball touches (bottom) of Borussia Dortmund for a match vs.
FC Schalke 04 [Otting et al., 2023]

@ We imagine three states for Borussia: low control, balanced, and high control

Shots

Ball touches

0 15 30 45 60 75 920
Minute

Robert Zimmerman An Introduction to HMMs 8 /53



Hidden States Revealed

o [Otting et al., 2023] fit a 3-state HMM to the data, with state classifications
shown below

@ The vertical dashed lines show goals scored by Borussia (yellow lines) and
Schalke 04 (blue lines)
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| decoded state: ¢ 1 (low control and counter attacks) * 2 (balanced) ¢ 3 (high control) |
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Example: Solar Flare Activity

@ The figure below shows solar X-ray log flux (from GOES data) in the period
from 1 July 2015 to 30 September 2017 [Stanislavsky et al., 2020]

@ They assume two states: low activity ("1") and high activity (“2")
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Hidden States Revealed... and Predicted!

@ [Stanislavsky et al., 2020] fit a 2-state HMM to rolling 365 day windows of
the data, and predict both the solar flux and the state for the following day
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Mixture Models

o Let X € X be a random variable with pdf 7(z) or pmf 7, = P(X = x)
e Conditional on X =z, let Y € ) be a random variable with pdf/pmf f(y)

e The unconditional pdf/pmf of Y is given by

fo) = | 7o) feli)de o £0)= Y 7 fulo)

rzeX

and Y is said to follow a mixture model

@ Mixture models have a simple design that can accommodate unobserved
heterogeneity in a population

@ They are often used to handle multi-modal distributions
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Special Case: Finite Mixture Models

@ When X ={1,2,..., K}, we have a K-component finite mixture model
with pdf/pmf

K
@) => m- fily)
k=1

@ Note: in general, each f;(y) can — and usually does — have an associated
vector of parameters @, that varies with x

o We often write f,(y;0.) to emphasize dependence on the state-dependent
parameter 6,
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Example: Time Between Old Faithful Eruptions

@ The figure below shows a histogram of time between eruptions for the Old
Faithful geyser in Yellowstone National Park, Wyoming, USA
[Azzalini and Bowman, 1990]

@ The observations seem to include two distinct components

@ Histograms like this are highly characteristic of finite mixture models
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Maximum Likelihood for Finite Mixture Models

@ Given an independent sample y1,..., Y, i f, the likelihood function is given
by
n K
L0, | yin) =[] (Z T i (Yis 0k)>
i=1 \k=1

with 0 = (01,...,0}{) and ™ = (7T1,...,7TK)
> ...and the log-likelihood by £(8, | y1.n) = 37 log(S e, 7k - fr(yi; Ok))

@ Numerical maximization (or often the EM algorithm) can be used to obtain
the MLEs of 8 and 7

o If some/all fi are in the same parametric family, it is good practice to
somehow (e.g., by imposing order constraints) identify the parameters of the
model to prevent label switching
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Back to Old Faithful

@ Suppose we assume a 2-component Gaussian mixture model (i.e., K = 2 and
each fy is a univariate Gaussian pdf)

o If we perform maximum likelihood estimation, we get that
» fi(y) is estimated to be N (54.6,5.9%)
> fao(y) is estimated to be A/(80.1,5.9%)
» 71 is estimated to be 0.36 (thus 72 is estimated as 0.64).
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Finite Mixture Models in Astronomy: Stellar Populations

@ Astronomical populations often consist of overlapping groups (e.g., stars in
different evolutionary phases)

@ Finite mixture models help disentangle these subpopulations using
photometric data [Fan et al., 2023]

Chandra X-ray observations of colliding Antennae Hubble optical image of colliding Antennae galax-
galaxies; the source appears over a diffuse background ies; emission sources are spatially structured (image
credit: NASA, ESA, and the Hubble Heritage Team)
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Finite Mixture Models in Astronomy: Source Separation

@ Finite mixture models group spatial or photometric patterns

o We will see that HMMs extend this idea to sequences, where latent group
membership evolves over time
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Markov Chains

@ A discrete time Markov chain on X’ is an X-valued stochastic process
{X;}* that satisfies the Markov property:

P(Xt+1 €A|Xt=$t,...,X121‘1)=P(Xt+1 €A|Xt:$t)

forACX andt>0
> i.e., the distribution of X4 is entirely determined by X,

@ A discrete time Markov chain on X is fully characterized by
@ An initial pdf 6(z) or pmf §, = P(X, = z) that determines the distribution of
Xo .
@ A transition pdf 4V (z; 1, z) or pmf L) L =P(X, =2 | X, | =z, ) that
determines the conditional distribution of X; given X;_1 = x—1

o If the transition pdf/pmf does not depend on ¢, then the chain is said to be
time-homogeneous

'Notation: {X:} means the (possibly infinite) sequence Xo, X1, X2, ...
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Finite Space Markov Chains: Transition Probabilities

@ An important special case is a time-homogeneous Markov chain on
X ={12,...,K}

@ Here, the transition probability ~y; ; (no superscript!) is the probability that
the chain enters state j at time ¢ + 1 given that it is in state ¢ at time ¢

@ We can collect the K2 transition probabilities into a transition probability

matrix
Y1 .- YL,K

T =

YK1 .- VKK

@ One can show that unconditional probability P(X; = k) is given by the kth
entry of 8T, where 6 = (d1,...,0k)
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Markov Chains: Stationary and Limiting Distributions

@ A Markov chain has a limiting distribution if the distribution of X} (starting
from any initial distribution) exists as ¢t — oo

@ A time-homogeneous Markov chain is said to have a stationary distribution
if there exists a pdf s(x) or a pmf s, which satisfies

/ é(L) . ’Y(IL',IL'/) da = é(‘Ll) or Z Sy * Yo,z = Sa’
JX

reX

> In the finite space case, if s = (s1,...,Sk), then the first statement is
equivalent to sI' = s

@ A stationary distribution exists under mild conditions, and when it does it is
equal to the limiting distribution (and hence unique)
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Serial Dependence

@ We now consider an observed time series {Y;}

@ Such time series commonly exhibit dependence between consecutive
observations — a phenomenon known as serial dependence

@ But sometimes, this serial dependence reflects a deeper structure: what if the
behavior of Y; is driven by an unobserved state process {X;}?

@ In particular, what if...

» {X.} evolves as a Markov chain, and

» The distribution of Y; depends on the current state X;? That is, the
statistical properties of the observed process change over time depending on
the hidden state
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Putting Things Together: the HMM

@ This generative structure informally defines a hidden Markov model

@ The unobserved state process {X;} (shaded nodes) is a Markov chain

@ The observed process {Y;} (clear nodes) is conditionally independent given
the states: each Y; depends only on X;
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The HMM: General Definition

o A discrete time hidden Markov model (HMM) consists of...
© A latent process {X;} evolving as a Markov chain on some state space X
* Initial pdf/pmf §(z)
* A transition pdf/pmf v (z;_1,z)

@ An observation process {Y:} on a space )V which is conditionally independent
given the states:?
P(Y; € A| Xir, Yip1y) =P(Y: € A| Xy)
© A state-dependent distribution model:

Yi|Xe=z~fo

@ Such an HMM is fully characterized by
@ The initial pdf §(z) or pmf (0,).cx
@ The transition pdf *y(t)(xt,l,a:) or pmf 7(&?{1,1 =P(Xi=2| X1 =x4-1)
© The state-dependent pdfs/pmfs {f, : z € X'}

’Notation: X1t means (X1, X2, ..., X;) and similarly for Y7
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Example: Flaring Behaviour of EV Lac

@ [Zimmerman et al., 2024] study X-ray light curves of the red dwarf star EV
Lac

@ The figure below shows photon counts in soft and hard bands for EV Lac
over several days
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Example: Flaring Behaviour on EV Lac

[Zimmerman et al., 2024] use a univariate Poisson state-space model to the
capture flaring behaviour

The latent Markov chain {X;} evolves as an AR(1) process:

Xi =X 1+e, & NN(OJQ)

The observed process {Y; = (Y,1,Y:,2)} is a 2-tuple of soft and hard band
X-ray photon counts:

Yin | X¢ =z ~ Poisson(w - By, - %), h=1,2

@ Smooth transitions in {X;} capture variability in flaring activity as
manifested in {Y;}
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Likelihood Functions for HMMs

@ The vector of parameters 8 in an HMM include those associated with the
initial pdf/pmf, the transition pdf/pmf, and the state-dependent distributions

@ Suppose we observe data y;.p arising from an HMM

e When X = {1,..., K}, the likelihood is a sum over all possible state paths:

T
a‘yll)*z 2511 f’l I/lH fl; 1//>

xp=1 t=2

e When X = R?, the sums are replaced by integrals:

T
9|y1T / /5 l’l le Y1 H l’f 17$t ,f:ct(yt)dxl:T
t=2
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Fitting HMMs via Likelihood Maximization

@ Once an HMM has been specified, it can be fit by maximizing the likelihood:

A

0 = argmax L(0 | y1.1)
]

o For discrete-state HMMs, the likelihood can be computed efficiently via the
forward algorithm in O(TK?) time

@ For continuous-space HMMs, the likelihood must be approximated
numerically (e.g., via state-space discretization [Zimmerman et al., 2024] or
particle methods)

@ In practice, we optimize the likelihood using numerical methods (e.g.,
L-BFGS)

» Transformations ensure parameters stay within valid domains (e.g., log or
tanh™')
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Model Assessment: Pseudo-Residuals

@ To assess how well the fitted HMM explains observed univariate data, we use
pseudo-residuals

@ These are constructed from the one-step-ahead forecast distribution:
=0 P, <y|Yie-1)), t=23,....T

The cdf above can either be computed exactly or estimated, depending on
the type of HMM

o Under a well-specified model, 72, ..., 77 should be approximately N (0, 1)
» Deviations reveal distributional misfit or unmodeled serial dependence
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State Decoding: Inferring the Latent Process

@ Once we've fit the HMM using an estimator é, we can recover information
about the hidden states { X;} using one of two common approaches:

o For discrete-space HMMs: local decoding

X, = argmaxPy(Xy =2 | Yir =y1.7), t=1,...,T
reX

or global decoding

Xi.r = argmax Py (X170 = 1.7 | Yoo = y1.7)
z1.7€XT

These both require the filtered state probabilities Py(X; = = | Y14 = y1.4),
which can be computed efficiently using the forward algorithm

@ For continuous-space HMMs: posterior expectation

Xt:Eé[Xt|Y1:T:y1:T]; tzlaaT
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Back to EV Lac

o In the EV Lac model, we compute the smoothed posterior means {X;} to
estimate the underlying flare intensity at each time point

@ We then fit a 2-component mixture model to the distribution of {Xt}:

Robert Zimmerman
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EV Lac: Flaring and Quiescence

@ The fitted mixture model above allows us to estimate the “probability” of
flaring for each observation:
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Forecasting States Ahead in Time

o Consider the discrete-space HMM and suppose we've made state predictions
by computing the filtered state probabilities Py (X; = = | Yi.r = y1.7)

@ We can forecast future states conditional on the observed data Y;.r
practically for free:

K

XT+t — argmax ZPé(Xt =k | Yi:T = ylzT) . [f‘t:|k N t= 1,2, e
TEX k=1 *

where I' is the fitted transition probability matrix

@ BUT: as t — oo, the forecast distribution converges to the stationary
distribution (regardless of history)

» So predictive uncertainty increases with ¢: farther-out forecasts are more
diffuse and less informative
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Covariates in State Dependent Distributions

@ The basic HMM may be too simplistic a model for certain applications

@ Occasionally, we might want certain parameters in the model to depend on
covariates (for example, an animal’s sex, weight, age, etc.)

@ For example, the state-dependent mean 6, might depend linearly on some
fixed vector z € RP, perhaps through some link function g :

9(6:) = g(EY: | X, = a]) = B, z,

where B] = (By1,---,Bep) is a vector of regression coefficients

@ In other words, each state-dependent distribution carries its own generalized
linear model
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Mixed HMMs

o We may have multiple time series — say S of them — available for inference

@ When the time series are believed to be iid, they can be pooled together in a
straightforward manner

@ More realistically, the S time series are not iid, but still arise from HMMs
with common features (such as the same underlying set of states X))

@ When the time series arise from the same parametric model (but with
series-specific parameters), there can be up to S - length(8) parameters to
estimate, which is cumbersome

@ For example, there would be S state-dependent parameters for state j:
9]‘,1, ey 0]*)5
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Random Effects

@ Instead, one could regard the 6, ; as continuous random variables:
iid
015505 ~ gn,

@ That is, each 0; 5 is a random effect with distribution gy,

@ Each inclusion of such a random effect in the model reduces the number of
parameters to estimate by S — length(o;)

@ The drawback, however, is that the ; ; must be integrated out of the
likelihood:

S
("‘7nj|y1T / / ]1;"-76j,5|y1THg’r)J 7,8 de]s)
s=1
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Discrete Random Effects

@ Even for the simplest distributions gy, such integrals are never available in
closed form and must be computed numerically (which is difficult in high
dimensions)

o Alternatively, one can assume the §; ; to be discrete random variables on a
finite sample space M

@ This makes for a simpler likelihood computation:

L(...,nj |y1.1) = Z Z ]17~--79j,5'|y1:T)'Pnj(9j,s:m)

s=1meM

@ However, the applicability of such models may be limited

@ The same ideas can be extended to dependent random effects, in which two
or more parameters in the model follow a joint distribution
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Covariates in Transition Probabilities

o Alternatively, we may incorporate covariates into the transition pdf/pmf

@ In the discrete-state case, this is typically accomplished by applying a
multinomial logistic regression model to each row of the transition matrix:

-
eﬂw\jz

Vie =P(Xi=2|Xi1=J) = — %>
J L P

r,jeX

with B ; =0 for all j € X
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More on Covariates

@ In either case, the 8, and/or B,; are incorporated into the likelihood
function and inference proceeds as usual

@ We might also want to include covariates z; that depend on time (for
example, z; could include the number of hours an animal has been awake at
time t)

@ In this case, inference proceeds in a similar fashion; however...

@ Including time-varying covariates in the transition probabilities ; , destroys
the assumption of time-homogeneity, so the initial pmf §, = P(Xy = x) must
also be estimated
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Bayesian Inference

@ One can also perform Bayesian inference on HMMs

e To do so, one must choose an appropriate prior distribution 7(8) for the
unknown parameters of the model

@ In the discrete-space case, the rows of the transition matrix I'" and the initial
distribution vector & are traditionally assigned Dirichlet priors (which are
conjugate to the multinomial distribution)

@ Priors for the parameters 6, of the state-dependent distributions are chosen
on a case-by-case basis
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Bayesian Inference

@ The posterior distribution
(0 | yr.r) o< m(6) - L(O | yr.1)

is never available in closed form and is impossible to sample from directly

@ Thus, Markov chain Monte Carlo (MCMC) methods are typically required to
sample from it

@ A popular choice of MCMC method for HMMs is Hamiltonian Monte Carlo
(or variants thereof), as implemented in the Stan programming language

o Although written in C++, Stan has an R interface which is accessed through
the rstan library and a Python interface accessed through the PyStan library
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Quantifying Uncertainty

@ As in all statistical inference, it is always of interest to quantify uncertainty in
estimates of unknown parameters

o For frequentist inference, asymptotic normality of the MLE has been proven
under mild regularity conditions [Bickel et al., 1998]

@ The observed information matrix — which itself is a consistent estimator of
the Fisher information — can be approximated numerically, and this yields
standard errors and confidence intervals for parameter estimates

@ In the Bayesian setup, credible intervals can be obtained from posterior
distributions using standard techniques
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When Are HMMs a Good Choice?

Use an HMM when...

> You suspect that observed temporal patterns are driven by an unobserved
process with temporal structure

> Your observed data are conditionally independent, given the hidden state

» You want to classify, decode, or predict based on latent regimes or behaviors

@ In astronomy, HMMs are useful for
> lIdentifying flaring vs. quiescent periods in light curves
> Separating source vs. background states in high-energy data
» Modeling transitions between different emission regimes
> [Stanislavsky et al., 2020, Zimmerman et al., 2024, Esquivel et al., 2025]

They can be applied to counts, images, spectra, or multivariate signals

They can be flexibly extended (e.g., to hierarchical or switching models)
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Further Resources

@ Introductory and advanced textbooks:

> [Zucchini et al., 2016]: accessible, example-driven introduction (R-based)
> [Cappé et al., 2005]: rigorous treatment, theory-heavy (math/stats focused)

@ Software for fitting HMMs:
» In R:

* depmixS4: Discrete-state HMMs with Gaussian, Poisson, multinomial
state-dependent distributions

* momentuHMM: Geared toward animal movement, but widely used in practice

* hmmTMB: Flexible HMMs with random effects

* nimble: For custom Bayesian state-space/HMM models with full MCMC

> In Python:

* hmmlearn: Standard library for discrete-state HMMs (scikit-learn—like)

* pomegranate: Modular, faster implementation for HMMs and other
probabilistic models

* tensorflow probability: For building custom probabilistic models (Bayesian
HMMs, etc.)
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https://cran.r-project.org/package=depmixS4
https://cran.r-project.org/package=momentuHMM
https://cran.r-project.org/package=hmmTMB
https://r-nimble.org
https://github.com/hmmlearn/hmmlearn
https://pomegranate.readthedocs.io
https://www.tensorflow.org/probability

Thank you!
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Download the Slides

You can download this presentation at https://rob-zimmerman.github.io/
files/presentations/HMM_Tutorial_ TACHEC2025.pdf
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