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Regression Models

Suppose we have a set of data {(yi , xi)}ni=1, where each yi ∈ R is a
response (believed to be) based on xi ∈ Rp

In simple regression, we assume that Y = f (β0 + βTX) + ε, where
(β0,β) ∈ Rp+1, E[ε] = 0, and f : R→ R is a deterministic function

Thus E[Y |X = x] = f (β0 + βTx)

When f (x) = Id, this is linear regression
When Y is in the exponential family and f (·) = g−1(·) is a link
function, we get a generalized linear model
Etc.
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Regression Models: Example

In linear regression using ordinary least squares, we estimate the
coefficients (βi0,βi ) of E[Yi |Xi ] = βi0 + βT

i Xi by minimizing the sum of
the (squared) distances between the estimated hyperplane ŷi and each
data point xi, leading to the estimator β̂ = (XTX)−1XTy.
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Mixture Models: Motivation

What if we find that our data set appears to partition into several distinct
groups, or clusters?
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Finite Mixture Models

Suppose θ is a discrete random variable whose distribution places
mass on the elements of {1, 2, . . . ,G}, and suppose we have G
conditional random variables {Xg |θ = g ∼ Fg (x)}Gg=1 which follow
their own distinct distributions

It is easily shown that F (x) =
∑G

g=1 Fg (x) · P(θ = g) defines a
distribution function, which we call a mixture distribution

Denoting each mixing weight πg := P(θ = g) ∈ [0, 1] and observing

that
∑G

g=1 πg = 1, we see that F (x) =
∑G

g=1 πg · Fg (x) is simply a
convex combination of distribution functions
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Finite Mixture Models: Example

Suppose we reach for one of two biased coins, Cbig and Csmall , such that
P(Cbig = H) = 0.75 and P(Csmall = H) = 0.25, and then we flip it. Due
to their different sizes, we are twice as likely to grab Cbig as we are Csmall .
We can model the distribution of the flipped coin C as a mixture of
Bernoulli distributions:

P(C = H) = P(C = Cbig ) · P(C = H|C = Cbig )

+ P(C = Csmall) · P(C = H|C = Csmall)

=
2

3
· 0.75 +

1

3
· 0.25 =

7

12

P(C = T ) = 1− P(C = H) =
5

12

This is nothing but the Law of Total Probability.
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Finite Mixture Models: Identifiability

Suppose that each distribution in a mixture comes from the same
family F of distributions, defined on a parameter space Θ so that
F = {Fg (x ;θg ) : θg ∈ Θ, g = 1, . . . ,G}
Let C = {

∑G
g=1 πg · Fg (x ;θg ) : πg > 0,

∑G
g=1 πg = 1,Fg (x ;θg ) ∈ F}

be the convex hull of F

C is identifiable all of its members are distinct, up to reordering of
summations

Mixtures that are not identifiable suffer from the label-switching
problem and are difficult to estimate in general
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Identifiability: Example

The mixture of Bernoullis is not identifiable!

Suppose we did not know P(C = Cbig ) and P(C = Csmall) beforehand

P(C = H) = π · 0.75 + (1− π) · 0.25 = 0.5π + 0.25 and
P(C = T ) = 0.75− 0.5π for any π ∈ (0, 1)

Theorem (Yakowitz, Spragins (1968))

C is identifiable if and only if F is linearly independent over R.

With some mild constraints imposed, mixtures of linear regression
models are identifiable
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Cluster Weighted Models: Motivation

When clusters of data are far away from each other, fitting a finite mixture
model is relatively straightforward. But this is not always the case:
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Cluster Weighted Models: Definition

Suppose that y ∈ Rd is a multivariate response, x ∈ Rp is a vector of
explanatory covariates, and θ and πg are as defined previously

A cluster-weighted model is a specific finite mixture model where
f (x, y) =

∑G
g=1 fY|X,θ=g (y|x, g) · fX|θ=g (x|g) · πg is given as the joint

density of (X,Y)

Here, each conditional density of y is weighted by both a mixing
weight πg as well as a local density of x within group g (which is
usually assumed to be Gaussian)

Cluster-weighted models allow for modelling data whose clusters may
not appear to be distinct
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Cluster Weighted Models: Example

A finite mixture of regressions model was fit using the EM algorithm:

The algorithm classified many points, but failed to correctly classify the
cluster which spanned a small portion of the feature space

Robert Zimmerman Finite Mixtures of Nonparametric RegressionCluster-Weighted ModelsCUMC 2016 12 / 23



Cluster Weighted Models: Example

A cluster-weighted model was fit to the same data:

The algorithm correctly classified all but five points, and determined the
actual lines that were used to generate the data almost perfectly
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Nonparametric Models

Traditionally, finite mixture models are fully parametric; that is, each
probability distribution Fg (x) can be fully specified by a vector of
fixed parameters θg ∈ Θ, where Θ ⊆ Rd is a finite-dimensional
parameter space

For example, a mixture of Gaussian distributions of the form
F (x) =

∑G
g=1 πg · N (µg , σ

2
g ) is fully parametric, with θg = (πg , µg , σ

2
g )

In nonparametric models, the components of the distributions are
not assumed to be constant, but are instead taken to be unknown
functions of the predictors {xi} themselves

These functions require estimation
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Nonparametric Models: Example

π1(x) =
e
√
x

5(1 + e
√
x)
, µ1(x) = 4− 3

2
x−

1
3 sin(5πx), σ1(x) = x

4
5

π2(x) =
x2

2
, µ2(x) = −1 + cos(3πx), σ2(x) =

5

2
− 3 sin(x)

π3(x) = 1− π1 − π2, µ3(x) =
1

x
3
10

− 3, σ3(x) = 2x
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Benefits and Drawbacks

Nonparametric models allow for much more freedom than parametric
models, but there is a drawback

In parametric models, parameters can be estimated from the data
using straightforward approaches based on maximum likelihood
estimation

In least squares regression, the ordinary least squares estimate is the
MLE
In generalized linear models, quasi-Newton methods like the Fisher
scoring algorithm numerically finds a root of the score equation
In mixtures of (parametric) Gaussian models, the EM algorithm uses a
modified log-likelihood approach to estimate the parameters of the
distributions as well as the mixing weights

Likelihood estimation often fails for nonparametric models!
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Kernel Smoothing

In nonparametric models, component functions are usually estimated
using kernels

If we fix one data point x0, then a kernel Kx0,λ(x) assigns a weight

Wλ,j(x) =
Kx0,λ(x − xj)∑n
i=1 Kx0,λ(x − xi )

to each xj ∈ Bλ(x0) based on its

distance from x0

In one dimension, a kernel K : R→ R is continuous, bounded,
symmetric about 0, and satisfies

∫∞
−∞ K (x)dx = 1

In a regression setting, f̂ (x) =
∑n

i=1Wλ,i (x) · yi is a kernel
smoother that provides a smooth nonparametric estimate of the true
function f (x), where Y = f (X ) + ε
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The Curse of Dimensionality

In local regression, the radius λ = λ(x0) is called the bandwidth

Because in general, the data is spread out non-uniformly, variable
bandwidth selection must be used to determine λ at each point

Typically this is done by the k-nearest neighbours algorithm, which
searches for the k points closest to x0

In low dimensions, this is straightforward

However, as the dimension grows, our feature space becomes sparser
and we must search a much larger volume for the same k points

This is an example of the curse of dimensionality

To circumvent this, dimension reduction techniques or feature
selection algorithms may be used that restrict the data used
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Generalized Additive Models: Definition

Recall that in our regression setting, we assumed that
E[Y |X = x] = f (β0 + β1x1 + · · ·βpxp)

This model is useful, but the requirement that the argument of f (·)
be linear in the xi ’s is often too restrictive

In a generalized additive model, we assume more generally that
E[Y |X = x] = f (α0 + α1(x1) + · · ·αp(xp)), where each function
ai : R→ R is smooth

We can apply kernel smoothing techniques to each αi individually,
and thus avoid the curse of dimensionality

Smoothing splines are another choice
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Generalized Additive Models: Example

α0 = −1, α1(x1) =
(x1 + 1)2

10
, α2(x2) = ex2 , f (x) =

1√
2π

e−
x2

2
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Generalized Additive Models: Continued

A GAM was fit to the above data:
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Cluster Weighted Models with GAMs

A cluster-weighted model with generalized additive components
is a finite mixture model where the joint density of (X,Y) takes the
form

f (x, y) =
G∑

g=1

fY|X,θ=g

αg ,0 +

p∑
j=1

αg ,j(xj)|x, g

 · fX|θ=g (x|g) · πg

where each function αg ,h : R→ R is smooth
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Summary: Why These are Good

Finite mixture models are more versatile than “single” models
because they allow for clustered data

Cluster-weighted models are more versatile than finite mixture models
because the additional weighting term allows for more accurate
identifying of clusters

Nonparametric models are more versatile than parametric models
because they allow the components of distribution functions to vary

GAMs are more versatile than simple additive models because they
allow each covariate to vary in its own (smooth) way
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