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Regression Models

@ Suppose we have a set of data {(y;,x;)}"_;, where each y; € R is a
response (believed to be) based on x; € RP

o In simple regression, we assume that Y = f(3o + 37 X) + ¢, where
(Bo,B) € RPTL E[e] =0, and f : R — R is a deterministic function
o Thus E[Y|X = x] = f(Bo + B7x)
e When f(x) = Id, this is linear regression

o When Y is in the exponential family and f(-) = g~1(-) is a link

function, we get a generalized linear model
o Etc.
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Regression Models: Example

In linear regression using ordinary least squares, we estimate the
coefficients (Bio, Bi) of E[Yi|Xi] = Bio + B Xi by minimizing the sum of
the (squared) distances between the estimated hyperplane y; and each
data point x;, leading to the estimator 3 = (XTX) 1XTy.
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Mixture Models: Motivation

What if we find that our data set appears to partition into several distinct
groups, or clusters?
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Finite Mixture Models

@ Suppose 6 is a discrete random variable whose distribution places
mass on the elements of {1,2,..., G}, and suppose we have G
conditional random variables {Xg|0 = g ~ Fg(x)}g:1 which follow
their own distinct distributions

@ It is easily shown that F(x) = chzl Fg(x)-P(0 = g) defines a
distribution function, which we call a mixture distribution

@ Denoting each mixing weight 7, := P(f = g) € [0,1] and observing
that 25:1 g = 1, we see that F(x) = zgczl Tg - Fg(x) is simply a
convex combination of distribution functions
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Finite Mixture Models: Example

Suppose we reach for one of two biased coins, Cpig and Cgpay, such that
P(Chig = H) = 0.75 and P(Csmay = H) = 0.25, and then we flip it. Due
to their different sizes, we are twice as likely to grab Cp;; as we are Copay.
We can model the distribution of the flipped coin C as a mixture of
Bernoulli distributions:

P(C = H) = P(C = Cpig) - P(C = H|C = Cpig)
+P(C = Csmall) IP)(C = H|C = Csmall)
2 1 7
—5-0.754—5'0.25 =1

BC=T)=1-B(C=H) =o

This is nothing but the Law of Total Probability.
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Finite Mixture Models: ldentifiability

@ Suppose that each distribution in a mixture comes from the same
family F of distributions, defined on a parameter space ® so that
F={Fg(x;05) 0, €0,g=1,...,G}

G G

oLet C={}/ 1mg Fg(xibg) :mg>0,> . mg =1 Fg(x;6g) € F}
be the convex hull of F

o C is identifiable all of its members are distinct, up to reordering of
summations

@ Mixtures that are not identifiable suffer from the label-switching
problem and are difficult to estimate in general
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|dentifiability: Example

@ The mixture of Bernoullis is not identifiable!
@ Suppose we did not know P(C = Cpjg) and P(C = Csmay) beforehand

e P(C=H)=n-075+(1—m)-0.25=0.57+ 0.25 and
P(C=T)=0.75—0.57 for any 7w € (0,1)

Theorem (Yakowitz, Spragins (1968))

C is identifiable if and only if F is linearly independent over R.

@ With some mild constraints imposed, mixtures of linear regression
models are identifiable
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Cluster Weighted Models: Motivation

When clusters of data are far away from each other, fitting a finite mixture
model is relatively straightforward. But this is not always the case:
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Cluster Weighted Models: Definition

@ Suppose that y € RY is a multivariate response, x € RP is a vector of
explanatory covariates, and ¢ and 7z are as defined previously

@ A cluster-weighted model is a specific finite mixture model where

G . ..

f(x,y) = Zgzl fy‘xﬁ:g(y\x,g) . fx|9:g(x]g) - Tg is given as the joint
density of (X,Y)

@ Here, each conditional density of y is weighted by both a mixing
weight 7, as well as a local density of x within group g (which is
usually assumed to be Gaussian)

@ Cluster-weighted models allow for modelling data whose clusters may
not appear to be distinct
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Cluster Weighted Models: Example

A finite mixture of regressions model was fit using the EM algorithm:
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The algorithm classified many points, but failed to correctly classify the
cluster which spanned a small portion of the feature space
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Cluster Weighted Models: Example

A cluster-weighted model was fit to the same data:
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The algorithm correctly classified all but five points, and determined the
actual lines that were used to generate the data almost perfectly
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Nonparametric Models

@ Traditionally, finite mixture models are fully parametric; that is, each
probability distribution Fz(x) can be fully specified by a vector of
fixed parameters 8, € ©, where © C R is a finite-dimensional
parameter space

e For example, a mixture of Gaussian distributions of the form
F(x) = 25:1 g - N (g, 02) is fully parametric, with 8 = (7, 1, 02)

@ In nonparametric models, the components of the distributions are
not assumed to be constant, but are instead taken to be unknown
functions of the predictors {x;} themselves

@ These functions require estimation
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Nonparametric Models: Example

eVx
~5(14evx)’

ol

m1(x)

pi(x) =4— gx_% sin(57x), o1(x) = x

Robert Zimmerman i 'z t i CUMC 2016 15 /



Benefits and Drawbacks

@ Nonparametric models allow for much more freedom than parametric
models, but there is a drawback
@ In parametric models, parameters can be estimated from the data
using straightforward approaches based on maximum likelihood
estimation
o In least squares regression, the ordinary least squares estimate is the
MLE
o In generalized linear models, quasi-Newton methods like the Fisher
scoring algorithm numerically finds a root of the score equation
o In mixtures of (parametric) Gaussian models, the EM algorithm uses a
modified log-likelihood approach to estimate the parameters of the
distributions as well as the mixing weights

@ Likelihood estimation often fails for nonparametric models!
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Kernel Smoothing

@ In nonparametric models, component functions are usually estimated
using kernels
o If we fix one data point X, then a kernel K, \(x) assigns a weight

. KXOJ\(X XJ)
W) = S K- )

distance from xg

@ In one dimension, a kernel K : R — R is continuous, bounded,
symmetric about 0, and satisfies [ K(x)dx =1

to each x; € B\(xp) based on its

o In a regression setting, f(x) = 3.7, Wy i(x) - y; is a kernel
smoother that provides a smooth nonparametric estimate of the true
function f(x), where Y = f(X) + ¢
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The Curse of Dimensionality

@ In local regression, the radius A = A\(xg) is called the bandwidth

@ Because in general, the data is spread out non-uniformly, variable
bandwidth selection must be used to determine A at each point

o Typically this is done by the k-nearest neighbours algorithm, which
searches for the k points closest to xg

@ In low dimensions, this is straightforward

@ However, as the dimension grows, our feature space becomes sparser
and we must search a much larger volume for the same k points

@ This is an example of the curse of dimensionality

@ To circumvent this, dimension reduction techniques or feature
selection algorithms may be used that restrict the data used
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Generalized Additive Models: Definition

@ Recall that in our regression setting, we assumed that
E[Y|X = X] = f(ﬁO + Bixy + - 5pxp)

@ This model is useful, but the requirement that the argument of f(-)
be linear in the x;'s is often too restrictive

@ In a generalized additive model, we assume more generally that
E[Y|X =x] = f(ao + a1(x1) + - - - ap(xp)), where each function
a; : R — R is smooth

@ We can apply kernel smoothing techniques to each «; individually,
and thus avoid the curse of dimensionality

@ Smoothing splines are another choice
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Generalized Additive Models: Example
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Generalized Additive Models: Continued

A GAM was fit to the above data:
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Cluster Weighted Models with GAMs

@ A cluster-weighted model with generalized additive components

is a finite mixture model where the joint density of (X, Y) takes the
form

G P
F(x¥) =D Fixomg | g0+ D gi(x)Ix g | - friomg(xlg) - m¢
g=1 J=1

where each function gz, : R — R is smooth
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Summary: Why These are Good

@ Finite mixture models are more versatile than “single” models
because they allow for clustered data

@ Cluster-weighted models are more versatile than finite mixture models
because the additional weighting term allows for more accurate
identifying of clusters

@ Nonparametric models are more versatile than parametric models
because they allow the components of distribution functions to vary

@ GAMs are more versatile than simple additive models because they
allow each covariate to vary in its own (smooth) way
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